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Abstract
Osteosarcoma is the most prevalent bone malignant tumor in children and teenagers. The bone defect, recurrence, and 
metastasis after surgery severely affect the life quality of patients. Clinically, bone grafts are implanted. Primary bioceramic 
scaffolds show a monomodal osteogenesis function. With the advances in three-dimensional printing technology and 
materials science, while maintaining the osteogenesis ability, scaffolds become more patient-specific and obtain additional 
anti-tumor ability with functional agents being loaded. Anti-tumor therapies include photothermal, magnetothermal, 
old and novel chemo-, gas, and photodynamic therapy. These strategies kill tumors through novel mechanisms to treat 
refractory osteosarcoma due to drug resistance, and some have shown the potential to reverse drug resistance and 
inhibit metastasis. Therefore, multifunctional three-dimensional printed bioceramic scaffolds hold excellent promise 
for osteosarcoma treatments. To better understand, we review the background of osteosarcoma, primary 3D-printed 
bioceramic scaffolds, and different therapies and have a prospect for the future.
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Introduction

Osteosarcoma (OS) is a primary bone malignant tumor 
most common in children and teenagers. The annual inci-
dence of OS is 4.7 cases per million in children (0–
19 years), which accounts for 8.9% of pediatric 
cancer-related deaths.1 Nowadays, limb-salvage surgery, 
along with neoadjuvant chemotherapy, is the main osteo-
sarcoma clinical treatment. However, due to drug resist-
ance, this treatment is sometimes not efficient. After 
surgery, there are still a small number of residual osteosar-
coma cells (OCs) around the bone defect that can prolifer-
ate within a few days, resulting in bone tumor recurrence 
or even metastasis.2 Furthermore, surgery may cause 
large-scale bone defects, which can impair tissue or organ 
function and reduce the life quality of patients.3

The traditional method for post-surgery bone defects is 
to implant bone substitute materials, which can induce 
bone regeneration.4 However, many problems have arisen 
in clinical applications, such as bleeding, tissue necrosis, 
tumor recurrence, and infection.5 Researchers have been 
attempting to construct an ideal bioactive scaffold with 
adequate mechanical strength and the ability to kill OCs, 
induce angiogenesis, and promote bone regeneration.6

Three-dimensional (3D) bioceramic scaffolds with good 
biocompatibility, biodegradability, and bioactivity are 
increasingly popular as ideal multifunctional implants for 
osteosarcoma treatment. Due to advances in 3D printing 
technology, 3D-printed bioceramic scaffolds are becoming 
more patient-specific with pre-customized and personalized 
architecture.7,8 In addition to filling post-surgery defects as 
traditional bone substitutes with bone-like mechanical 
strength, the scaffold exhibit enhanced physical, chemical, 
and biological capabilities for bone regeneration. 3D-printed 
bioceramic scaffolds offer a 3D microenvironment and hier-
archical structure for bone cell attachment, proliferation, 
and differentiation. The scaffolds also offer inner channels 
for transporting nutrients and waste. Commonly used pri-
mary 3D bioceramic scaffolds for osteosarcoma treatment 
include hydroxyapatite (HA), akermanite (Ca2MgSi2O7, 
AKT), β-tricalcium phosphate (β-TCP), and bioactive glass 
(BAG).9–12 Furthermore, numerous studies have shown that 
after being modified with several anti-tumor functional 
agents, bioceramic scaffolds like HA,13 BG,14 β-TCP,15 and 
AKT10 still show excellent osteogenesis ability. 
Nanosheets,16 nanoparticles,17 nano-coatings,18 and even 
engineered microbes19 can be added to these primary scaf-
folds to construct scaffolds with the primary osteogenic 
ability and new functions. These new functions include pho-
tothermal property, magnetothermal property, radical oxy-
gen species generation, or anti-tumor gas generation for 
tumor therapy. Some agents can also promote the adhesion, 
growth, and differentiation of bone mesenchymal stem cells 
(BMSCs) and vascularization.20,21 Thus, 3D-printed biocer-
amic scaffolds with high anti-tumor efficiency, less tumor 
recurrence, and better bone regeneration meet the dilemma 
of clinical treatment of osteosarcoma.

For the treatment of osteosarcoma, anti-tumor agents 
cause OCs death, while bioactive agents and 3D bioceramic 
scaffolds could induce osteogenesis, as shown in Figure 1. 
In this review, we first briefly introduce osteosarcoma and 
its microenvironment and describe how its characteristics, 
such as heat sensitivity and acidity, relate to the following 
therapies. After that, we introduce the primary 3D-printed 
bioceramic scaffolds. We first discuss the importance of 3D 
printing for obtaining patient-specific scaffolds. After that, 
we discuss the chemical, biological, and physical properties 
of HA, AKT, TCP, and BG separately for a deeper under-
standing of the osteogenic ability of bioceramic scaffolds. 
To illustrate how each multifunctional scaffold addresses 
the two main problems after osteosarcoma surgery: residual 
OCs and bone defects, we discuss in detail the composition, 
pore and mechanical properties, production and loading 
methods, and the anti-tumor and osteogenic ability of vari-
ous multifunctional scaffolds.

We introduce in the order of photothermal therapy 
(PTT), magnetothermal therapy (MTT), chemotherapy, 
photodynamic therapy (PDT), and gas therapy. For PPT, 
we introduce its three mechanisms of killing OCs and dis-
cuss each scaffold in the order of organic materials, car-
bon-based materials, transition metal-based materials, and 
plasmonic materials. Next, we introduce another hyper-
thermia therapy MTT, in the order of Fe alloy, Fe3O4, and 
other Fe-based materials. After that, we discuss chemo-
therapy. We focus on the loading and the controlled and 
TME-responsive release for conventional and novel chem-
otherapy drugs. In addition, we discuss the potential of 
traditional drugs to be combined with other therapies, such 
as PPT, to achieve better anti-tumor effects. We also dis-
cuss the turn-over and tailor-made effect of novel drugs. 
For PDT, we discuss fabricating and loading strategies for 
penetration limitation and oxygen deficiency, respectively. 
Finally, we discuss the potential of gas therapies to kill 
OCs. Finally, we discuss the potential of combining differ-
ent therapies to obtain “all-in-one” scaffolds for better OS 
treatment. We highlight the importance of similarity prin-
ciples of bioceramics for bone and soft tissue engineering. 
Considering other clinical dilemmas in addition to bone 
defect and residual OCs, we then discuss in detail how 
various strategies address drug resistance, metastasis, and 
the low diagnosis rate of conventional imaging. Finally, 
we prospect the future of 3D-printed multifunctional 
bioceramic scaffolds for osteosarcoma treatment, and we 
believe that clinical translation of OS is within reach if 
existing problems are noticed and addressed.

Osteosarcoma and its tumor 
microenvironment

Osteosarcoma is a common primary bone malignancy 
affecting more men than women.22,23 There are two inci-
dence peaks: in adolescents and adults older than 60 years of 
age.24 The former is due to hormonal changes in puberty.25 
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The latter is usually secondary to other diseases, trans-
formed from benign bone diseases, or as a later effect of 
radiation.26 Osteosarcoma can occur in any bone, and the 
distal femur (43%), proximal tibia (23%), and proximal 
humerus (10%) are the three locations where it occurs most 
frequently.27 The most typical symptom is pain, especially 
with activity, and may lead to claudication.28 Pathological 
fractures are not very common, except for the telangiectatic 
type. Additionally, systemic symptoms are rare.29

Osteosarcoma often presents as a spindle cell, and its 
histological hallmark is the production of malignant oste-
oid. It is frequently assumed to arise from the malignant 
transformation of mesenchymal lineage cells at an indeter-
minate differentiation stage into osteoblasts.30 
Chondrocytes, fibroblasts, osteoblasts, and telangiectatic 
tumors are the four subtypes of osteosarcoma that can be 
distinguished based on the primary matrix produced.31 
Osteosarcomas can also be classified into three groups, 
low, intermediate, and high grade, as relative indicators of 
the danger of developing metastases.32 Low-grade OS is 
typically inert and can only be removed surgically. 

High-grade OS requires additional adjuvant chemotherapy 
for treatment because they have a high probability of 
metastasizing to the lungs, lymph nodes, and other bones. 
Pulmonary metastasis is a prognosis-defining complica-
tion that reduces 5-year event-free survival.27,33

Osteoblasts, osteoclasts, and osteoclasts form bone tis-
sue. Bone homeostasis and the replacement of the old bone 
matrix depend on the proper interaction of these cells with 
one another and their microenvironment.34 When genetic 
mutations (TP53, RB1, RECQL4) occur in BMSCs or 
BMSC-derived pro-osteoblasts, these mutations accumu-
late to a subpopulation of cancer stem cells (CSCs) that 
may lead to incompletely differentiated osteoblasts or 
osteoclasts.35,36 Through interactions with the tumor 
microenvironment (TME), CSCs can self-renew and main-
tain osteosarcoma progression.36 The proliferation of OCs 
intensifies osteoclast activity and bone resorption and dis-
rupts the balance between osteoblasts and osteoclasts. 
Moreover, OCs secrete RANKL, interleukin (IL)-6, IL-11, 
and tumor necrosis factor-α in soluble factors and extra-
cellular vesicles. They increase the release of factors 

Figure 1. The process of using multifunctional 3D-printed bioceramic scaffolds to kill osteosarcoma cells and promote bone 
regeneration. Created with BioRender.com.
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entrapped in the bone matrix, such as insulin-like growth 
factor (IGF) and tumor growth factor (TGF), which aid in 
the survival and growth of OCs.37

Interestingly, tumor tissues in the specific TME are 
more sensitive to thermal stimulation than normal tissues 
because they have a lower capacity to dissipate heat. 
Consequently, rather than harming healthy tissues, pho-
tothermal and magnetothermal therapy can specifically 
kill OCs.38 In addition, the weak acidity,39 H2O2 overpro-
duction,40 low catalase activity,41 and hypoxia42 of the 
TME not only provide a favorable environment for pro-
liferation and metastasis of OCs43,44 but also offer a 
potential for the selective treatment of osteosarcoma. For 
example, for CDT, iron-based nanomaterials dissolve 
ferrous ions in the mildly acidic TME environment and 
start the Fenton reaction, which overproduces hydrogen 
peroxide (H2O2) and generates hydroxyl radical (•OH) to 
trigger apoptosis of OCs.45 In addition, TME-responsive 
drug delivery nanocarriers have been created. The local 
pH of tumor tissue and intracellular endosome/lysosome 
is 1–2.5, lower than that of blood and healthy tissues 
(pH = 7.4).46 Therefore, the pH-sensitive scaffold polydo-
pamine (PDA)-modified curcumin (CM)-loaded silk 
fibroin (SF) composite (SF/CM-PDA) can achieve con-
trolled release of curcumin (CM) with excellent CM per-
meability at tumor sites.47,48 Besides, doxorubicin (DOX) 
in the fluorescent mesoporous bioglass nanoparticles 
(fBGn) can also release in a PH-dependent way.49

TME also imposes limitations on some treatments. 
Overproliferation of OCs and inadequate blood supply 
leads to severe hypoxia (oxygen pressure <5 mm Hg) in 
TME.50 Hypoxic TME is a significant barrier for PDT. 
Additionally, PDT further increases tumor hypoxia, poten-
tially leading to tumor invasion and metastasis.51 So far, 
reactive oxygen supply materials and oxygen carriers have 
been developed to overcome the restriction of PDT caused 
by hypoxic TME.52 In addition, drug resistance events 
such as elevated expression of drug efflux systems, such as 
P-glycoprotein (P-gp), increased DNA repair activity, 
altered epigenetic factors, and regulation of anti-apoptotic 
genes have been linked to CSC niches. Besides, traditional 
chemotherapy can induce the selection of stem cells and 
activate the proliferation signaling pathway like WNT/β-
catenin.53 Therefore, targeted therapies have been devel-
oped to address this problem, including blocking signaling 
pathways such as Hedgehog, WNT, IGF, and TGF-β.54–56

Primary 3D-printed bioceramic 
scaffolds

The scaffold in bone tissue engineering creates a 3D envi-
ronment for cell adhesion and proliferation. The optimal 
scaffold for bone regeneration should mimic healthy bone 
tissue’s structure and biological function in terms of chem-
ical compositions, hierarchical structures, and mechanical 

properties. 3D bioceramic scaffold is increasingly inter-
ested in bone tissue regeneration owing to its bone-like 
composition, biocompatibility, osteoconductivity, osteoin-
ductivity, and bioactivity.57 However, traditional fabrica-
tion techniques, like freeze-drying, emulsification, and 
phase separation/inversion, cannot manage the pore size, 
porosity, or interconnectivity or specifically adapt to the 
geometry of the bone defect.58,59

As shown in Figure 2, scaffolds with controlled chemi-
cal composition, pore shape, porosity, and interconnectiv-
ity are fabricated using computer-aided design (CAD) and 
computer-aided manufacturing (CAM) 3D printing tech-
nology.60 3D-printed bioceramic scaffolds obtain extremely 
complex growth-orientated structures that promote cell 
migration and proliferation for better bone regeneration. 
Additionally, it offers a precise model of the patient-spe-
cific bone defects, allowing for the patient-specific 3D 
porous scaffolds with pre-designed and personalized struc-
tures.61 The 3D printing techniques include stereolithogra-
phy (SLA), selective laser sintering (SLS), micro extrusion 
with/without post-sintering, fused deposition molding 
(FDM), and binder-based 3DP. SLA and SLS both have 
good accuracy with high cost, while FDM and binder-
based 3DP are less costly with less accuracy. Both SLA 
and SLS require post-curing. SLA-fabricated scaffolds are 
hardened under ultraviolet (UV) laser light, while SLS 
uses a laser to sinter the powder granules. Like SLS, FDM 
demands high temperatures so that the filament can melt 
and be extruded from a hot nozzle.62,63 For micro-extrusion 
with post-sintering, a high temperature is not necessary for 
the extrusion of the printable ink but for post-sintering. 
Sometimes, a cryogenic environment is also available for 
post-sintering.11 Besides, pluronic F-127 and poly (vinyl 
alcohol) (PVA) are commonly used binders.10,14,15

Hydroxyapatite (HA) is one of the most frequently 
utilized 3D bioceramics, with biocompatibility, osteoin-
ductivity, and osteoconductivity.9 HA can induce osteo-
genesis by stimulating endogenous bone morphogenetic 
protein (BMP) expression and enhancing alkaline phos-
phatase (ALP) activity.64,65 However, compared with 
other bioceramics, HA is brittle, has a load-bearing limi-
tation, and has a low degradation rate.66 To overcome 
these limitations, several natural or synthetic polymers 
can be combined with HA to create composite scaffolds, 
such as poly (lactide-co-glycolide) (PLGA),67 polycap-
rolactone (PCL),68 poly (l-lactic acid) (PLLA),69 polydo-
pamine (PDA),38 and carboxymethyl chitosan (CMCS).13 
Besides, nano-hydroxyapatite (nHA) has become 
increasingly popular. Primarily, nHA up-regulates the 
expression of ALP, osteocalcin (OCN), bone sialopro-
tein (BSP), and Runt-related transcription factor-2 
(RUNX-2). Among them, ALP is the marker of early-
stage differentiation, and OCN is the marker of later-
stage differentiation for controlling mineral growth. 
nHA provides crystal nuclei for calcification and 
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osteogenesis,81 exhibiting a more vital osteoinductive 
ability. Moreover, due to its large specific surface area,70 
nHA is more likely to crosslink with other materials, 
load drugs, and facilitate cell adhesion and prolifera-
tion.70,71 The nHA also has better plasticity, brittleness, 
and degradation than conventional HA.72 The nHA sur-
face layer can be easily obtained using ethanol as the 
liquid bridge by immersing. The nHA coating could 
effectively slow the degradation rate of 3D magnesium-
doped wollastonite (CSi-Mg) scaffolds and sustain high 
mechanical strength (over 90 MPa) for over 3 weeks. In 
addition, nHA could inhibit the expression of Ki-67 and 
B-cell lymphoma-2 (Bcl-2) and promote the expression 
of Caspase-3, thus promoting OCs apoptosis. After 
7 days of culture, the CSi-Mg/nHA scaffold killed 
approximately 50% of the OCs. In addition, the thicker 
the nHA surface layer, the higher the mechanical strength 
and the apoptosis rate of OCs.18

Akermanite (AKT, Ca2MgSi2O7) is another bioceramic 
containing Ca, Mg, and Si, which is more controllable in 
terms of mechanical properties73 and degradation rate.74 Its 
first application was to synthesize pure polycrystalline 
AKT particles with a size of 5–40 μm by the sol-gel 
method. AKT showed the ability to form apatite and thus 
gradually began to be used as a bone tissue engineering 
scaffold.75 AKT promotes the adhesion, proliferation, and 
differentiation of BMSCs.76 Besides, AKT could promote 

angiogenesis.77,78 AKT bioceramic scaffolds are often 
made of AKT powder by 3D printing technology. The 
superb interconnected porous structure and the large num-
ber of micropores on its surface are advantageous for the 
permeation and encapsulation of nanoparticles (NPs).52 On 
this basis, nanosheets or nanoparticles are loaded into the 
scaffolds or directly doped into the powder for 3D printing 
to provide the scaffolds with additional functions.10,52

Tricalcium phosphate (TCP, Ca3(PO4)2) has two 
forms: high-temperature α-phase and low-temperature β-
phase, and the β-phase is used as bioceramics. β-TCP is 
the stable form at low temperatures and is economical to 
prepare.79,80 Since the first attempt to implant β-TCP into 
rabbit bones to repair defects caused by surgery, β-TCP 
has received increasing attention.81 The bioactivity of β-
TCP is related to the containing calcium and phosphorus 
ions. Through partial dissolution and release, these ions 
could form biological apatite deposition. The biodegra-
dability and resorption rate of β-TCP was better than HA, 
but the degradation rate still cannot meet the generation 
rate of new bone.82 Combining with polymers such as 
PLGA can improve its biodegradability.11 Besides, the β-
TCP bioceramic scaffold also has better flexural strength 
and fracture toughness than HA. The mechanical strength 
(12 MPa) is still less than that of human cortical bone 
(90–170 MPa)83 but is comparable to human cancelous 
bone (16.3 ± 7.2 MPa).11,84 The compressive strength of 

Figure 2. The growth-oriented hierarchical structure, the computer-assisted patient-specific 3D printing, and the bone-like 
chemical composition lead to the application of patient-specific bone regeneration. Cited with permission.61 Copyright 2018, Acta 
Biomaterialia. Created with BioRender.com.
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TCP scaffolds can reach about 24–38 MPa with poly 
(d, l-lactide) (PDLLA)84 coating.

Bioactive glass (BG) was invented by Larry Hench, 
and since then, it has been known as 45S5 Bioglass®.82 
The main components of BGs are Na2O, SiO2, CaO, and 
P2O5,

85 and the melt-quenching and the sol-gel approach 
are the two main manufacturing methods. Recently, 3D 
printing has also been widely used, and some functional 
agents can be directly doped into the bio-ink to fabricate 
the multifunctional scaffold. BGs hold great potential in 
bone tissue engineering. The macroporous structure facil-
itates the transport of nutrients and bone formation. 
Besides, its component elements (Ca, P, and Si) also pro-
mote the proliferation and differentiation of BMSCs and 
the production of bone matrix.86,87 Additionally, BG 
becomes more competitive due to its angiogenesis ability 
through vascular endothelial growth factor (VEGF).88 
Besides, BG is also conducive to forming the carbonation 
of HA and HA bioactive surface layer to achieve interface 
bonding with surroundings.89 However, like HA, the 
inherent brittle nature is the major limitation in its poten-
tial application. Metals, such as Ti and Ag, can serve as 
reinforcement to overcome this limitation.90 We have 
summarized the 3D printing method, binder, parameter, 
chemical composition, metal ions, possible improvement 
methods, and application of the primary 3D-printed bioce-
ramic scaffolds, as shown in Table 1.

Anti-tumor therapy of 3D scaffolds

3D-printed bioceramic scaffolds obtain anti-tumor effects 
by loading various functional agents for photothermal, 
magnetothermal, chemo-, photodynamic, or gas therapy. 
Both PTT and MTT take advantage of TME. Tumor tissue 
is more susceptible to thermal stimulation and has poorer 
heat dissipation than normal tissues.38 Through various 
photothermal conversion agents and Fe-based magneto-
thermal agents, under near-infrared (NIR) and alternating 
magnetic field (AMF), increased tumor microenvironment 
temperature induces apoptosis and necrosis of OCs.38 
Chemotherapy takes advantage of the fact that tumor cells 
proliferate more rapidly and have more immature cells, 
which makes them more sensitive to chemotherapy drugs 
than normal cells.105,106 In photodynamic therapy, the pho-
tosensitizer undergoes inter-systemic crossing (ISC) to an 
excited triplet state (T1), forming 3PS*. 3PS* is mainly 
dependent on oxygen to generate type II reactive oxygen 
species (ROS) (single linear state oxygen (1O2)) through 
energy transfer.107 For the type I process, superoxide anion 
radicals (O2

•−) and H2O2 are generated through electron 
transfer and sequentially producing •OH. •OH is highly 
destructive to almost all biological molecules, allowing 
full use of the limited oxygen in hypoxic tumors.108,109 
ROS targets nucleic acids and proteins and causes tumor 
cell apoptosis and necrosis. Gas therapy like nitric oxide 
(NO) can damage DNA and enzymes to kill OCs.110 

Simultaneously, besides 3D-printed bioceramic scaffold, 
the loaded osteogenic agents or some therapeutic agents 
with a turnover effect (curcumin,97 metformin,69 and 
NO101) can further promote bone regeneration. They can 
up-regulate the osteogenic genes, induce the adhesion, 
proliferation, and differentiation of BMSCs, and promote 
calcification. Therefore, tumor destruction and osteogene-
sis can be achieved simultaneously for osteosarcoma treat-
ment and prognosis. The following illustrates and discusses 
different treatment methods in detail.

Photothermal therapy

Recently, killing tumor cells using PTT has become an 
intense interest. The critical principle of PTT is to convert 
light energy to thermal energy. Typical light sources include 
UV, visible, and NIR light. There are concerns about using 
UV light-mediated therapy in clinics because UV light’s 
short wavelength (about 400 nm) can generate significant 
energy that may harm normal tissues. Moreover, the wide-
spread visible light with longer wavelengths lacks control-
lability and energy. NIR light, which has wavelengths 
between 700 and 1000 nm, is thought to have deeper tissue 
penetration and less photodamage and is particularly useful 
for light-mediated therapy.46,111,112 The selection of NIR 
light is mainly based on the transparency window of the 
biological tissue in the NIR region,113 so a wavelength of 
808 nm NIR is usually used. In TME, tumor tissues with 
reduced heat dissipation capacity are more susceptible to 
thermal stimulation than normal tissues.38 Heat stimuli 
severely and irreversibly denature proteins and damage 
tumor cell DNA. When tumor cells reach 41°C, the protein 
starts to denature; in the meantime, the cells become inac-
tive for several hours. Thus, temperatures between 41°C 
and 45°C mainly lead to tumor cell death by apoptosis.114 
Between 45°C and 48°C, tumor cells can quickly necrotize, 
and many cells will die above 48°C.115,116 It is worth men-
tioning that when the temperature is reached to induce 
tumor cell necrosis instead of apoptosis, the tumor can be 
killed more quickly, and subsequent tumor recurrence can 
be inhibited. After initial thermal stimulation, necrotic 
tumor tissue can further lead to apoptosis, vascular injury, 
ischemia-reperfusion injury, altered cytokine expression, 
Kupffer cell activation, and altered immune responses.38 
Therefore, when photothermal agents raise the tumor site 
temperature to more than 50°C, there is often a satisfactory 
tumor mortality rate.15,117 The efficiency of PTT is mainly 
dependent on the use of high-quality photothermal  
conversion agents, such as organic materials (polydopa-
mine (PDA),117 DTC co-crystals,14 carbon-based nanoma-
terials (CBN) (graphene oxide (GO),118 borocarbonitride 
(BCN)10, Cu and other transition metals (hemin,12 
CuFeSe2,

99 single-atomic iron catalysts (FeSAC),102 
MXene104)), and plasmonic nanomaterials (LaB6

98). Table 
2 illustrates the specific photothermal agents added to the 
3D-printed bioceramic scaffold.
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Mechanism of photothermal conversion. The photothermal 
conversion mechanisms of these materials are different 
and related to their innate bandgap or electronic struc-
ture.120 Generally, they can be divided into the conjugation 
or hyperconjugation effect, electron-hole generation and 
relaxation, and the localized surface plasmon resonance 
(LSPR) effect.

Numerous carbon nanomaterials and polymers with 
conjugated structures show photothermal effects through 
conjugation or hyperconjugation, such as graphene118 and 
polydopamine.121 Conjugation effects caused by the over-
lap of adjacent π electrons or the interaction between π 
bonds with p orbital electrons redistribute the electron den-
sity. Interactions between electrons of σ bonds and adjacent 
vacant or partially filled p orbitals lead to hyperconjugation 
effects.122 Both conjugation and hyperconjugation effects 
allow for substantial absorption in the near-infrared region 
and speed up electron mobility, where electrons in orbitals 
are excited and jump to π* orbitals, releasing heat when 
they return to the ground state.123 Some co-crystals also 
have photothermal properties. The excited electrons are 
released from the lowest unoccupied molecular orbital 
(LUMO) to the highest occupied molecular orbital 
(HOMO) by electron-phonon coupling. The temperature 
rises as a result of this process.124

Electron-hole pairs are generated and relaxed in various 
narrow-bandgap semiconductors, such as CuFeS2

124 and 
MoS2.

91 When transition metal ions absorb incoming light 
with an energy higher than the material’s bandgap, elec-
trons in the valence band are excited and subsequently 
transit to the conduction band, and electron-hole pairs are 
formed in the valence band. An electron-hole pair releases 
phonons when it relaxes to the band edge, which are then 
converted into heat by non-radiative decay.125

Metal nanomaterials with high free electron mobility, 
such as Au, Ag, Cu, Al, and Fe nanoparticles, frequently 
exhibit a unique LSPR effect.119,126 MXene16,79 and LaB6

98 
also show the LSPR effect. The LSPR effect is defined as 
resonant photon-induced charge-coherent oscillations at 
the metal-dielectric interface if the photon frequency coin-
cides with the natural frequency of electrons on the metal 
surface of the nanomaterials.127 There are two competing 
pathways for surface plasmon decay: a radiative decay 
process that leads to light scattering by re-emitting photons 
and a non-radiative decay process.

Organic materials
Natural organic materials. Polydopamine is a synthetic 

polymer with satisfactory biodegradability and biocompat-
ibility that mimics melanin.128 Its absorption spectra can 
be extended to the NIR region, and it has a high photother-
mal conversion efficiency of 40%, which endows polydo-
pamine with the anti-tumor function.129 As a biomimetic 
material, polydopamine is simple to prepare and readily 
adsorbed on solid material’s surface to form a film. It can 

further introduce other functional groups by reacting with 
reagents containing nucleophilic groups.130 Furthermore, 
polydopamine can effectively increase the hydrophilicity 
and roughness of the surface of materials. Its chemical 
functional groups (NH2

− and OH−) can induce specific cel-
lular responses to promote the attachment and prolifera-
tion of BMSCs. Besides, the nucleation and mineralization 
of apatite on the nanostructured surface can be improved 
owing to catechol groups in polydopamine.117

Ma et al.117 soaked 3D-printed bioceramic scaffolds in 
Tris-dopamine solution to prepare the surface Ca-P/poly-
dopamine nanolayers by self-assembly. For this polydopa-
mine-modified bioceramic scaffold (DOPA-BC), under 
808 nm NIR laser irradiation (0.38 W/cm2) for 10 min, the 
mortality rate for OCs was 80.4%–99.2% in vitro and the 
tumor site temperature rapidly reached above 50°C, lead-
ing to a significant anti-tumor efficiency in vivo. 
Additionally, the trabecular bone volume fraction (BV/
TV) achieved approximately 15% after being implanted 
for 8 weeks, showing the bifunctional potential of 
DOPA-BC. Yao et al.38 prepared the slurry mixture by stir-
ring and used 3D printing technology to fabricate HA/
PDA/CMCS bioceramic scaffolds. The temperature could 
maintain at 58°C under 808 nm NIR laser irradiation (1 W/
cm2) for 10 min, and the OCs necrosis rate reached 73.3% 
in vivo. Additionally, the photothermal effect might fur-
ther cause apoptosis and fewer blood vessels, inhibiting 
tumor cells (Figure 3(a)).

Notably, the low toxicity and high degradation capacity 
of the natural substances (hemin) or biomimetic materials 
(PDA)12 exhibit significant advantages compared to other 
photothermal agents, such as metal elements and carbon-
based nanomaterials. Metal materials are difficult to bio-
degrade and may be hazardous in the long term.131 
Carbon-based nanomaterials are potentially toxic and may 
lead to pulmonary inflammation.132 Furthermore, regard-
ing PDA’s osteogenic function, some modified scaffolds 
have already shown excellent performance in bone regen-
eration.117 Therefore, organic PCAs with simple synthetic 
and loading routes and high biosafety and bioactivity have 
gradually gained popularity for further applications in 
bone tissue engineering.

Synthetic organic materials. The HOMO-LUMO energy 
gap (HLG), defined as the energy separation between the 
HOMO and the LUMO, determines the optical character-
istics of organic materials.133 Therefore, PDA performs 
good absorbance in NIR due to its small and appropri-
ate HLG.134 In addition to natural substances like PDA, 
researchers also developed synthetic organic photothermal 
conversion agents (PCA), such as indocyanine green,135 
polyaniline,136 and polypyrrole.137 Intricate excogitation, 
laborious synthetic protocols, and the technical problems 
of loading such organic PCAs into bone bioceramic scaf-
folds inhibit the development of organic PCAs to some 
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extent.14 Therefore, designing organic PCAs with simple 
synthetic and loading routes is essential.

Recently, organic charge-transfer crystals have been 
used for PTT. Because of the noncovalent interactions 
between donor and acceptor units, the co-crystals were 
self-assembled. Therefore, these organic PCAs are simple 
and economical to fabricate. They also exhibit modulated 
photophysical and physicochemical properties.14 Its nar-
row HLG realizes the absorption in the NIR region.138,139 
Using dibenzotetrathiafulvalene (DBTTF) as the electron 
donor and tetracyanobenzene (TCB) as the electron accep-
tor, Xiang et al.14 developed a DTC co-crystal with excel-
lent photothermal conversion capabilities. By evaporating 
the DBTTF/TCB solution, numerous black DTC co-crys-
tals grew in situ on the 3D-printed BG. It showed excellent 
tumor-killing ability with apparent cell death (80%) under 
808 -nm NIR laser irradiation (1.5 W/cm2) for 10 min. 
Moreover, in addition to BG, the DTC co-crystal itself also 
accelerates the promotion of new bone formation through 
the up-regulation of gene expression of ALP, BMP-2, 
OCN, and RUNX-2. The percentage of bone volume (BV/
TV × 100%) was 43.5 ± 2.7%, and bone mineral density 
(BMD) was 4.8 g·m3 after implantation for 8 weeks (Figure 
3(b)). For the osteogenesis ability of the DTC co-crystals, 
the increase in scaffold surface roughness could facilitate 
the attachment and proliferation of hBMSC.15,99 
Furthermore, the sulfur (S) element in DTC can promote 

protein uptake by interaction with proteins to promote 
osteoblast proliferation and differentiation.140,141

This study is notable for being the first to include 
organic charge-transfer co-crystals in scaffolds for osteo-
sarcoma treatment. Electron-acceptor and electron-donor 
compounds self-assemble through noncovalent interac-
tions to synthesize organic co-crystals. The co-crystals 
realize the in situ growth only by evaporation.14 Usually, 
the in situ growth of nano agents, such as MoS2 
nanosheets,91 Cu-TCPP nanosheets,12 and CuFeS2 
nanocrystals,99 is achieved by a hydro- or solvothermal 
process. The reaction system requires high temperature 
(180°C–240°C) and high pressure, while the reaction sys-
tem of DTC@BG scaffolds requires only room 
temperature.14

Carbon-based nanomaterials. Besides organic PCAs, car-
bon-based nanomaterials also show excellent photother-
mal conversion ability. Indeed, carbon-based nanomaterials 
such as graphene oxides (GOs), carbon nanotubes (CNTs), 
and carbon dots (CDs) often possess PTT and PDT proper-
ties. In this section, we mainly illustrate GO’s PTT prop-
erty. Other CBNs will be discussed in detail later. In 2004, 
Novoselov and Geim obtained graphene by mechanical 
separation. Graphene is a two-dimensional (2D) material 
with a hexagonal honeycomb shape formed by the sp2 
hybridization of carbon protons. It possesses outstanding 

Figure 3. Schematic illustration of the fabrication of the organic nanomaterials modified 3D bioceramic scaffolds: (a) fabrication of 
HA/PDA/CMCS composite scaffolds by stirring and 3D printing technology and their bioapplication for osteogenesis and anti-tumor 
activity, (b) schematic illustration for the formation and application of bifunctional DTC@BG scaffolds. The co-crystal of DTC 
with a facile fabrication process exhibits potential for both photothermal conversion and osteogenesis. Cited with permission.38 
Copyright 2021, Biomater. Sci.14 Copyright 2020, Adv. Funct. Materials.
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thermal and electrical conductivities. It has excellent elec-
trical and thermal conductivities.142 Graphene and its 
derivatives exhibit substantial NIR absorption and a high 
photothermal conversion efficiency owing to the conjuga-
tion effects. Additionally, graphene is cytocompatible and 
exhibits no significant toxicity in vivo. Furthermore, 
because of its unique nanostructure, it can promote bone 
regeneration. Therefore, graphene is considered the most 
representative and promising carbon-based nano 
PCAs.143–145

Graphene oxide. Graphene oxide is the first reported 
photothermal tissue engineering scaffold material. Using 
the solvent soaking approach, Lee et al.146 and Zhang 
et al.147 introduced GO to change the surface of the 
3D-printed β-TCP scaffolds. COO− in GO forms a valence 
bond with Ca2+ in β-TCP. Adjusting the GO concentra-
tion, surface modification time, and NIR power density 
can successfully control the temperature of the GO-TCP 
scaffold between 40°C and 90°C. The GO-TCP scaffold’s 
unique photothermal action kills 92.6% of OCs in vitro 
and 83.28% in vivo under 808 nm NIR (0.36 W/cm2) irra-
diation for 10 min (Figure 4(a)).15 Furthermore, GO-mod-
ified β-TCP scaffolds could up-regulate OCN, RUNX-2, 
and BSP gene expression for osteogenesis. The new bone 
area reached around 33% after implantation for 8 weeks.118 
Furthermore, a study reported that GO could relieve IL-
4-induced macrophage M2 polarization and weaken the 
invasion and migration of OCs.118 Therefore, these studies 
further confirm the effectiveness and significance of GO 
applied to anti-OCs bone tissue engineering.

Derivates of graphene oxide. With the in-depth study of 
GO, some articles have revealed several out-of-control 
abilities of GO. Previous studies showed that GO exhib-
its severe cytotoxicity in various biological systems due to 
its abundant surface functional groups, which can induce 
apoptosis by increasing intracellular ROS.148–150 Unlike 
photothermal therapy, such ROS is like a sword without 
a sheath and cannot selectively kill tumor cells. While 
killing tumor cells, ROS also damages normal tissues and 
inhibits bone regeneration. In this regard, researchers tried 
to modify GO to scabbard the ROS sword. In particular, a 
study showed that reduced graphene oxide (rGO) has good 
photothermal conversion ability.151,152 Furthermore, by 
removing abundant toxic functional groups on the GO sur-
face, rGO showed more potential for osteogenesis. Several 
other studies reported that rGO could significantly induce 
directional differentiation of BMSCs into osteoblasts and 
promote bone regeneration.153,154 Li et al.155 fabricated the 
nHA-rGO scaffolds by heating the nHA-GO scaffolds at 
300°C under the nitrogen flow to reduce the oxygen groups 
on the surface of the GO. After 808 nm NIR laser irradia-
tion for 20 min (W/cm2), only 8% of the OCs survived on 
the nHA-rGO scaffolds, while the rate for nHA-GO was 

34%.153 After implantation for 8 weeks, the new bone area 
reached 65%.155 The successful application of rGO sug-
gests that valuable innovation does not necessarily have 
to be built on empty ground. Extracting the essence and 
removing the dross to modify existing functional materials 
is also very meaningful.

In addition to modifying GO, other components can be 
introduced to obtain GO derivatives. The 
2D-borocarbonitride (BCN) nanosheets contain graphene 
and boron nitride (BN) domains.156 The B element is criti-
cal for mineralization and osteogenesis.157 Therefore, BCN 
preserves the photothermal therapeutic efficacy and 
improves its osteogenesis ability. Zhao et al.10 manufac-
tured ultrathin BCN nanosheets at 900°C under nitrogen 
flow. In addition, they deposited BCN nanosheets onto 
3D-printed AKT scaffolds by the facile dip-coating 
method. After implantation of BCN@AKT scaffolds, the 
tumor region temperature in vivo could rapidly increase to 
52°C under 808 nm NIR laser irradiation (0.30 W/cm2), 
and few OCs could survive. Furthermore, BCN nanosheets’ 
numerous hydroxyl functional groups (–OH) and boron 
(B) components promote bone regeneration.10 In detail, 
the B element activates the BMP-2 signaling pathway. 
Unlike some cytotoxic groups on the surface of GO, -OH 
groups up-regulate the expression of the fibronectin pro-
tein in the extracellular matrix (ECM), which promotes the 
adhesion of BMSCs and accelerates mineralization (Figure 
4(b)).10 Notably, whether it is by the direct reduction of 
GO153 or the synthesis of nanosheets containing a graphene 
structure,10 both maintain or even improve the photother-
mal therapeutic efficacy of GO. In addition, both methods 
reduce the cytotoxic effect of GO and improve osteogene-
sis. Both are treated at high temperatures during synthesis 
under nitrogen gas flow.10,153 This raises the question of 
whether treating photothermal agents with nitrogen gas 
flow at high temperatures is a helpful method in reducing 
cytotoxic groups on the surface of PCAs and improving 
their osteogenic ability.

Cu and other transition metals. Similar to introducing the 
osteogenic element B in BCN, Cu-based scaffolds are also 
favored in anti-osteosarcoma scaffolds due to their osteo-
genic property and photothermal efficiency.158 Cu ions can 
also stimulate endothelial cell proliferation and differentia-
tion by mimicking hypoxia. They stabilize the hypoxia-
inducible factor-1α (HIF-1α) expression, which can induce 
angiogenesis by up-regulating the expression of TGF-β and 
VEGF.94,159 Therefore, the Cu-based scaffold can simultane-
ously induce osteogenesis and angiogenesis by up-regulat-
ing the expression of osteogenic genes (ALP, OCN, BMP-2, 
and RUNX-2) and angiogenic genes (VE-cadherin (VE-
cad), VEGF, and endothelial nitric oxide synthase (eNOS)).94

As a transition metal, Cu also shows excellent potential 
for photothermal therapy due to electronic transitions.160 
Furthermore, transition metals have toxic effects on tumor 
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cells.161 Specifically, the fabrication of Cu-based scaffolds 
mainly includes the fabrication of Cu-containing 2D 
nanosheets,94 Cu-containing mesoporous silica nano-
spheres,17 or the direct incorporation of Cu into bioceramic 
powders.100 All the above agents can be easily loaded onto 
the scaffold using facile in situ growth or spin-coating 
technology. Naturally, other transition elements, such as 
Fe,12 Mo,91 Mn,100 and Co,100 also show good therapeutic 
potential for bone tumors. And the manufacturing proto-
cols are very similar to Cu-based scaffolds. We describe 
them along with Cu and make comparisons.

Metal-organic frameworks. Copper-coordinated tetrakis 
(4-carboxyphenyl) porphyrin (Cu-TCPP) is a porphyrin 
metal-organic framework (MOF) that can be produced 
as 2D nanosheets and has an outstanding photothermal 
response to NIR irradiation.162 MOFs are ordered crystal-
line materials with permanent pores,163 often manufactured 
by covalently linking metal ions to clusters of polytopic 
organic ligands.164,165 Their high surface area and tunable 
pore structure enable central metal ions to play a more sta-
ble and efficient photothermal effect. Dang et al.94 success-
fully realized the in situ growth of a novel 2D Cu-TCPP 
nanosheet on the β- TCP scaffold by 3D printing and the sol-
vothermal method. Cu-TCPP in the form of 2D nanosheets 
shows superior photothermal characteristics compared to 
bulk materials. The low thickness of the nanosheets ena-
bles rapid response to NIR light, and the coexistence of 
Cu+ and Cu2+ lays the foundation for high NIR absorption 
through the transition of the d–d energy band.162 There-
fore, the Cu-TCPP-TCP scaffold performed great tumor-
killing ability, with a 90% OCs mortality rate under NIR  

irradiation (1.0 W/cm2) for 10 min. Besides, it showed 
osteogenic ability with around 40% new bone area after 
implantation for 8 weeks by up-regulating ALP, OCN, 
RUNX-2, and BMP-2 expression. It also showed angio-
genic ability with up-regulation of VE-cad, VEGF, and 
eNOS expression.94

After successfully fabricating the Cu-TCPP-TCP scaf-
fold, Liu et al.100 set out to discover more promising 2D 
MOF nanosheets. As previously mentioned, hemin is 
another low-toxicity and degradable potential photother-
mal agent naturally distributed in the human body. This 
avoids the tedious steps of artificially synthesizing MOFs. 
Furthermore, as a transition element, Fe endows hemin 
with the potential for PTT. However, the high hydropho-
bicity owing to the large macrocycle of tetrapyrrole and 
the low solubility in the neutral aqueous phase hinders the 
biomedical use of hemin.166 Specifically, for bone tissue 
engineering, how to load hemin onto the scaffold with high 
biological activity and utilization rate is an urgent problem 
to solve.167 Using PDLLA as a medium, Dang et al.12 suc-
cessfully integrated hemin particles and DOX into 
3D-printed bioglass scaffolds. PDLLA is a biocompatible 
and biodegradable polymer that has attracted significant 
interest as a medium for scaffold modification. Combining 
chemotherapy and photothermal therapy significantly 
improves tumor-killing efficiency and reduces therapeutic 
side effects. Under an 808-nm NIR laser irradiation (0.7 W/
cm2) for 10 min, the tumor site achieved a controlled tem-
perature of 48°C, with around 85% tumor cell mortality 
rate (Figure 5(a)).

Notably, the tumor-killing effect of hemin loading is 
not as good as that of Cu-TCPP loading, which may relate 

Figure 4. Schematic illustration of carbon-based nanomaterials modified 3D bioceramic scaffold fabrication: (a) formation 
of bifunctional GO-TCP scaffolds and their bio-application, (b) fabrication of bifunctional BCN@AKT scaffolds and their bio-
application. Containing graphene and BN domains, 2D BCN nanosheets preserve photothermal therapeutic efficacy and improve 
osteogenesis capacity. Cited with permission.15 Copyright 2016, Adv. Funct. Materials.10 Copyright 2020, Chemical Engineering Journal.
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to the transition elements. It was demonstrated that Cu has 
a better photothermal conversion efficiency than Fe under 
NIR irradiation.100 Further, by integrating plasmonic metal 
nanoparticles with MOFs, the absorption in the NIR region 
of MOF can be enhanced due to the wide tunable LSPR 
band of the plasmonic metal. Therefore, this is a worth-
while attempt to improve the photothermal efficacy of 
MOFs.168 Moreover, unlike Cu’s excellent osteogenic and 
angiogenic ability, hemin did not show its potential for 
bone regeneration. For this issue, Pan et al.169 have 
obtained a mesoporous MOF using a pore-forming tem-
plate to achieve controlled release of a BMP pathway acti-
vator. Therefore, the osteogenic properties of the scaffold 
can be improved.

Transition-metal chalcogenides. Besides coordination 
with organic materials, Cu-based chalcogenides, such as 
CuS,170 CuCo2S4, and CuFeSe2,

99 are also promising PCAs 
due to their ease of fabrication, controllable size, decent 

photostability, variable composition, and low-cost.171,172 
For example, CuFeSe2 has good photothermal ability 
due to its narrow energy band (0.16 eV) in the solid state. 
CuFeSe2 nanocrystals may develop in situ on the support-
ing surface of the 3D-printed BG scaffold through the sol-
vothermal method. The results have shown that the tumor 
site temperature can be elevated beyond 48°C with more 
than 74% death of OCs in vitro and 96% in vivo, under 
an 808-nm NIR laser irradiation (0.55 W/cm2) for 10 min. 
Besides, the released Cu, Fe, Si, Ca, P, and Se ions can 
synergistically stimulate BMSCs and increase the expres-
sion of osteogenic genes (OCN, osteopontin (OPN)), as 
well as ultimately promote new bone formation (23.2% 
BV/TV and 8.22% new bone area after implantation for 
8 weeks) (Figure 5(b)).99

In addition to Cu-based chalcogenides, other transition 
metal chalcogenides (TMD) also show excellent photo-
thermal conversion ability. MoS2 nanomaterial exhibits 
7.8 times higher absorbance than GO in the NIR region, 

Figure 5. Schematic illustration of the fabrication of 3D bioceramic scaffolds modified with transition metal-based nanomaterials: 
(a) fabrication of the BGC-HM-DOX scaffold and its use in the treatment of osteosarcoma by combining photothermal therapy 
and chemotherapy. Hemin particles and DOX are inserted into 3D-printed BGC scaffolds using the polymer PDLLA as a medium, 
(b) schematic illustration of CuFeSe2 nanocrystals growing in situ on the surface of BG scaffolds and their dual function of anti-
tumor treatment and tissue regeneration, (c) fabrication of high-strength Fe-CaSiO3 scaffold and their potential use in synergetic 
photothermal-chemodynamic anti-tumor therapy and concurrent osteogenesis promotion, (d) the photothermal osteosarcoma 
ablation process and bone regeneration of NBGS are shown schematically. Vascularization can also be promoted to facilitate 
osseous reconstruction. Cited with permission.12 Copyright 2021, Chemical Engineering Journal.99 Copyright 2018, Biomaterials.119 
Copyright 2018, NPG Asia Materials.104 Copyright 2021, Nano-Micro Lett.
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and its mass extinction coefficient (λ = 800 nm, 29.2 L/g) is 
similar to that of rGO (24.6 L/g/cm).173 Therefore, it pos-
sesses remarkable photothermal therapeutic efficacy on 
OCs. Similar to the fabrication of Cu-based chalcogenides 
scaffolds, Wang et al.91 successfully realized the in situ 
growth of 2D MoS2 nanosheets on the surface of the 
3D-printed AKT scaffold through a hydrothermal reaction. 
The viability of OCs in the MS-AKT decreased to roughly 
5% after three treatments with an 808 nm NIR laser 
(0.60 W/cm2) for 10 min. The necrosis rate reached 89% in 
vivo. After loading this MoS2 nanosheet, the ability of the 
AKT scaffolds to enable sound diffusion, attachment, and 
proliferation of BMSCs was also preserved, and enhanced 
bone-related gene expressions, such as ALP, RUNX-2, 
OCN, and OPN, were observed.91 2D nanosheets contain-
ing transition metal elements exhibit excellent application 
prospects. Whether it is coordinating with organic materi-
als94 or in the form of transition metal chalcogenides,91,99 
the manufacturing idea is to find some biocompatible tran-
sition-fast elements as photothermal agents. Besides, a 
simple hydrothermal or solvothermal method can always 
realize the in situ growth of 2D nanosheets.91,99

Transition metal in the non-compound form. Sometimes, 
nanoparticles and nanosheets metabolize poorly and 
might induce long-term biological toxicity.100 Therefore, 
transition metals in non-compound forms draw attention. 
Liu et al.100 used transition metals’ osteogenic and pho-
tothermal abilities, directly doped them into the biocer-
amic powder, and obtained the scaffold by 3D printing. 
The method is facile and economical. More importantly, 
it is the first research to compare the osteogenic ability 
and photothermal efficacy of various transition metal ele-
ments. Regarding the photothermal order, it was demon-
strated that Cu-BGC > Fe-BGC > Mn-BGC > Co-BGC. 
By irradiating with 808 nm laser (0.75 W/cm2) for 15 min, 
the tumor tissue necrosis rate of Cu-BGC, Fe-BGC, and 
Mn-BGC achieved 94.9%, 90%, and 72%, respectively. 
There is no significant difference between Co-BGC and 
the control group. Notably, the released ionic products 
have osteogenic and angiogenic abilities. Fe and Mn-BGC 
scaffolds stimulated the expression of osteogenic genes 
(ALP, OCN, OPN, BMP-2, and BSP) and promoted the 
adhesion and proliferation of BMSCs. Co-BCG up-reg-
ulated the VEGF expression and favored cell adhesion, 
while the number of BMSCs was significantly low. In fact, 
low Co2+ concentrations can promote the adhesion and 
proliferation of BMSCs, whereas high concentrations can 
induce cytotoxicity and lower cell viability.174 Therefore, 
the burst release of Co2+ ions on the first day decreased 
the number of BMSCs. Furthermore, although Cu-BGC 
scaffolds contained many BMSCs, the cells were spheri-
cal with fewer pseudopodia. This is also due to the tox-
icity of the burst release of Cu2+ on the first day. This 
does-dependent turnover effect is significant and incites us 

to explore trace elements’ appropriate concentration and 
release curve when designing multifunctional scaffolds.100

Furthermore, researchers can obtain new excellent 
functional materials by changing the non-compound tran-
sition metal’s dispersion. By changing the dispersion form 
of the elements, significant heterogeneous Fenton reac-
tions can occur on dispersed single-atomic iron sites within 
highly active single-atomic iron catalysts (FeSACs), lead-
ing to excellent anti-tumor therapy with integrated PPT 
and CDT. Wang et al.102 prepared FeSACs using a tem-
plate-sacrifice method using MgO nanoparticles as tem-
plates. The pyrolysis of the iron-phenanthroline complexes 
(Fe(phen)x) allows iron to be dispersed at the atomic level. 
Then, the FeSACs were effectively impregnated and dis-
tributed in the interconnected structure of 3D-printed BG. 
At increased laser power density (1.5 W/cm2), the local 
temperature reached 53°C in 5 min when FeSAC500-BG 
was irradiated by an 808 nm laser, showing outstanding 
photothermal properties. Meanwhile, significant heteroge-
neous Fenton reactions can occur at the dispersed single-
atomic iron sites in response to H2O2 in the TME to 
generate highly reactive·OH, leading to lethal damage to 
OCs. Through the combination of PPT and CDT, 89.27% 
and 95.34% OCs mortality was achieved at FeSAC con-
centrations of 500 and 1000 µg/mL, respectively. 
FeSAC-BG also up-regulated the expression of osteogenic 
genes collagen type I (COL-1), BMP-2, OCN, and RUNX-
2. After implantation for 16 weeks, the average recovery 
percentages of bone defects for BG and FeSAC-BG 
achieved 87.3% and 94.3%, respectively.102

In addition to achieving the combination of PPT and 
CDT, Fe also has superior fatigue resistance and high 
mechanical strength, making it fit for repairing load-bearing 
bone defects. However, its low biodegradability and bioac-
tivity hinder its further application for bone tissue engineer-
ing. On the contrary, bioceramic scaffolds, as previously 
described, have better biodegradability and can stimulate 
vascularization and new bone formation. Compared to can-
celous bone defect regeneration, cortical one requires harder 
bone replacement implants, and no bioceramic scaffold can 
achieve the mechanical strength required for cortical bone. 
Ma et al.119 used a simple ball milling and 3D printing tech-
nique to fabricate a Fe-CaSiO3 composite scaffold (mass 
percentage: 30% CaSiO3 and 70% Fe) scaffold called 30 
CS. Complementing the advantages of Fe and bioceramic 
scaffolds, the 30 CS has high compressive strength, exhibits 
synergistic effects of PPT and CDT, and can promote bone 
regeneration. Under an 808 nm laser (0.80 W/cm2) irradia-
tion for 10 min, the temperature of the tumor site reached 
over 50°C, and the released Fe ions catalyzed the Fenton 
reaction. Therefore, the mortality rate of OCs reached 
91.4%, and almost all OCs nuclei dissolved after treatment 
for 15 days in vivo. After implantation for 8 weeks, BV/TV 
and new bone area achieved around 16% and 17%, respec-
tively (Figure 5(c)).119
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2D MXene nanosheets. We have previously introduced 
some 2D nanosheets (NSs), such as BCN graphene deriva-
tives and transition metal dichalcogenides. For ultrathin 
NSs, almost all atoms are exposed on the surface and have 
an enhanced surface area ratio. These features significantly 
improve their chemical and biological reactivity, enabling 
NSs to exhibit excellent photothermal properties. In addi-
tion to the above, nitrides and carbonitrides (MXenes), as a 
combination of graphene derivatives and transition metals, 
are becoming increasingly popular. In 2D MXenes, “M” 
stands for a transition metal atom (Ti, Zr, Nb, Sc, Ta, and 
Mo), “X” denotes C and/or N, and the “ene” suffix, which 
is derived from “graphene,” indicates a material with an 
ultrathin 2D structure. MXenes have a large surface area 
and multiple terminal functional groups (–OH, –O). They 
are generally manufactured by selective etching of the 
Al layer (Al, Zn, Si, and Ga) with hydrofluoric acid (HF) 
and then exfoliating the original bulk MAX-phase MAlX 
ceramics with tetrapropylammonium hydroxide (TPAOH). 
The exposed terminal metal sites on the surface of MXenes 
enables them to form strong interface connection to bioce-
ramics and to react actively. MXenes also have excellent 
electroconductibility, ensuring rapid migration and effi-
cient separation of photogenerated electrons.16,104,175,176

After etching bulk Ti3AlC2 ceramics with HF and inter-
calating with TPAOH, Pan et al.16,177 prepared delaminated 
ultrathin Ti3C2 NSs. These Ti3C2 NSs were modified onto 
a 3D-printed BG scaffold using the facile soaking method. 
Once the scaffold was implanted, under an 808 nm NIR 
laser irradiation (1.0 W/cm2) for 10 min, the tumor site 
temperature climbed to 63°C. This resulted in OCs sur-
vival rates lower than 25% in vitro and complete ablation 
in vivo without recurrence. Simultaneously, by interacting 
with water and oxygen, Ti3C2-MXenes may degrade and 
release titanium-based species, which significantly up-
regulates osteogenic gene (RUNX-2, COL-1, OPN, and 
OCN) expression and promotes BMSCs differentiation. 
After implantation for 8 weeks, the BV/TV and BMD 
achieved 50% and 60 g·m3, respectively, which showed 
good bone regeneration in vivo.76

2D Nb2C MXene NSs, like Ti3C2, are highly biocom-
patible and biodegradable, showing excellent photother-
mal conversion efficiency in NIR-II.178,179 Under NIR-II 
laser irradiation (1064-nm laser irradiation) at a power 
density of 1.0 W/cm2, the integrated Nb2 C NSs have a spe-
cific photon response, with deeper tissue penetration, and 
inhibit over 62% OCs. In addition, the biodegradation of 
Nb2C provides enough space for bone reconstruction. 
Furthermore, the released Nb-based species may greatly 
enhance blood vessel repair and migration at the defect 
region by up-regulating VEGF and fibroblast growth fac-
tors (FGF)-2 expression. The newborn vessel area reached 
38% after implantation for 3 weeks.104 The new vessels can 
deliver more oxygen, energy, and vitamins for bone regen-
eration and recruit more immune cells, thus accelerating 

the degradation of the scaffold and killing OCs. The 
Nb-based species also significantly up-regulated osteo-
genic gene (RUNX-2, COL-1, OPN, and OCN) expression 
for bone regeneration. After implantation for 24 weeks, the 
BV/TV and the BMD achieved 45% and 65 g·m3, respec-
tively (Figure 5(d)).104

LSPR accounts for the light-to-heat conversion of 
MXenes.122 The osteosarcoma inhibition rate of MXenes 
is approximately 50%–75%,76,104 whereas some classical 
photothermal agents, such as GO, PDA, and Au, can often 
reach approximately 90%.15,117 MXenes mainly rely on 
LSPR for their photothermal effects, and M is a transition 
metal element (Ti or Nb) rather than a classical plasmonic 
metal (Au or Ag). Although the photothermal effect is not 
ideal, combining other anti-tumor methods improves 
tumor-killing ability.101 Concurrently, Ti and Nb release 
after MXene degradation promotes bone regeneration.76,104 
Therefore, considering the long-term prognosis of osteo-
sarcoma, MXenes are a promising choice for osteosar-
coma treatment.

Plasmonic nanomaterials. MXene’s photothermal effect 
mainly depend on LSPR, but because M (Ti or Nb) is often 
not a classical plasmonic metal (Au or Ag), the tumor inhi-
bition rate is usually only about 50%–75%.16,104 The tra-
ditional plasmonic metal has good efficacy in tumor PTT, 
with an inhibition rate of over 90%.180 However, the high 
cost and complex preparation procedure are not conducive 
to large-scale clinical applications and drive researchers to 
seek an alternative. As a compound containing the elements 
La and B, LaB6 has free electrons on its surface and shows 
strong NIR absorption via LSPR.181 Furthermore, La has 
physicochemical properties similar to Ca and can trigger 
a bone regeneration response.182 At the same time, Boron 
(B) can stimulate the expression of osteoinductive growth 
factors and improve the renewal of the ECM.140 Therefore, 
LaB6 can effectively promote bone regeneration. Dang 
et al.98 successfully prepared LaB6 micro-nano particle/
poly (d,l-lactide)-modified 3D-printed β-TCP scaffolds 
(TCP-PDLLA-LB) by soaking. This LaB6-surface chem-
ically-enhanced TCP-PDLLA-LB scaffold has improved 
mechanical strength on par with human cancelous bone. 
It also shows remarkable photothermal and osteogenesis 
abilities. By irradiating with an 808 nm laser (0.70 W/
cm2) for 10 min, the bone tumor temperature immediately 
reached over 50°C. It eventually maintained at 53°C, with 
the viability of the OCs decreasing below 24%. Addition-
ally, the new bone area reached 36% after implantation 
for 8 weeks with up-regulation of osteogenic gene expres-
sion (RUNX-2, COL-1, BMP-2).98 As a plasmonic metal, 
La has a better LSPR effect than Ti and Nb and a lower 
cost than Au and Ag. It also shows good biocompatibility 
and osteogenic ability.98,182 Therefore, La deserves further 
in-depth studies for developing multifunctional scaffolds 
against osteosarcoma.
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Other 2D nanomaterials. We have introduced many 2D 
photothermal nanomaterials above, but in-depth studies 
have gradually exposed their deficiencies. For example, as 
application domains have expanded, graphene’s zero 
bandgaps have increasingly become its fatal flaw. In addi-
tion, due to its wide bandgap, hexagonal boron nitride 
(h-BN) has insulator characteristics, whereas transition 
metal dichalcogenides (TMDs) have low carrier mobil-
ity.183,184 Moreover, due to the narrow bandgap, metal-like 
MXenes exhibit a weaker LSPR effect than classical plas-
monic metals.185,186 Therefore, 2D materials with well-
balanced properties are currently being explored. 2D black 
phosphate (BP) breaks the properties of the bound energy 
bands of graphene, h-BN, and MXenes, presenting a thick-
ness-dependent band gap ranging from 0.3 eV (bulk size) 
to 2.0 eV (monolayer).187 The material also shows higher 
carrier mobility than TMD188 and significant near-infrared 
absorption and photothermal conversion capability. BP 
NSs also have excellent biocompatibility with non-toxic 
and osteogenic degradation products. Moreover, the pho-
tothermal materials’ degradation rate, such as GO and 
MoS2, is too slow. In contrast, the degradation rate of PDA 
is too fast (40% weight loss in phosphate-buffered saline 
within 24 h). Therefore, controlled degradable BP NSs are 
superior to those materials.

The high surface-to-volume ratio and agent-loading 
function of BP NSs also allow them to load chemotherapy 
drugs or antibodies for improved OCs clearance.189–191 
Wang et al.11 prepared water-in-oil phase emulsions bio-
inks and then cryogenically 3D-printed to generate the 
DOX/P24/BP/TCP/PLGA (BDPTP) scaffold. The temper-
ature of the BDPTP scaffolds can exceed 60°C under an 
808 nm NIR laser irradiation (0.5–2.0 W/cm2) for 10 min. 
This accelerates the release of DOX, and the synergistic 
effect of chemotherapy and PTT can achieve rapid and 
complete tumor eradication without recurrence. Besides, 
the sustained release of peptides (P24) up-regulates the 
osteogenic gene (RUNX-2, COL-1, OCN, and ALP) 
expression and promotes new bone formation. The BV/TV 
reached 38 ± 5%, and the BMD achieved 38.5 ± 5 g·mm3 
after implantation for 3 months. In this study, the BPTP 
scaffold (without DOX) could achieve the same anti-tumor 
therapeutic efficacy as the BDPTP scaffold on day 4 (both 
tumor volumes decreased from 200 to 0 mm3). However, 
after 16 days of implantation, tumor recurrence occured in 
the BPTP group, and the volume increased to approxi-
mately 200 mm3, while the BDPTP group remained at 0.11 
This is due to the sustained release of low concentrations 
of DOX in BDPTP scaffolds, which also kill difficult-to-
observe residual microtumors, thus inhibiting tumor recur-
rence. Furthermore, this article also suggests that 
evaluating treatment efficiency requires delaying the 
observation time after implantation to monitor tumor 
recurrence better, thus improving the prognosis.

Magnetothermal therapy (MTT)

As mentioned, photothermal agents show great potential in 
hyperthermia tumor ablation but may damage normal tis-
sues under high-power irradiation.113 Besides, NIR pene-
tration into deep tumors is relatively insufficient because 
superficial tissues interfere with photons.192 These hinder 
the further clinical application of PTT for deep solid 
tumors like OS. Conversely, MTT uses radiofrequency 
electromagnetic waves and has no penetration depth limi-
tations. As such, MTT is a viable option for treating deep 
in situ OS.193 However, the product of frequency and mag-
netic field amplitude should be limited to less than 
5 × 109 mA/s for safety.194 Therefore, the MTT tempera-
ture range is constrained. Moreover, there are specific tem-
perature requirements for killing tumors. Temperatures 
between 41°C and 46°C induce cell apoptosis,114 whereas 
temperatures beyond 46°C induce necrosis.195 Therefore, 
the temperature limitation of MTT hinders its efficiency in 
anti-tumor therapy.

Magnetic alloy and magnetic metal oxide nanomateri-
als are two groups of magnetic agents that are categorized 
depending on their structural characteristics. If Cu (Cu, 
Cu-TCPP, CuS, CuFeS2)

17,94,99,100 shines in metal-contain-
ing photothermal agents, then Fe is likely the core and soul 
of magnetothermal agents. Fe obtains excellent magnetic 
properties. However, Fe alloys lose their magnetism due to 
low stability and strong oxidation reactivity. The magnetic 
metal oxide nanoagents, including Fe3O4, γ-Fe2O3, and fer-
rites (M(FexOy)), exhibit advantageous magnetic and die-
lectric properties.196 Table 3 outlines the magnetothermal 
agents loaded into 3D-printed bioceramic scaffolds for 
osteosarcoma treatment.

Fe alloy. Fe alloy is unstable and may even lose magnetiza-
tion. However, when combined with other materials, its 
stability enhances, and the added diamagnetic particles 
become ferromagnetic after doping with Fe ions.197 As 
previously indicated, adding transition metal elements into 
bioceramic scaffolds may provide the materials with out-
standing photothermal characteristics. In addition, an 
appropriate concentration of iron ions can promote the 
proliferation of BMSCs.100 Zhuang et al.92 developed Fe-
doped 3D-printed AKT scaffolds using the sol-gel method 
and 3D printing technology. Combining PTT and MTT 
reduces the excitation dose, allowing both the penetration 
depth and the adequate temperature to be achieved for bet-
ter tumor hyperthermia therapy. Fe alone does not have an 
excellent LSPR effect as Au and Ag, so the photothermal 
efficiency is not high. In addition, Fe alloy is highly unsta-
ble, which significantly reduces its magnetothermal 
effect.92 However, when Fe-AKT scaffolds were irradiated 
under NIR and AMF simultaneously, a combination of 
imperfections led to perfection. Overall, this combination 
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enhanced the mobility of the surface electrons and facili-
tated the generation of both energy band transitions and 
collisions and frictions with atoms.126 In fact, after 10 min, 
PTT (808 nm, 0.70 W/cm2) and MTT (896.8 A/m2) 
increased the scaffold temperature to 47°C and 43°C, 
respectively. Moreover, the viability of OCs decreased to 
59.2% and 81.6% after irradiation. By combining the two 
therapy, the temperature reached 53°C, and the viability of 
OCs was less than 2%. Thus, the Fe-AKT scaffold can 
achieve ideal hyperthermia treatment at a low radiation 
dose, thus avoiding unexpected damage to normal tissues. 
Moreover, in addition to 3D bioceramic scaffolds, Fe can 
further up-regulate the expression of RUNX-2 and OPN 
for bone regeneration. Interestingly, Fe up-regulates 
BMP-2 expression with low Fe doping content (1%) while 
showing the turnover effect when the content increases 
(3%) (Figure 6(b)).92

Fe3O4. Considering the instability of Fe alloy, Fe3O4 is 
another hotspot of magnetothermal agents for bone tissue 
engineering. However, the magnetothermal efficiency of 
Fe3O4 may be hampered by the shielding effect of the bulk 
bioceramic and the weak heat conductivity of the biocer-
amics after incorporation.198 Nevertheless, in addition to 
combining PTT with MTT to enhance hyperthermia anti-
tumor efficacy, a thermal conductor is also a viable 
approach. For example, combining the magnetothermal 
agent (Fe3O4 nanoparticles) with a thermal conductor 
(GO) improved the hyperthermia anti-tumor efficacy. 
Zhang et al.95 prepared a GO-Fe3O4-GO sandwich layer 
GO-Fe3O4-GO on the supporting surface of the 3D-printed 
β-TCP scaffold by soaking. Under AMF (intensity of 
180 Gs, 409 kHz), after 20 min, when the temperature 
reached 42°C, the mortality rate of OCs achieved more 
than 75%. Furthermore, the sustained released Fe ions fur-
ther increase the activity of ALP and up-regulate the 
expression of RUNX-2, OCN, OPN, and BSP (Figure 
6(a)).95 Considering the success of the combination of PTT 
and MTT92 in vitro, additional in vivo trials are needed to 
validate further the effectiveness of placing such a Fe-
based scaffold under both NIR and AMF irradiation.

Besides the combination of PPT and MTT, another 
strategy for compensating for temperature limitations is to 
combine MTT with chemodynamic therapy (CDT). CDT 
is an emerging anti-tumor strategy that uses CDT agents to 
convert H2O2 into the •OH, the most harzardous ROS 
through the Fenton/Fenton-like reactions, which causes 
cell apoptosis and necrosis.199 The Fe3O4 nanoparticles can 
catalyze the Fenton-like reaction in the acidic TME. 
However, the low concentration of intratumoral H2O2, 
typically below 50 µM, is insufficient to generate large 
amounts of ROS to inhibit tumor growth effectively. Dong 
et al.52 coloaded calcium peroxide (CaO2), as H2O2 sources, 
with Fe3O4 nanoparticles in 3D-printed AKT scaffolds by 
soaking to construct a multifunctional “all in one” 

bioceramic scaffold. Under AMF (500 KHz; coil diameter, 
10 cm; output current, 22 A), the temperature of the AKT-
Fe3O4-CaO2 scaffold in pH 7.4 and 6.0 reached 75°C and 
63°C, respectively. The ROS generation ability test showed 
that mild acidity and raised temperature could accelerate 
the Fenton-like reaction and enhance the generation effi-
ciency of •OH. After the temperature reached 55°C and 
kept the AMF irradiation for 1 min, the mortality rate of 
OCs reached 63.2% and 91.4% for the AKT-Fe3O4 scaf-
fold and AKT-Fe3O4-CaO2 scaffold, respectively. Ca2+ 
ions released from CaO2 enhance the osteogenic ability of 
the 3D bioceramic scaffold with increased ALP activity 
and up-regulation of osteogenic genes (BMP-2, RUNX-2, 
OCN, and COL-1). After implantation for 8 weeks, the 
BV/TV reached 13%, and the new bone area reached 25% 
(Figure 6(c)).

Other Fe-containing magnetothermal materials. Along with 
Fe3O4, Fe3S4 has garnered considerable interest for its 
magnetothermal property. By integrating Fe3S4 micro-
flowers with 3D-printed AKT scaffolds using a hydrother-
mal method, Zhuang et al.93 designed a multifunctional 
platform for the postoperative treatment of osteosarcoma. 
To mimic acidic and redox TME, diluted HCl and 200 μmol 
H2O2 were added to the culture media (pH = 6.5). The nor-
mal culture meida (pH = 7.4) without H2O2 was used to 
mimic the normal tissue microenvironment. When the 
temperature reached 50°C under AMF (frequency: 
560 kHz; coil radius: 3 cm; output current: around 7 A) and 
was kept for 10 min, the mortality rate of OCs reached 
98.46% in the former group (MTT/CDT) and 85% in the 
latter group (MTT). After treatment for 3 days, hematoxy-
lin and eosin (H&E) staining showed no identifiable OCs 
remaining in the Fe3S4 AKT + AMF group (MTT/CDT), 
while in the blank and Fe3S4 AKT groups (CDT), OCs 
were still visible. These showed that MTT and CDT could 
kill OCs effectively in a synergetic way. Fe3S4 microflow-
ers further up-regulated osteogenic gene expression 
(RUNX-2, OCN, and BSP) and COL-1 protein expression. 
BV/TV reached 13% after implantation for 12 weeks. 
Notably, Fe3S4 also shows a turnover effect on osteogene-
sis as Fe in Fe-AKT. The osteogenic ability increased with 
increasing Fe content, reaching a maximum when the pre-
cursor concentration reached about 0.02 M, after which it 
started to decrease.93 Unlike the AKT-Fe3O4-CaO2 scaf-
fold, Fe3S4-AKT did not have an additional source of 
H2O2, but the tumor inhibition rate was even higher 
(98.46% for Fe3S4-AKT, 91.4% for AKT-Fe3O4-CaO2, and 
63.2% for AKT-Fe3O4).

92,93 Therefore, Fe3S4 probably has 
a better magnetothermal property than Fe3O4, and further 
verification is needed. Furthermore, considering the effect 
of the electron-hole pair of TMD, Fe3S4 may also have 
good photothermal properties. The effect of synergetic 
PPT/MTT/CTT treatment on OS and the osteogenesis 
ability can be further explored by adding NIR irradiation 
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to explore the optimal balance of death and regeneration. 
In short, Fe exhibits photothermal, magnetothermal, osteo-
genic, and chemodynamic potential for osteosarcoma 
treatment.52,92,95 Moreover, when two or more therapies are 
combined, the OCs mortality rate is often over 90%.

In addition to the Fe, Fe3O4, and Fe3S4, other Fe-containing 
nanomaterials have also shown potential for MTT. 
Superparamagnetic iron oxide NPs (SPIONs) are small syn-
thetic γ-Fe2O3 (magnetic hematite) or Fe3O4 (magnetite) 
particles with core diameters between 10 and 100 nm.200 It is 
currently the preferred thermoseed for MH with excellent 
heating efficiency, nontoxicity, and biodegradability. It was 
the first therapeutic/adjuvant that was commercially availa-
ble in Europe.199 γ-Fe2O3 is more stable than Fe3O4 in the 
presence of oxygen, compensating for its lower volume 
saturation magnetization.196 Kesse et al.201 synthesized core 
(γ-Fe2O3)-shell (SiO2-CaO) nanoparticles using the co-pre-
cipitation and sol-gel method. The heating efficiency of 
these NPs was comparable to that of commercialized mag-
netic NPs (the intrinsic loss power is in the range of 

0.15–3.1 nH·m2·kg), thus demonstrating that the shielding 
effect of the bioactive shell did not exclude the NPs from 
being a promising candidate for MTT. Furthermore, the bio-
active shell promotes the precipitation of HAp, which shows 
its potential for bone regeneration after tumor ablation. 
CuFe2O4 is a spinel ferrite-based magnetic material with 
excellent magnetothermal capacity. Bigham et al.202 synthe-
sized a multifunctional bioactive core (CuFe2O4)-shell 
(Mg2SiO4) disk for bone tumor treatment using the sol-gel 
combustion method. The Mg2SiO4-CuFe2O4 disks reached 
the intended temperature for tumor ablation (41°C–46°C) in 
exposure to the 200 Oe magnetic field. Moreover, the disks 
also showed excellent apatite-formation performance. 
Therefore, this Mg2SiO4-CuFe2O4 disk is also a viable 
option for concurrent bone tumor ablation and new bone 
formation. However, neither of these studies conducted in 
vitro or in vivo trials to further validate its anti-tumor and 
osteogenesis abilities. In addition, how to effectively load 
them into 3D-printed bioceramic scaffolds and efficiently 
combine nanomaterials’ anti-tumor and osteogenesis 

Figure 6. Schematic illustration of the fabrication of the Fe-based nanomaterials modified 3D bioceramic scaffolds for MTT: (a) 
fabrication of the β-TCP scaffolds coated with a GO-Fe3O4-GO layer and its use in the treatment of osteosarcoma by combining 
PTT with MTT, (b) schematic diagram of the fabrication of Fe-doped AKT scaffolds and dual function of Fe in PTT and MTT, (c) 
schematic representation of the anti-tumor and bone-regeneration ability of 3D-printed AKT scaffolds loaded with Fe3O4 and CaO2 
nanoparticles. CaO2 nanoparticles generated ample H2O2 in an acidic tumor microenvironment. Fe3O4 nanoparticles catalyze a 
Fenton-like reaction to convert H2O2 to •OH. This reaction shows the potential of Fe3O4 in combining chemodynamical properties 
with magnetotherapy against osteosarcoma. Cited with permission.95 Copyright 2016, J. Mater. Chem. B.92 Copyright 2019, American 
Chemical Society.52 Copyright 2019, Adv. Funct. Materials.
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abilities with the mechanical strength, patient-specific 
geometry, and hierarchical structure of the scaffolds are also 
needed for their further application in bone tissue 
engineering.

A new use of an old approach: Chemotherapy

If hyperthermia therapy is now the most common strategy 
of multifunctional scaffold for OS treatment, chemother-
apy is the treatment that has been thought of and is still 
valued today. Since the anti-tumor mechanisms of conven-
tional drugs are well-defined, researchers are more con-
cerned with achieving their controlled and TME-responsive 
release for better anti-tumor performance. In addition, a 
number of drugs used in other areas have been newly tried 
for OS. Chemotherapy is crucial in treating osteosarcoma, 
especially unresectable high-grade metastatic OS. Since 
the introduction of chemotherapy, long-term survival rates 
have climbed from 20% to 70%.56 Surgery with postopera-
tive chemotherapy is the standard clinical treatment for 
osteosarcoma. The neoadjuvant chemotherapy strategy 
has also been developed.203 The first-line medications are 
MAP: methotrexate, doxorubicin, and cisplatin. These 
drugs prevent OS by activating TP53, destroying DNA, 
and raising intracellular ROS levels.204 However, some 
chemotherapy drugs have a “double-edged” effect that 
simultaneously damages both OCs and normal cells. This 
is known as targeted toxicity. Cisplatin and doxorubicin 
are hazardous to several organs, including the kidney and 
heart.205 To minimize the side effects of drugs on healthy 
tissues and organs, drug delivery systems with controlled 
release modalities and high efficiency of target therapy are 
receiving increasing attention. In particular, scaffold-
mediated local chemotherapy with precise targeting mini-
mizes drug distribution and side effects. It is a promising 
strategy for treating residual tumors and recurrence after 
surgery.96 In addition, some drugs used to treat other dis-
eases, such as curcumin and metformin, are helpful in the 
treatment of osteosarcoma and in promoting bone regen-
eration after controlled release and concentration and have 
even shown the potential to reverse drug resistance. Table 
4 outlines the chemotherapy drugs loaded into 3D-printed 
bioceramic scaffolds for osteosarcoma treatment.

Classical anti-osteosarcoma drugs. Recently, researchers have 
attempted to load classical chemotherapeutic drugs into bio-
active scaffolds with time- and space-controlled release to 
enhance chemotherapeutic efficiency and reduce side 
effects. Dang et al.84 designed a multifunctional platform to 
realize synergistic effects of PTT and chemotherapy for 
osteosarcoma using PDLLA as a medium with TiN particles 
and DOX sequentially coated on the surface of a 3D TCP 
scaffold. PTT enhanced the tumor-killing performance and 
effectively reduced the severe side effects of high-dose 
chemotherapy. Additionally, DOX release overcame the 
spatial limitations of PTT. The TCP-TN-DOX scaffold was 

developed as a drug carrier for in situ implantation into oste-
osarcoma, which offers advantages over intravenous drug 
injection with reduced toxicity and damage. There were no 
significant changes in body weight and major organs in 
mice, suggesting that this in situ implantation strategy 
allowed for negligible side effects of DOX. The drug release 
showed an initial burst release, followed by sustained drug 
release of DOX in the scaffold, with DOX accumulation 
peaking at 60% at 48 h. This prolonged the action time and 
prevented excessive accumulation in a short period to avoid 
side effects. Under NIR irradiation (0.6 W/cm2 for 10 min), 
TCP-DOX and TCP-TN resulted in 53.7% and 22.9% apop-
totic cell death, respectively. For TCP-TN-DOX, the apop-
tosis and necrosis rates reached 63.94% and 14.2%, 
respectively, indicating the synergistic effect of PTT and 
chemotherapy on OS. After implantation for 18 days, mice 
in the TCP-TN-DOX + NIR group had completely con-
trolled tumors without recurrence and had minimal relative 
tumor volume (1.39 ± 0.08) compared to the monomodal 
therapy group. Besides, both titanium and 3D-printed bioce-
ramic scaffolds can promote bone regeneration. However, 
the researchers did not conduct bone-regeneration-related in 
vitro and in vivo tests to explore the bone-regeneration 
capability of this TCP-TN-DOX scaffold (Figure 7(a)).84

In addition to loading into porous scaffolds for sus-
tained release, a responsive on-demand drug release in-situ 
drug delivery system has also been developed. Zhang 
et al.96 developed a 3D-printed gelatin/shell scaffold using 
gelatin with DOX as the core part and SrCuSi4O10 (SC) 
nanosheets/β-TCP as the shell part of the printed filament. 
The SC nanosheets conferred photothermal function to the 
scaffold. Under NIR-II laser irradiation at 1064 nm laser 
(1 W/cm2), the tumor temperature reached 52°C, and OCs 
died. At the same time, the increased temperature induced 
the gel-sol transition of gelatin, which initiated the on-
demand release of DOX from the loosened gelatin. In vitro 
and in vivo trials showed that PTT and chemotherapy had 
a synergistic anti-tumor effect, causing essentially 100% 
OCs death, 98.53% of which in the form of apoptosis. 
There was no discernible change in the body weight of the 
mice and no significant harm to the major organs after 
treatment, indicating that this low-dose, on-demand, local-
ized in situ drug delivery system is well suited to avoid 
side effects. In addition, this core/shell scaffold has a good 
osteogenic ability. The degradation of gelatin leads to hol-
low channels in the scaffold and provides a clear structural 
cue for new bone formation. Meanwhile, the degradation 
of SC nanosheets promoted the sustained release of active 
ions such as Sr, Cu, and Si. These bioactive ions further 
promoted vascularization (up-regulation of VEGE, HIF-
1α) and bone regeneration (up-regulation of OCN, BMP-
2, RUNX-2), reaching 20% BV/TV and 0.8 mg/cm3 BMD 
after 8 weeks of implantation (Figure 7(b)).96

Both of the studies described the synergetic PTT/chem-
otherapy treatment against OCs. For single PTT, especially 
PTT in the NIR-I region, it is generally challenging to kill 
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OCs effectively due to the presence of soft tissues like skin 
and muscle. Therefore, it is still prone to tumor recurrence 
and metastasis. For chemotherapy, conventional chemo-
therapy often leads to dose-related systematic side effects 
while killing tumors. After combination, chemotherapy 
compensates for the deficiency of photothermal therapy 
against deep and residual OCs. At the same time, PTT pro-
motes drug diffusion in the tumor sites through the 
increased temperature and compensates for the lack of 
tumor-killing ability after reducing the drug dose to avoid 
side effects.206–208

Researchers have also designed TME-responsive drug 
target delivery systems based on in situ release for better 
anti-tumor effects and less normal tissue damage. For the 
acidic TME, Zakeri et al.48 used an impregnation method 
to load Cis into the pores of Zeol nanoparticles and loaded 

NPs into 3D PCL scaffolds. The scaffold has a higher 
cumulative release amount and release rate of Cis in the 
acidic environment than in the neutral one, allowing for 
better OCs-targeted therapy. Due to the microscopic pore 
structure of Zeol, Cis showed controlled release in the 
scaffold with an initial 7-day burst release and sustained 
release after that. This controlled and targeted release leads 
to more than 75% OCs death by chemotherapy alone. Chu 
et al.209 fabricated hollow copper ferrite (HCF) nanoparti-
cles, coated them with polydopamine, and loaded them 
with doxorubicin (DOX). This NP also has well-controlled 
release and pH responsiveness. He et al.210 developed a 
layer-by-layer assembled black phosphorus nanosheet/chi-
tosan multifunctional composite coat and deposited it on 
3D-printed polyetheretherketone bone scaffolds. Both BP 
and DOX have excellent pH-responsive controlled release. 

Figure 7. Schematic illustration of the fabrication of 3D bioceramic scaffolds with controlled drug release: (a) schematic diagram of 
the construction and application of the TCP-TN-DOX scaffold for treating osteosarcoma. The scaffold enables controlled release 
of DOX triggered by NIR irradiation and achieves synergistic effects of chemotherapy and photothermal therapy, (b) schematic 
depiction of the fabrication of DOX-gelatin/SrCuSi4O10-β-TCP core/shell scaffold. NIR-II irradiation triggers the on-demand release 
of DOX for precision chemotherapy. The hollow shell channels generated by core degradation and the released bioactive ions 
promote vascularized bone regeneration, (c) fabrication of liposome-encapsulated curcumin-loaded 3D-printed bioceramic scaffold 
to realize curcumin’s controlled and prolonged release. Cited with permission.84 Copyright 2021, ACS Appl. Mater. Interfaces.96 
Copyright 2023, Chemical Engineering Journal.97 Copyright 2019, ACS Appl. Mater. Interfaces.
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This acidic-TME target Chem-PPT therapy achieved near 
complete tumor suppression with a 99% reduction in 
tumor volume at day 10.

Li et al.211 further developed reduction/pH dual-respon-
sive nanocarriers targeting the redox and acidic TME of 
OCs. They prepared amphiphilic poly(ethylene glyco-
sylated poly(α-lipoic acid) micelles (mPEG-PαLA) for 
simultaneous delivery of the encapsulated paclitaxel 
(PTX) and DOX for osteosarcoma treatment. This PTX 
and DOX co-loaded nanoparticle exhibited better biodis-
tribution and higher tumor inhibition in mice. However, no 
such TME-responsive drug delivery platform based on 
3D-printed bioceramic scaffolds has been reported. 
Nanoparticles are commonly used as drug carriers with 
TME-responsive controlled release. If nanoparticles can 
be loaded into 3D-printed bioceramic scaffolds, scaffolds 
can achieve better targeted chemotherapeutic effects and 
induce bone regeneration that therapeutic nanoparticles 
cannot achieve. Nanoparticles are usually loaded into scaf-
folds by polymer coating or polyethyleneimine coating. 
However, this affects the scaffold’s mechanical properties, 
bioactivity, and biocompatibility. Therefore, suitable and 
simple loading methods should be further investigated to 
maintain controlled and targeted chemotherapeutic drug 
release of NPs and the osteogenesis ability of 3D-printed 
bioceramic scaffolds.

Non-classical anti-osteosarcoma drugs. In addition to con-
ventional chemotherapeutic drugs, some drugs with less 
toxic side effects used in other areas have been tried for OS 
treatment. Their safety has been well established in exten-
sive past applications and therefore shows great potential 
for clinical translation. Turmeric’s active ingredient, cur-
cumin, is known for its anti-inflammatory, antioxidant, 
anti-tumor, and osteogenic activities. However, it shows 
extremely low bioavailability, fast metabolism, and quick 
systemic clearance. Sarkar and Bose97 improved the bioa-
vailability by encapsulating curcumin in liposomes via 
thin film hydrolysis and then incorporating it into a 
3D-printed ß-TCP scaffold. Liposome-encapsulated cur-
cumin showed a more controlled and sustained release 
than free curcumin over 60 days. Liposomal curcumin 
released from the 3D scaffold was cytotoxic to OCs, with 
OCs mortality reaching 54.59% on day 3 and 96.44% on 
day 11. Besides, the scaffolds also increased ALP activity 
and promoted osteoblast proliferation (Figure 7(c)). Chen 
et al.47 fabricated SF/CM nanofibrous scaffolds using 
supercritical carbon dioxide technology. Through porogen 
leaching, they subsequently coated PDA on the scaffold. 
This SF/CM-PDA scaffold is also pH-responsive due to 
the accelerated breakdown of SF and the weaker interac-
tion between SF and CM under acidic conditions. In the 
acidic TME, this pH-responsive scaffold achieves better 
release and penetration of CM at the tumor site. Under 
NIR irradiation, this scaffold exhibits an initial abrupt 

release of curcumin due to the low pH of TME and ele-
vated temperature. This burst release results in high con-
centrations of CM, which can immediately eliminate 
residual OCs. As OCs die, the pH gradually increases. 
Moreover, the sustained release in a physiologically neu-
tral environment results in low concentrations of CM that 
will further promote progressive healing and bone 
regeneration.

CM may prevent OCs proliferation and metastasis by 
downregulating Notch1 expression, NF-κB, and estrogen-
related receptor α.212,213 Interestingly, curcumin also plays 
an essential role in inducing osteoblast differentiation in 
BMSCs and alleviating RANKL-induced osteoclast 
resorption, which could promote bone regeneration.214 
Curcumin’s promotion of normal osteoblasts and selective 
toxicity against osteosarcoma reflect the tailor-made phi-
losophy and provide a more promising strategy for OS 
management. Vitamin K2 also exhibits similar tailor-made 
potential through the same pathway. Sarkar and Bose214 
used a plasma spraying technique to form a homogeneous 
HA coating on the Ti implant to enhance osseointegration. 
They loaded curcumin and vitamin K2 into the HA-coated 
scaffold using ethanol. On day 5, the percentage of new 
bone production reached 24%. On day 11, the mortality 
rate of OCs achieved 91.63%. In addition, curcumin dem-
onstrated potential as a photosensitizer (PS) for PDT. 
Though the Ex of curcumin is only about 425 nm, fiber 
optic devices can allow it to pass through tissues such as 
skin for OS treatment. In addition, the hydrophobicity of 
curcumin also inhibits its PDT efficacy. PS can only be 
photoactive as a monomer, while curcumin aggregates in 
an aqueous environment with reduced excitability.56 CM 
encapsulated in liposomes may be a potential solution.56

In addition to CM, metformin (MET), traditionally 
used for type 2 diabetes with minimal side effects and tox-
icity, has also shown potential in anti-tumor and osteogeni-
sis.215 Using SLS technology, Tan et al.69 fabricated PLLA/
nHA/MET scaffolds. MET release was pH-responsive, 
with prolonged drug release due to slowly degrading 
PLLA, and its drug release profile resembles the Higuchi 
model. The MET from the scaffold showed an initial burst 
release of 37.14% within the first 24 h, followed by a 
steady release for at least 1 month. More interestingly, 
MET had a turnover and tailor-made effect. A high dose of 
MET (above 10 mM) can cause OCs apoptosis or necrosis, 
whereas a low dose (under 1 mM) can promote BMSCs 
growth and differentiation. After MET addition, the apop-
tosis rate of OCs on the scaffold rose from 3.79% to 
15.86% by activating the mitochondrial apoptosis path-
way. Furthermore, MET increased ALP activity and 
increased osteogenic gene expression (BMP-2, RUNX-2, 
OCN, and COL-1) and protein expression (OCN3 and 
COL-1a1) for bone regeneration. Notably, although it also 
shows the tailor-made potential based on the turnover 
effect of concentration, the anti-tumor ability of MET is 
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not strong as CM. Therefore, it should be combined with 
hyperthermia therapy to promote the release of MET216 
and improve its anti-tumor therapeutic efficacy for further 
application. In a word, through loading new drugs like cur-
cumin and metformin into 3D-printed bioceramic scaf-
folds, multifunctional scaffolds for OCs-killing and bone 
regeneration are achieved.

New method: Photodynamic therapy and gas 
therapy

Photodynamic therapy (PDT). In addition to hyperthermia 
therapy and chemotherapy, recently, PDT and gas therapy 
have been gradually showing potential for application in 
multifunctional scaffolds for OS treatment. PDT has 
recently gained popularity for its spatiotemporal controlled 
therapeutic efficacy, minimally invasive capabilities, and 
low systematic toxicity.217 PDT involves three elements: 
photosensitizer, light, and oxygen. PS is activated by light 
and converts tissue oxygen into harmful ROS, which may 
lead to oxidative damage of cellular substrates, such as 
amino acids, proteins, and DNA. This effectively achieves 
anti-tumor effects through tumor cell death, vascular dam-
age, and immunological responses.218,219 PDT has been 
clinically applied to treat various diseases, such as lung 
and esophageal cancer, together with the approval of vari-
ous PS, such as Photolon (chlorin e6, Ce6).220 However, 
there are still two main problems in the clinical translation 
of PDT for anti-OC. First, the incompatibility requirement 
of high energy and deep tissue penetration limits the treat-
ment of deep solid tumors. When light wavelength 
increases, the penetration depth of the tissue increases. 
However, the energy decreases at the same time. To meet 
the minimum energy required for ROS generation, the 
light wavelength usually does not exceed 850 nm.221 This 
determines a tissue penetration depth of no more than 
3 mm.222 Second, oxygen-dependent PDT exacerbates 
oxygen deficiency.223 HIF-1 is overexpressed in tumor 
cells under acute hypoxic circumstances, which induces 
OCs survival and ultimately results in resistance to PDT.224 
Worse still, tumor hypoxia could impair tumors’ ability to 
respond to targeted and cytotoxic therapies, increasing 
genetic instability and contributing to metastasis.225,226 
This would eventually create a vicious loop in which 
incomplete PDT worsens tumor relapse and metastasis, 
like a domino effect.

For tissue penetration limitation, some PS, such as BP 
and C60, are more photostable, less photobleaching, and 
less oxygen-dependent than traditional PS, such as tetrapy-
rrole. However, their poor absorption in the NIR limits 
their application.227,228 This deficiency has recently been 
addressed by extending the absorption spectrum of PS to 
longer wavelengths through conjugating with light absorb-
ers such as upconversion nanoparticles (UCNP) and GO. 
To increase the penetration depth, BP nanosheets are 

conjugated with UCNP to generate a significant amount of 
ROS and exert a potent anti-tumor effect under an 808 nm 
irradiation.229 Besides, photoinduced electron transfer of 
GO-C60 systems can occur from the excited graphene to 
the ground state of C60. Therefore, it can realize PPT and 
PDT simultaneously under an 808 nm irradiation.230

Carbon-based nanomaterials often have strong NIR 
optical absorption and high phototherapeutic efficiency. In 
addition, their low toxicity, adjustable surface structure, 
easy functionalization, high photostability, and tunable 
absorption-emission spectra allow them to show potential 
for integrated tumor treatment for multimodal imaging and 
PPT/PDT therapy.46 Singh et al.49 prepared multicolor flu-
orescent fBGn with 3-aminopropyltriethoxysilane as a sur-
face functionalization agent through a direct and label-free 
method. Calcination at 400°C provided fBGn with high 
fluorescence intensity derived from carbon dot (CD), ena-
bling trimodal emission (fluorescence, two-photon, and 
Raman imaging). The excellent photo properties of fBGn 
also enabled it to exhibit the ability of synergetic PDT/PTT 
therapy. 50% and 60% OCs mortality rate was achieved 
through monomodal PDT (660 nm) and PPT (808 nm), 
respectively, while the mortality rate of synergetic treat-
ment was close to 100%. In addition, its mesoporous struc-
ture and Ca2+ ions of BG allow the loading and controlled 
release of chemotherapeutic drugs such as DOX in a pH-
responsive manner. Considering the bioactivity of BG, 
fBGn may also have an osteogenic ability, but this was not 
validated in article.49 Overall, carbon-based nanomaterials 
enable a multifunctional integrated cancer treatment nano-
platform with trimodal real-time imaging and PDT/PPT/
chemotherapy. Lu et al.231 fabricated CS/nHA/CD scaffold 
by simple physical mixing and lyophilization. Out of the 
scaffold’s biological activity and pore structure, the zero-
dimensional carbon dot itself can also increase the ALP 
level in BMSC and up-regulate osteogenic genes like OCN 
and COL-1. After 4 weeks of implantation, it increased the 
bone density by an additional 21.65 mg/cm3 based on CS/
nHA scaffold and further promoted collagen and blood 
vessel formation.231 Carbon nanotubes and graphene have 
also been reported to have osteogenic ability.232 Suppose 
these carbon-based nanomaterials can be loaded into 3D 
bioceramic scaffolds while retaining their functionality. In 
that case, an integrated treatment and rehabilitation plat-
form for patient-specific osteosarcoma management might 
finally be realized.

For another problem: vicious hypoxia loop, organic or 
inorganic catalysts, such as catalase,225 manganese diox-
ide,226 manganese ferrite nanoparticles,233 and Mn (II) ions 
and pyropheophorbide engineered iron oxide nanoparti-
cles234 to catalyze O2 production from endogenous H2O2 
are used for more oxygen. Besides, the introduction of thy-
lakoid membrane235 and chlorella236 to promote hydroly-
sis, the creation of artificial red blood cells to facilitate 
oxygen transport,237 the reduction of the intratumoral 
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glutathione(GSH),234 and the use of the HIF-1α inhibitor 
YC-1238 are administrated through nanosystem for oxygen 
supplementation. However, oxygen is still insufficient due 
to the low in vivo H2O2 concentrations (<100 μM in tumor 
cells)239 and the fact that only 0.7% of the nanosystem 
dose reaches the tumor site.240 Therefore, it is a great 
choice to create inexhaustible oxygenation materials in 
situ with high controllability. The autotrophic light-trig-
gered affording-oxygen green engine was developed using 
calcium alginate to shield Chlorella from phagocytosis. 
Then, it was minimally invasively inserted into the tumor 
tissue. Furthermore, PS (Ce6) was injected, resulting in 
simultaneous oxygen production and excellent PDT under 
640 nm light irradiation. Based on this, excellent PDT and 
bone regeneration can be anticipated for osteosarcoma 
treatment if oxygen supplementation agents and PS can be 
loaded simultaneously into 3D bioceramic scaffolds.223

He et al. 19 modified Ce6 with bisamide-terminated 
polyethylene glycol polymer to enhance its hydrophilicity 
and positively charge it. They then co-cultured the result-
ing Ce6-NH2 with cyanobacteria for internalization (denot-
ing Ce6-NH2 internalized cyanobacteria as CeCyano). 
They then soaked the 3D-printed CaCO3-PCL (CaP) scaf-
folds in a solution containing polylysine and collagen to 
enhance the cell adhesion of CeCyano, thereby obtaining 
the CaPC scaffold. Under 660 nm irradiation (0.2 W/cm2) 
for 10 min, CaPC scaffolds produced more 1O2 than free 
Ce6, and these ROSs attacked the cell membranes of OCs 
and initiated lipid peroxidation chain reactions. Therefore, 
over 90% and approximately 80% OCs were killed in vitro 
and in vivo, respectively, with Ki67 expression down-reg-
ulation. Furthermore, due to its elevated O2 content, the 
CaPC scaffold improved bone regeneration by up-regulat-
ing the expression of BMP-2, OPN, and OCN and enhanc-
ing the activity of ALP. The BV/TV achieved around 40% 
after implantation for 12 weeks (Figure 8(a)).19 The sub-
tlety of this design lies in the formation of CeCyano cells 
with integrated PS and oxygen sources by internalization 
of NH2-modified PS (Ce6) and in the cell attachment of 
CeCyano to the 3D-printed bioceramics. Only by using 
polylysine and collagen to enhance cell attachment via 
protein adhesion, He et al. loaded the functional agent into 
the scaffold, which is simple and environmentally friendly.

Gas therapy. Besides PDT, NO-,241 SO2-,
242 H2S-,243 H2-,

244 
and CO-based245 gas-generating nanoplatforms (GGN) 
have also been developed for cancer therapy. Effective gas 
therapy is performed by exogenous physical triggering like 
NIR irradiation or endogenous TME reactivity like acid-
ity.244,246 However, the in vivo application of these gases is 
exceptionally challenging due to their uncontrollable nature. 
For example, high NO concentrations in the blood (>1 mN) 
may lead to NO-toxicity risk, while low NO concentrations 
in tumor cells (10−12 to 10−9 M) unfortunately tend to pro-
mote cancer cell growth.247,248 Therefore, controlled gas 

release and efficient gas delivery are essential for further 
clinical translation of gas therapy. Mesoporous SiO2 
(mSiO2) shows excellent potential in GGN due to its high 
loading capacity due to the mesoporous structure and easy 
sulfation modification to conjugate with functional mole-
cules like S-nitrosothiol (–SNO).244,246

Guo et al.246 designed photo-triggered NO nanogenera-
tors (PTNG) with a core-shell-shell structure (Fe3O4@
polydopamine@mesoporous silica). The mSiO2 shells 
were functionalized with sulfhydryl groups (–SH) to load 
PDA. The sulfated mSiO2 was then conjugated with –SNO 
by a reaction of the -SH group with tert-butyl nitrite 
(TBN). They loaded DOX into the mesopores of PTNG. 
PTNG can absorb NIR photons at 808 nm and convert 
them into sufficient heat to induce NO release. The released 
NO successfully achieved multi-drug resistance reversal 
by inhibiting the P-glycol protein expression. As a result, 
intracellular accumulation of DOX could lead to high tox-
icity to drug-resistant tumor cells. Under 808 nm light irra-
diation for 5 min (1 W/cm2), PTNG effectively inhibited 
drug-resistant tumor growth. However, PTNG did not 
show excellent photothermal efficiency, and the tempera-
ture in the tumor region only increased by 4°C after NIR 
irradiation. If other better photothermal agents like MXene 
were conjugated with mSiO2, a better anti-tumor effect by 
synergetic chemotherapy-PPT might be achieved. 
Additionally, the researchers did not investigate the anti-
tumor ability of NO itself.

In addition to NO, H2 also shows potential in anti-OC. 
Yang et al.244 constructed a mesoporous silica nanomedi-
cine loaded with aminoborane (AB@MSN) to achieve 
high-load delivery and acid-controlled in-situ release of H2 
within the tumor. The fabricated AB@MSN nanomedicine 
has an ultrahigh H2 loading capacity (130.6 mg/g, 1370-
fold higher than conventional medicines (H2@liposome 
nanodrug)). In addition, it is pH-responsive to target the 
acidic TME. Due to the stabilization of the interaction of 
hydrogen bonds between MSN and AB, the decomposition 
of AB is alleviated, resulting in sustained H2 release 
(>2 days) that facilitates long-term hydrogen therapy and 
avoids the toxic effects of burst release. After AB@MSN 
injection for 20 days, the body weight was almost 
unchanged, the organs were not significantly damaged, 
and the tumor was inhibited. This high biosafety and anti-
tumor potency open a new window for precise and effi-
cient hydrogen therapy.244

The above MSN is meaningful for fabricating multi-
functional 3D-printed bioceramic scaffolds for treating 
osteosarcoma. MSN can be loaded into 3D-printed biocer-
amics by a simple spin-coating method,17 which does not 
require chemical modification, high temperature, or pres-
sure conditions and can retain the properties of MSN 
well.246 Therefore, the MSN conjugated with -SNO and 
photothermal agents by sulfidation or loaded with various 
functional agents through its mesoporous structure is 
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expected to realize multifunctional scaffolds integrating 
several therapies.

In fact, researchers have implemented the above idea to 
construct a multifunctional scaffold based on gas therapy. 
Yang et al.101 fabricated a 3D MS/MXene-BG-SNO scaf-
fold by incorporating a mesoporous silica-coated 2D Nb2C 
MXene (photothermal agent) with the loaded S-nitrosothiol 
(NO donor) into the large holes of the 3D-printed BG 

scaffold by soaking. By using cetyltrimethylammonium 
chloride (CTAC) and ethyl orthosilicate (TEOS) as pore 
formers and silicon sources, respectively, they deposited a 
mesoporous SiO2 shell layer on the surface of Nb2C-NSs 
(MS/MXene). After modification with PEG silane, they 
mixed MS/MXene with mercaptopropyltriethoxysilane 
(MPTES) and tert-butyl nitrite (TBN) to prepare MS/
MXene-SNO. Under 1064 nm laser irradiation (1.0 W/

Figure 8. Schematic illustration of the fabrication of 3D bioceramic scaffolds for photodynamic therapy or gas therapy: (a) 
inspired by plant photosynthesis, photosensitive and photosynthetic Ce6-contained cyanobacteria were loaded onto the scaffold 
to overcome the hypoxia tumor environment for PDT. Local oxygenation also promoted bone regeneration, (b) construction of 
multifunctional scaffolds with controlled NO release, high photothermal conversion efficiency, and osteogenesis ability. NO has a 
turnover effect, which induces OCs apoptosis at high concentrations and promotes bone regeneration at low concentrations. Cited 
with permission.19 Copyright 2021, Nano Today.101 Copyright 2020, Small.
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cm2) for 10 min, the temperature increased to 52°C and 
induced tumor cell apoptosis and necrosis. Simultaneously, 
as the temperature increased, S-NO bonds were activated 
and broke, thus accelerating NO release. The mortality rate 
of OCs reached 75% with the combination of gas therapy 
and PTT. Controlled NO release is essential for the sequen-
tial adjuvant killing of tumors, angiogenesis, and osteo-
genesis. The burst release of NO under NIR irradiation 
achieves a high NO concentration, and the slow and sus-
tained release without irradiation achieves a low NO con-
centration. As curcumin and metformin, NO also has a 
dose-dependent turnover effect. High NO concentrations 
(1 × 10−6 to 1 × 10−3 M) induce cell dysfunction.249,250 The 
oxidative and nitrosative stress induces DNA damage, and 
the enzyme nitrosylation inhibits DNA repair. Low NO 
concentrations (≈10−9 M) typically improve endothelial 
cell proliferation and migration through cyclic guanosine 
3′,5′-monophosphate (cGMP) signaling pathway.251 The 
released low-concentration NO further up-regulates the 
osteogenic gene expression (OCN, RUNX-2, COL-1, and 
BMP-2). After implantation for 16 weeks, the BV/TV and 
BMD reached 60% and 0.6 g/cm3, respectively (Figure 
8(b)).101 In a word, the MS/MXene-BG-SNO scaffold 
combines photothermal and gas therapies to kill OCs while 
promoting bone regeneration with low concentrations of 
NO and bioceramic scaffolds simultaneously.

Conclusions and perspectives

With an in-depth understanding of the functions of various 
nanomaterials and drugs, researchers began to apply these 
agents to 3D-printed bioceramic scaffolds. These modified 
multifunctional scaffolds could simultaneously kill residual 
OCs and promote bone regeneration in a patient-specific 
manner. Common modification methods include soaking, 
solvo/hydrothermal, spin coating, or directly doping the 
material into the powder. The common anti-tumor therapies 
used in multifunctional scaffolds include PTT, MTT, chem-
otherapy, CDT, photodynamic therapy, and gas therapy. 
Sometimes, just loading single functional agents into a 
3D-printed bioceramic scaffold can successfully achieve a 
multifunctional scaffold with excellent anti-tumor and 
osteogenesis ability. Notably, combining two or more ther-
apies can often achieve better anti-tumor effects and com-
pensate for the deficiency of a single one. For example, the 
combination of PPT and MTT solves the problems of insuf-
ficient penetration depth of PPT and temperature limitation 
of MTT. The combination of PPT and chemotherapy solves 
the problems of insufficient killing against deep and resid-
ual OCs of PPT and the dose-dependent toxicity of chemo-
therapy. The combination of PPT and CDT compensates 
for the lack of immune response of PPT and deficiency of 
tumor-associated antigens of CDT and may inhibit metasta-
sis better. Another example is the combination of gas ther-
apy and chemotherapy, which solves the problem of drug 

resistance and enhance the anti-tumor ability. The combi-
nation of therapies is often achieved by simultaneously 
loading different functional agents into the scaffold to 
achieve an “all-in-one” scaffold. In addition, some agents 
themselves also show “all-in-one” potential. For example, 
Fe can realize the synergetic PTT/MTT or MTT/CDT, and 
fBGn can realize PTT/PDT/chemotherapy/multimodal 
imaging synergetic treatment. Therefore, researchers 
should have a broad understanding of nanomaterials with 
“all in one” potential in other fields, such as modified MSN 
and fBGn, and apply appropriate loading methods to load 
them into 3D-printed bioceramic scaffolds with their func-
tion preserved. Furthermore, the tailor-made and turnover 
effects exhibited by some agents such as Fe, curcumin, 
metformin, and NO also deserve further exploration to 
achieve better controlled release by physical excitation 
such as laser irradiation or responsiveness of TME to bal-
ance tumor killing and osteogenesis.

In addition, 3D-printed bioceramics are widely used in 
bone regeneration tissue engineering due to their osteo-
genic bioactivity, porous hierarchical structures, and bone-
like physical-mechanical properties. However, the 
potential of this “hard” material continues beyond there. In 
recent years, bioceramics have also shown great potential 
in the regeneration of soft tissues that do not match their 
physicomechanical properties.252 In fact, whether the 
application is in “hard “or “soft” tissues is fundamentally 
based on the similarity criterion. Bioceramics can be pro-
duced in a pliable and moldable manner, for example, the 
cotton-like 13-93B3 borate glass microfibers for wound 
healing.253 They can also be incorporated into soft polymer 
matrices to obtain relatively flexible composites, as they 
are in bone tissue engineering incorporating PDLLA or 
doping with metallic materials such as Ag and Ti to 
enhance their mechanical strength.254 Second, just like 
3D-printed bioceramic scaffolds mimic the specific defect 
shape, internal structure, and composition of bone through 
3D printing. This “hard” bioceramic should be carefully 
selected and designed according to the morphology, struc-
ture, and property of specific “soft” tissues, such as fibers 
for nerve regeneration, CBN with electrical conductivity 
for peripheral nerve conduits and cardiac patches, and 
doping with Cu and Si to promote angiogenesis.255–258 
Therefore, if the principle of similarity is deeply under-
stood and applied, bioceramics will shine in bone and soft 
tissue engineering and achieve mutual translation.

In Section 4, we discussed in detail how each scaffold 
addressed the two main issues after OS surgery: residual 
OCs and bone defect. In addition, clinical OS treatment is 
currently facing problems of drug resistance, metastasis, 
and unideal diagnosis and evaluation of existing imaging 
systems.

As the drugs used to treat OS and in first-line chemo-
therapy regimens have mostly stayed the same in the last 
three decades, patients with unresponsive or refractory OS 
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due to intrinsic or acquired drug resistance usually have a 
poor prognosis. New treatment strategies are, therefore, 
urgently needed. PTT, MTT, novel chemotherapy, PDT, 
and gas therapy discussed in this review offer hope for 
these patients. It should be noted that drug resistance in 
osteosarcoma is usually due to mutations in drug trans-
porter proteins, resulting in the inability of the drug to 
exert its anti-tumor effect. For example, drug efflux due to 
overexpression of efflux pumps, such as ABC transporters, 
leads to DOX resistance.259 Besides, reduced drug uptake 
due to alteration in the expression of transporters such as 
SLCs prevents drug influx and leads to MTX resistance.260 
In response to the dilemma of treating unresponsive or 
refractory OS caused by the resistance of conventional 
chemotherapy, the new therapies mentioned above tear up 
the rulebook. These new strategies kill OCs by a mecha-
nism completely different from conventional chemother-
apy. Therefore, they do not need to enter OCs through 
transporters to exert anti-tumor effects. For example, PTT 
and MTT induce apoptosis and necrosis of OCs by increas-
ing the temperature of the tumor site. New chemothera-
peutic drugs can kill OCs through new pathways, such as 
Notch1 and NF-κB. The mechanism of tumor-killing of 
gas therapy such as NO is through the oxidative and nitro-
sative stress that induces DNA damage.

In addition to the improved anti-tumor efficacy of these 
therapies, some also showed potential in directly reversing 
multi-drug resistance. Curcumin reverses multi-drug 
resistance by down-regulating P-gp gene expression and 
inhibiting the P-gp efflux pump.261 Metformin inhibits glu-
cose uptake and ATP production in human OS CSCs by 
downregulating the expression of PKM2, weakening the 
resistance of CSCs to chemotherapy, and promoting drug-
induced apoptosis.262 NO depletes GSH, thereby reducing 
cisplatin inactivation and enhancing its anti-tumor effi-
cacy. Besides, NO also reduces the expression level of 
P-gp and promotes intracellular accumulation of the drug 
at concentrations above the cell-killing threshold, ulti-
mately reversing the drug resistance.263 Furthermore, 
although ROS can activate specific chemoresistant genes 
like HIF-1α and P-gp, drug resistance in Cis has also been 
shown to be reversed after achieving control in the amount, 
area, and time of ROS release after combining with PDT.264 
Therefore, for multifunctional scaffolds, combining con-
ventional chemotherapy with other therapies, such as 
novel chemotherapeutic agents, gas therapy, and PDT, is 
expected to reverse drug resistance and improve the prog-
nosis of osteosarcoma. Therefore, based on the demon-
strated ability of curcumin, metformin, NO, and ROS to 
reverse drug resistance, these functional agents could be 
considered for co-loading into 3D-printed bioceramic 
scaffolds along with conventional chemotherapeutic drugs. 
In fact, the preparation and loading of functional agents 
and the loading of conventional chemotherapeutic agents 
have been well established. It is only necessary to learn 

from the existing strategies and co-load them into the scaf-
folds to achieve a superposition of anti-tumor ability. For 
example, the above-mentioned CaPC scaffolds can kill 
about 80%–90% of OCs by a single PDT. If a chemothera-
peutic drug is also loaded into CaPC scaffolds, the scaf-
folds may achieve a 100% mortality rate of OCs because 
the drug can function normally to kill OCs due to drug 
resistance reversal. Therefore, while retaining the bioac-
tivity of multifunctional scaffolds to promote bone regen-
eration, the killing ability of residual OCs can be further 
enhanced for a better prognosis.

For OS metastasis, the process can be divided into three 
stages, including the escape of OCs from the primary 
tumor, transit in the circulatory system, and colonization 
and establishment of metastasis. Therefore, studies have 
tried to prevent metastasis by targeting circulating tumor 
cells.265 For in situ scaffold implantation, instead of 
directly targeting circulating tumor cells, it is more realis-
tic and suitable to induce long-term anti-tumor immune 
memory in situ or directly inhibit migration and invasion 
to prevent metastasis.266 ROS has demonstrated superior 
ability in the induction of immunogenic cell death (ICD), a 
specific type of cell death that induces cell surface expres-
sion of pro-apoptotic calcium reticulum protein (CRT), 
extracellular release of high mobility histone 1 (HMGB1), 
and secretion of adenosine triphosphate (ATP).267 Thus, 
ICD can promote DC maturation and antigen presentation 
to cytotoxic T cells (CTL) and intra-tumor CTL infiltra-
tion.267,268 However, the “cold” osteosarcoma with immu-
nosuppressive TME, typically characterized by poor 
immunogenicity and inadequate T cell infiltration, cannot 
provide sufficient tumor-associated antigens for the 
immune response of ROS to prevent metastasis effec-
tively.269 Fortunately, hyperthermia therapy-based tumor 
ablation frequently displays vaccine-like properties with 
sufficient tumor-associated antigen production that stimu-
lates anti-tumor immune responses.270,271 Therefore, com-
bining ROS and photothermal or magnetothermal therapy 
realizes long-term and strong immune responses to pre-
vent OS metastasis.271,272 For example, by combing PPT 
and PDT, a novel H2O2 self-generating single-atom 
nanozyme (SAzyme) hydrogel was developed as a light-
controlled oxidative stress amplifier for better synergistic 
treatment of the primary and metastatic “cold” cancer. The 
immunotherapeutic effect was improved by promoting DC 
maturation and CD8 + T cell differentiation and infiltra-
tion.271 In addition, substantial production of ROS can 
directly inhibit migration and invasion of OCs by down-
regulating vitronectin and thrombospondin-1.266 Therefore, 
PEGylated carbon nitride nanosheet@copper-doped poly-
aniline (CNNS@CuPANI) generating massive ROS by 
combing PDT and CDT can effectively kill OCs and sig-
nificantly inhibit metastasis.266 Furthermore, fructose-
coated Ångstrom-scale silver particles (f-AgÅPs) can 
produce substantial ROS, induce mitochondrial 
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ROS-dependent apoptotic death of OCs, and inhibit OS 
metastasis. However, the exact mechanism of metastasis 
inhibition is unclear.273 Therefore, if these nanoparticles 
with ideal immune effects by combing ROS with hyper-
thermia therapy or anti-invasion ability through substantial 
ROS production can be loaded into a 3D-printed biocer-
amic scaffold, it may help achieve a better OS prognosis 
without metastasis.

In addition to drug resistance and metastasis, the low 
diagnosis rate of primary and metastatic OS lesions with 
traditional imaging techniques also hinders the prognosis 
of OS patients. Conventional magnetic resonance imaging 
(MRI) has high spatial resolution and deep tissue penetra-
tion but lacks sensitivity.274 Some new imaging techniques, 
such as photoacoustic imaging (PAI), have deep penetra-
tion but still low sensitivity. Fluorescence imaging (FI) 
and Raman imaging have insufficient penetration depth, 
while FI has high sensitivity and Raman has high resolu-
tion. Based on this, multimodal imaging, which combines 
multiple imaging techniques to achieve complementary 
advantages, is gradually used for targeted diagnosis of OS 
and real-time monitoring of the anti-tumor effect.46 For 
example, the combination of PAI and FI can clearly depict 
the edges of in situ OS with good penetration and show 
more details, including the blood vessels and delicate 
structures of tumors.274 Carbon-based nanomaterials show 
great potential for multimodal imaging in addition to the 
optical properties for PPT/PDT, high loading capacity for 
chemotherapy, and osteogenic bioactivity discussed 
above.231 CBN has emerged as a novel high-performance 
single- and two-photon fluorophore for imaging cells by 
FI, Raman, phosphorescence, and two-photon imaging. 
CBN was also developed for non-optical imaging modali-
ties, including magnetic resonance, photoacoustic, and 
computed tomography imaging.46 CBNs are formed in 
hybrid or nanocomposite form by incorporating other 
imaging agents, such as coupling the MR imaging agent 
Gd3+ to carbon dots to form magnetic fluorescent carbon 
dots275 or encapsulating Gd3+ ions in fullerene cages.276 
This can offset or enhance the optical imaging capacity of 
the CBN for better theranostic performance. The major 
problem in the surgical treatment of osteosarcoma is the 
accurate determination of tumor margins. While over-
expansion surgical resection can seriously harm the struc-
ture and function of bone tissue, conservative surgical 
resection can result in recurrence. Therefore, a multifunc-
tional scaffold should be implanted to minimize the 
resected area and to achieve complete tumor ablation by 
synergistic anti-tumor therapy. Moreover, evaluating and 
monitoring the anti-tumor efficacy and determining 
whether a subsequent surgery is needed is also essential. 
However, evaluation in the animal model has often taken 
the form of executing mice after a particular time of treat-
ment, harvesting the tumors, weighing and measuring 
them, and then producing sections for further observation. 

Obviously, a safe, non-invasive, accurate, and efficient 
method is needed to assess efficacy in the clinic. Therefore, 
3D multifunctional scaffolds with simultaneous multi-
modal imaging capability is necessary for further research 
and clinical translation. Carbon-based nanomaterials’ 
recent excellent multimodal imaging capabilities in vari-
ous fields have made this vision possible.

In a word, the 3D multifunctional bioceramic scaffolds 
have shown good performance on anti-tumor and bone 
regeneration both in vitro and in vivo. However, there have 
been no reports of its clinical use. We can only say that this 
3D multifunctional bioceramic scaffold is a promising 
therapeutic strategy for the clinical treatment of OS, but 
some issues should be realized and addressed before its 
practical application in clinical treatment. First, many 
studies have focused more on the scaffold’s anti-tumor 
properties and neglected the bone regeneration capacity 
assessment. Bone defects are a non-negligible problem 
that seriously affects the life quality of patients. Secondly, 
lung metastasis is the leading cause of death in OS in the 
clinic. Existing studies have little awareness of setting OS 
metastatic model and evaluating OS metastasis, and fur-
ther studies should increase this awareness to remedy the 
deficiency. Third, the time to monitor and evaluate the effi-
cacy of in vivo experiments is often only about 8 weeks. 
Should we extend the time to assess recurrence and metas-
tasis more comprehensively? Fourth, existing evaluation 
methods are often performed after the execution. Real-
time high-precision imaging systems like fBGn should be 
introduced into multifunctional scaffolds for non-invasive 
and efficient assessment. Fifth, as a solid tumor in deep 
tissues, osteosarcoma requires penetration depth when 
treated with PPT, so a larger model like a canine should be 
considered to better simulate the process of light penetra-
tion into deep human tissues for further evaluation instead 
of the existing mice model. Sixth, drug resistance is a sig-
nificant dilemma in the existing clinical treatment of oste-
osarcoma. However, existing studies of multifunctional 
scaffolds focus only on the controlled release and the anti-
tumor effect of chemotherapy, with little attention to drug 
resistance. Drug-resistance animal models should be 
established for in-depth studies in the future. Seventh, the 
mechanical strength of many existing scaffolds can reach a 
level close to that of cancelous bone. However, reaching 
the strength of cortical bone is difficult, thus limiting their 
application for cortical bone defects. Eighth, widespread 
clinical application often requires cost and technical acces-
sibility. Therefore, the design of scaffolds with a balance 
of efficacy and affordability should always be pursued by 
researchers. In addition, the fabrication process should be 
manageable. Moreover, the successful clinical translation 
of 3D multifunctional bioceramic scaffolds also requires 
further development and popularization of 3D printing 
technology in various fields of life and further populariz-
ing the concept of personalized precision medicine.  
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If researchers can notice the above-mentioned problems in 
further studies, pay attention to them, and address them, 
then the actual clinical application of 3D-printed multi-
functional bioceramic scaffolds to improve the treatment 
and prognosis of OS is just around the corner.
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