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Abstract

As cancer mortality is high in most regions of the world, early screening of cancer has

become increasingly important. Minimally invasive screening programs that use peripheral

blood mononuclear cells (PBMCs) are a new and reliable strategy that can achieve early

detection of tumors by identifying marker genes. From 797 datasets, four (GSE12771,

GSE24536, GSE27562, and GSE42834) including 428 samples, 236 solid tumor cases,

and 192 healthy controls were chosen according to the inclusion criteria. A total of 285

genes from among 440 reported genes were selected by meta-analysis. Among them, 4 of

the top significantly differentially expressed genes (ANXA1, IFI44, IFI44L, and OAS1) were

identified as marker genes of PBMCs. Pathway enrichment analysis identified, two signifi-

cant pathways, the ‘primary immunodeficiency’ pathway and the ‘cytokine-cytokine receptor

interaction’ pathway. Protein- protein interaction (PPI) network analysis revealed the top 27

hubs with a degree centrality greater than 23 to be hub genes. We also identified 3 modules

in Molecular Complex Detection (MCODE) analysis: Cluster 1 (related to ANXA1), Cluster 2

(related to IFI44 and IFI44L) and Cluster 3 (related to OAS1). Among the 4 marker genes,

IFI44, IFI44L, and OAS1 are potential diagnostic biomarkers, even though their results were

not as remarkable as those for ANXA1 in our study. ANXA1 is involved in the immunosup-

pressive mechanism in tumor-bearing hosts and may be used in a new strategy involving

the use of the host’s own immunity to achieve tumor suppression.
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Introduction

Numerous studies to date have emphasized the importance of early detection in cancer, such

that treatment can be initiated as early as possible. Indeed, early detection of cancer is key to

successful treatment and patient survival[1, 2].

Early screening is generally performed via testing in individuals with a high risk or high

probability of tumor detection in early stages (secondary prevention) or to prevent complica-

tions (third-level prevention). The Cancer Screening Program aims to reduce the morbidity

and mortality of cancer through early detection of malignant or precancerous lesions. How-

ever, the basic ethical dilemma of screening programs is that many people must be exposed to

the burden and risk of intervention with little benefits [3]. In fact, the majority of existing

screening approaches are invasive. For example, the highest recommended items listed in the

US Preventive Services Task Force (USPSTF) Cancer Screening Guidelines (colon cancer and

cervical cancer screening) are invasive techniques [4]. Invasive tools are not a satisfactory

choice for weak patients, and healthy people with no symptoms are reluctant to undergo these

procedures. In addition, most screening programs cannot recognize and diagnose tumors

until they develop to a specific extent. As an example, if breast cancer is detected in the breast

by palpation or mammography, it may have been present for several years, with the ability to

spread to distant organs [5]. Accordingly, there is an urgent need to establish reliable tools for

the identification of cancer at early stages, especially prior to the development of clinical

symptoms.

Biomarkers have often been deemed an indicator of early tumor screening, and the effec-

tiveness of their intervention in clinical diagnosis and monitoring has been confirmed many

times. Early detection of cancer using effective biomarkers can facilitate more effective treat-

ments, allowing patients to have better prognosis[6]. Tumor biomarkers include changes in

tumor gene expression-specific mutations or promoter methylation that result in altered pro-

tein expression. Biomarkers produced by the tumor itself may be present in the adjacent body

fluid or patient’s blood circulation system, and this situation leads to a new strategy for estab-

lishing a minimally invasive early screening protocol for tumor detection. Furthermore,

improvements in genomics and monitoring technologies have provided significant opportuni-

ties for cancer screening that make imaging more precise and more specific with regard to

describing tumor biomarkers in the blood [7].

Recently, studies have shown that peripheral blood can carry information related to the

presence of diseases, including prognosis and treatment response. Compared with existing

approaches, cancer detection based on peripheral blood is more advantageous because of the

easy accessibility and less invasive procedure for obtaining samples [8]. More importantly,

tests based on blood diagnoses can result in better patient compliance for some cancers, such

as colon cancer [9].

Peripheral blood mononuclear cells (PBMCs) are composed of immune cells, such as

monocytes and lymphocytes. PBMCs are important players in the host immune defense sys-

tem and can respond to various abnormalities in the host [10]. The development and survival

of tumors is a complex process involving interaction between cancer cells, normal stromal

cells, and host immune defense systems. The immune evasion mechanism of the tumor itself

also has an important role. The main mechanism of tumor immune evasion is immunosup-

pression in the tumor microenvironment mediated by CD4+, CD25+, and FoxP3+ cells, regu-

latory T cells (Tregs) and other types of inhibitory cells [11]. Therefore, gene expression

profiling of peripheral blood cells has potential in early cancer detection. The experimental

results of Michael E. Burczynski et al. indicated that circulating monocytes of peripheral blood

can be used as a surrogate monitor for tissues that are difficult to biopsy or a sensitive monitor
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to check the physiological state of the organism because they can migrate through various tis-

sues of the body [12]. Additionally, Natalie C. Twine identified a group of PBMCs predictive

genes that can distinguish between renal cell carcinoma (RCC) patients and normal volunteers

with high precision. Furthermore, ongoing research by this group demonstrates that PBMCs

from RCC patients can be accurately distinguished from the PBMCs of normal volunteers and

also from those of patients with other types of solid tumors [13]. According to the characteris-

tics of these cells, Praveen Sharma et al. showed that PBMCs can be used to develop gene

expression-based tests for early detection of breast cancer [14]. The study by Michael K. Showe

also suggests that the use of peripheral blood gene expression features to identify early non-

small cell lung cancer (NSCLC) in high-risk populations is feasible and may reduce the num-

ber of patients who need to undergo biopsy or surgery to determine whether they have benign

pulmonary nodules [15].

The rationale for using the PBMC transcriptome gene as a monitor for malignant solid

tumors is based on the mechanism by which malignant growth causes characteristic changes

in the blood biochemical environment. These changes are mostly related to the immune eva-

sion mechanism of the tumor itself and will affect the expression pattern of some genes in

blood cells. PBMC transcriptome gene expression is easily extracted as a tumor screening

marker. Given their accessibility, PBMCs may provide potential predictive biomarkers in clini-

cal pharmacogenomics [16].

In this study, we investigated solid tumors and selected human PBMC genetic alterations

as a new screening program. We believe that blood-based surrogate markers may serve as

accessible biomarkers for early detection, diagnosis, prognosis and prediction of cancer

treatment outcomes. Here, we summarize the genetic changes in human PBMCs reported

in previous work and confirm the feasibility of this new tumor screening project. The

tumor types in this study were limited to solid tumors because hematological tumors, such

as leukemia and lymphoma, have a certain impact on human peripheral blood mononuclear

cell gene expression. The purpose of our study was to identify potential biomarkers of can-

cer at an early stage. Cases of advanced cancer were not included. Through this study, we

hope to find a new approach for the development of a blood-based gene expression test for

early cancer detection.

Materials and methods

Selection of microarray datasets for meta-analysis

We performed a detailed and comprehensive search of microarray datasets in the Gene

Expression Omnibus (GEO) database of the National Center for Biotechnology Information

(NCBI) (http://www.ncbi.nlm.nih.gov/geo/) according to the Preferred Reporting Items for

Systematic Reviews and Meta-Analyses (PRISMA) guidelines published in 2009. To maintain

objectivity, the data were extracted from the original database search by two independent

reviewers, and any discrepancies between the two reviewers were resolved through consulta-

tion with a third reviewer. We used the terms "tumor" and "peripheral blood" as the search key-

words for this study, and 797 datasets were obtained from the GEO database. We also

included datasets containing the following: 1) RNA research; 2) samples from solid tumors; 3)

samples not receiving any tumor treatment; and 4) control samples from the peripheral blood

of healthy people. We excluded datasets if they contained the following: 1) hematological

tumors, lymphomas, and other tumors that can directly affect related genes in peripheral

blood; 2) sample sizes less than 10; 3) terminal cancer samples and 4) nonhuman omics

studies.
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Selection of reported genes

We then performed searches in the PubMed database based on the keywords "tumor" and/or

"peripheral blood" to explore published articles. We collated articles using the same inclusion

and exclusion criteria as for the GEO analysis. After reading the selected literature, we selected

relevant reported genes and generated a table that was used in the meta-analysis to identify

common genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment

analysis of these genes was also performed to determine relevant biological functions.

Meta-analysis of microarray datasets

Prior to the meta-analysis, we performed data normalization of the selected datasets using R

statistical software (http://www.r-project.org/) to obtain common genes. We summarized the

reported genes from the selected datasets, processed the meta-analysis using genes from the

normalized datasets and reported genes by using the MAMA, RankProd, affyPLM and CLL

software packages in R statistical software. A list of differentially expressed genes (DEGs) was

identified based on P-values, and the top ten genes with their corresponding absolute value of

P were selected for forest plot analysis to observe differential expression reported in the

literature.

GO annotations and KEGG pathway enrichment analysis

Based on the results of the meta-analysis, the most significant DEGs were evaluated by enrich-

ment analyses. Gene Ontology (GO) annotation and KEGG pathway enrichment analyses

were conducted to identify the most significant DEGs using the WEB-based GEne SeT AnaLy-

sis Toolkit (http://www.webgestalt.org/option.php) with a significance threshold of false-dis-

covery rate (FDR) less than 0.1.

Protein-protein interaction (PPI) network construction

To obtain a clear understanding of the cellular functions and biological activities of PBMC

marker genes in solid tumors, we analyzed the DEGs in the Search Tool for the Retrieval of

Interacting Genes/Proteins (STRING, http://string-db.org) database. PPI networks were con-

structed with a confidence score greater than 0.4 as the significance cutoff value, aiming to

offer an overview of the functional protein association networks. Afterward, the acquired data

were visualized using Cytoscape software.

Selection of hub genes and modules

CentiScaPe 2.1 was employed to calculate the degree, closeness, and betweenness of the PPI

network. We identified hub genes based on the degree of the node. The most important PPI

network clustering module was selected in Cytoscape using MCODE software with degree cut-

off = 2, node score cutoff = 0.2, k-core = 2, and max depth = 100. The DEGs in each module

with an FDR of less than 0.01 were then subjected to pathway enrichment analysis (using

STRING) to explore the biological function of each module.

Results

Selecting a microarray dataset associated with solid tumors for meta-

analysis

According to the inclusion criteria, four datasets (GSE12771, GSE24536, GSE27562, and

GSE42834) including 428 samples, 236 solid tumor patients, and 192 healthy controls were
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chosen from among 797 datasets (see Materials and Methods and Fig 1). The tumor samples

consisted of various types of tumors, including breast cancer, lung cancer, and melanoma. The

four GEO series (GSE) all used the microarray dataset from tumor samples and normal control

samples (Table 1). We retrieved 8,126 related articles from the PubMed database, which were

narrowed down to 28 by applying the inclusion and exclusion criteria. A total of 440 reported

genes were found in these articles (S1 Table); the flow chart is shown in Fig 2. As some genes

appeared only once, the results were not stable. In the meta-analysis, 285 genes from among

440 reported genes were selected using the MAMA, RankProd, affyPLM and CLL software

packages in the R statistical software. (S2 Table), and 20 genes, the top ten with positive and

negative absolute P-values were used in forest plot analysis (S1 and S2 Files).Ultimately, 4

genes (ANXA1, IFI44, IFI44L, and OAS1) with significant forest plots were determined as the

marker genes of PBMCs (Fig 3).

GO and KEGG pathway enrichment analysis

To further investigate the function of the reported genes and DEGs, we performed a KEGG

pathway enrichment analysis of 440 genes with a significance threshold of less than 0.1

(Table 2). We also performed biological process functional GO and KEGG pathway enrich-

ment analyses on 285 genes (Table 3) and constructed a channel-enriched bubble chart of the

KEGG pathway enrichment analysis using the ggplot2 software package in R software (Fig 4).

The bubble chart shows the ratio on the horizontal axis and the path name on the vertical axis,

and the size of the bubble represents the observed gene number. The color of the bubble repre-

sents the -log10 P-value. Therefore, larger bubbles indicate the detection of more genes in the

pathway, and the deeper the bubble color is, the smaller the P-value of the pathway is. We

identified two significant pathways and the ‘primary immunodeficiency’ pathway and ‘cyto-

kine-cytokine receptor interaction’ pathway, through this analysis.

Fig 1. Flow chart of the processing of microarray dataset selection.

https://doi.org/10.1371/journal.pone.0230905.g001

Table 1. Basic information of the four GSE datasets.

study sample case/control conutry PMID platform Cancer type

GSE24536 28 15/13 USA 21555851 GPL6480 Melanoma

GSE27562 125 94/31 USA 21781289 GPL570 Breast Tumor

GSE42834 129 16/113 England 23940611 GPL10558 Lung Cancer

GSE12771 146 111/35 Germany 21558400 GPL6102 Lung Cancer

https://doi.org/10.1371/journal.pone.0230905.t001
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Hub gene and module screening from the PPI network

To further visualize the cellular functions and biological activities of the 285 genes, a genetic

interaction network map of DEGs was drawn in Cytoscape. First, we identified a PPI network,

which consisted of 285 nodes and 2,655 edges with a confidence score greater than 0.4 based

on the STRING database. The top 27 hubs with degree centrality greater than 23 were screened

as hub genes from the PPI network. These genes included annexin A1 (ANXA1), signal trans-

ducer and activator of transcription 1 (STAT1), signal transducer and activator of transcription

3 (STAT3), CX3C motif chemokine receptor 1 (CX3CR1), CXC motif chemokine receptor 2

Fig 2. Flow chart of the processing of the reported genes selection.

https://doi.org/10.1371/journal.pone.0230905.g002

Fig 3. Forest plots of the differential expression levels of the top 4 genes (ANAX1, IFI44, IF44L, and OAS1).

https://doi.org/10.1371/journal.pone.0230905.g003
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(CXCR2), CC motif chemokine receptor 1 (CCR1), CC motif chemokine receptor 5 (CCR5),

CC motif chemokine receptor 7 (CCR7), CC motif chemokine receptor 4 (CCR4), CC motif

chemokine receptor 2 (CCR2), CXC motif chemokine ligand 9 (CXCL9), CD19 molecule

(CD19), CXC motif chemokine receptor 3 (CXCR3), C motif chemokine ligand 5 (CCL5),

CXC motif chemokine receptor 4 (CXCR4), CD86 molecule (CD86), CXC motif chemokine

ligand 10 (CXCL10), forkhead box P3 (FOXP3), CXC motif chemokine ligand 8 (CXCL8), pro-

platelet basic protein (PPBP), CC motif chemokine ligand 2 (CCL2), interferon gamma

(IFNG), phospholipase C gamma 1 (PLCG1), spleen associated tyrosine kinase (SYK), CD40

molecule (CD40), protein tyrosine phosphatase nonreceptor type 6 (PTPN6), and ubiquitin A-

52 residue ribosomal protein fusion product 1 (UBA52) (Fig 5). We then found 3 modules in

the MCODE analysis and used Cluster 1 (related to ANXA1), Cluster 2 (related to IFI44 and

Table 2. KEGG pathway enrichment analysis of 440 genes.

Gene Set Description Size Overlap Expected Enrichment Ratio P Value FDR

hsa04062 Chemokine signaling pathway 189 34 5.086223 6.684724526 0 0

hsa04060 Cytokine-cytokine receptor interaction 294 36 7.911903 4.55010661 7.99E-15 1.30E-12

hsa03010 Ribosome 153 21 4.117419 5.100282899 5.91E-10 6.42E-08

hsa05169 Epstein-Barr virus infection 201 23 5.409158 4.252048217 3.33E-09 2.72E-07

hsa05164 Influenza A 171 20 4.601821 4.346105729 2.59E-08 1.69E-06

hsa04620 Toll-like receptor signaling pathway 104 15 2.798768 5.359500574 9.67E-08 5.25E-06

hsa05340 Primary immunodeficiency 37 9 0.995716 9.038725292 4.01E-07 1.87E-05

hsa05161 Hepatitis B 144 16 3.875218 4.128800442 1.38E-06 5.63E-05

hsa05160 Hepatitis C 131 15 3.525372 4.254870685 2.04E-06 6.89E-05

hsa05162 Measles 132 15 3.552283 4.222636816 2.25E-06 6.89E-05

https://doi.org/10.1371/journal.pone.0230905.t002

Table 3. GO and KEGG pathway enrichment analysis of 285 genes.

Category Geneset Description Size Overlap Expected Enrichment Ratio P Value FDR

GO GO:0002521 leukocyte differentiation 496 42 9.043149436 4.644399642 0 0

GO:0002694 regulation of leukocyte activation 481 42 8.769667094 4.789235389 0 0

GO:0098542 defense response to other organism 473 43 8.623809845 4.986195286 0 0

GO:0042110 T cell activation 452 40 8.240934567 4.85381842 0 0

GO:0050900 leukocyte migration 419 40 7.639273415 5.236100062 0 0

GO:1903706 regulation of hemopoiesis 389 40 7.092308731 5.639912406 0 0

GO:0009615 response to virus 319 37 5.816057803 6.361697434 0 0

GO:0060326 cell chemotaxis 289 34 5.269093119 6.452723312 0 0

GO:0070661 leukocyte proliferation 281 35 5.12323587 6.831619876 0 0

GO:1990868 response to chemokine 93 24 1.695590519 14.15436081 0 0

KEGG hsa04062 Chemokine signaling pathway 189 34 4.909090909 6.925925926 0 0

hsa04060 Cytokine-cytokine receptor interaction 294 36 7.636363636 4.714285714 2.44249E-15 3.98126E-13

hsa05169 Epstein-Barr virus infection 201 23 5.220779221 4.405472637 1.65478E-09 1.7982E-07

hsa05164 Influenza A 171 20 4.441558442 4.502923977 1.41264E-08 1.1513E-06

hsa04620 Toll-like receptor signaling pathway 104 15 2.701298701 5.552884615 6.03174E-08 3.86041E-06

hsa03010 Ribosome 153 18 3.974025974 4.529411765 7.10504E-08 3.86041E-06

hsa05161 Hepatitis B 144 17 3.74025974 4.545138889 1.5876E-07 7.39366E-06

hsa05340 Primary immunodeficiency 37 9 0.961038961 9.364864865 2.96446E-07 1.13916E-05

hsa05163 Human cytomegalovirus infection 225 21 5.844155844 3.593333333 3.14492E-07 1.13916E-05

hsa05212 Pancreatic cancer 75 12 1.948051948 6.16 4.18383E-07 1.36393E-05

https://doi.org/10.1371/journal.pone.0230905.t003

PLOS ONE Identification of human peripheral blood monocyte gene markers of solid tumors

PLOS ONE | https://doi.org/10.1371/journal.pone.0230905 March 30, 2020 7 / 15

https://doi.org/10.1371/journal.pone.0230905.t002
https://doi.org/10.1371/journal.pone.0230905.t003
https://doi.org/10.1371/journal.pone.0230905


IFI44L) and Cluster 3 (related to OAS1) for KEGG pathway enrichment analysis (Figs 6–8,

Tables 4, S3 and S4).

Discussion

The current early screening tools for tumors are limited to use at an identifiable stage, and

most are invasive. The early stage of tumor formation may change the immune components in

human PBMCs; Thus, utilizing such changes will aid in the detection of a new target for the

early screening of tumors. Because tumors caused by blood diseases such as leukemia may

change the composition of human PBMCs without an immune response, this study focused

on early screening of solid tumors only. In addition, the statistics of terminal stages of cancer

are not conducive to establishing a biomarker indicating the transformation of early stages.

Ultimately, we examined 4 datasets chosen from among 797 datasets, involving 3 types of solid

cancer.

In this study, we performed a meta-analysis of PBMCs between patients with solid tumors

and normal healthy individuals to define possible target genes. A total of 285 genes were

selected during this analysis. According to forest plot analysis of the 20 top genes, 4 genes

(ANXA1, IFI44, IFI44L, and OAS1) were determined as the marker genes of PBMCs. All the P-

values of the 4 genes were significant (P>0.05), demonstrating the stability of the genes being

presented across each of the datasets. To classify the function of the 285 genes, GO and KEGG

pathway enrichment analyses were performed. Furthermore, we chose the top 27 hub nodes

with a degree centrality greater than 23 from the PPI network as hub genes and found 3 impor-

tant clusters related to the four selected genes (ANXA1, IFI44, IFI44L, and OAS1). KEGG path-

way enrichment analysis was also used to investigate the functions of these modules.

As reported in the majority of previous studies, ANXA1 is produced by many cell types,

including peripheral blood leukocytes, where ANXA1 is mainly expressed in neutrophils.[17]

Loss of function or expression of ANXA1 has been detected in multiple tumors. ANXA1 may

function as either a tumor suppressor or a tumor promoter, depending on the type of tumor

cells/tissues [18]. Additionally, some studies have shown that its positive expression is corre-

lated positively with the progression of several types of cancers. In our study, we found that

ANXA1 was overexpressed in the PBMCs of cancer patients, and thus hypothesized that it

could serve as a biomarker of cancer diagnosis.

Fig 4. The top 10 KEGG enrichment pathways of DEGs.

https://doi.org/10.1371/journal.pone.0230905.g004
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In terms of our analysis, we found the highest ratio of ANXA1 in the primary immunodefi-

ciency pathway. Defects in immune cells, such as suppression of immune cell proliferation in

patients, may be diagnosed as primary immunodeficiency. Enhanced expression of ANXA1
might reduce the in vitro peripheral blood lymphocyte response to mitogens, activate the

ERK/MAPK pathway and reduce immune cell proliferation by disrupting the actin skeleton

and abolishing cyclin D1 expression[19]. All these events give rise to primary immunodefi-

ciency, facilitating tumor immunity escape. Other studies have reported the possible effects of

ANXA1 on mitogen-activated T cells in humans. Consequently, overexpression of ANXA1
results in malignant proliferation of cancer cells by causing disorder in the immune system.

Moreover, it was reported that increased ANXA1 expression can abolish COX-2 expression.

COX-2 exerts a negative effect on immune surveillance, plays a key role in tumorigenesis, and

Fig 5. Hub genes acquired from the PPI network.

https://doi.org/10.1371/journal.pone.0230905.g005
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is associated with angiogenesis in the transition period of carcinoma [20]. These mechanisms

indicate that ANXA1 can mediate many diverse cellular functions, such as inflammation and

proliferation, and has an important effect on suppressing the development of cancer.

In addition to the primary immunodeficiency pathway, a large proportion of the summa-

rized genes, including ANXA1, are involved in the cytokine-cytokine receptor interaction ref-

erence pathway that affects the status of carcinoma. Most genes in Cluster 1 are linked to the

cytokine-cytokine receptor interaction. Moreover, ANXA1 was included in Cluster 1, with

many genes included in the CC and CXC subfamilies. Both families of chemokine factors are

involved in the chemotaxis of leukocytes and promote the proliferation of immune cells,

resulting in pleiotropic effects including the stimulation of monocytes, natural killer and T-cell

migration, and the modulation of adhesion molecule expression. These actions inhibit the

expansion of tumors. Thus, we suggest that ANXA1 might influence the course of neoplasms

by affecting interaction between cytokines. High ANXA1 expression exerts its effect via inhibi-

tion of CC and CXC subfamily members, leading to a restricted in immune response to can-

cers. Regarding other aspects of the cytokine-cytokine receptor interaction reference pathway,

cytoplasmic ANXA1 exhibits anti-inflammatory activity by inhibiting phospholipase A2.

Extracellular ANXA1 regulates leukocyte migratory events through interactions with n-formyl

peptide receptors, binding to the formyl peptide receptor (FPR) on neutrophils and preventing

transendothelial extravasation. These activities interrupt the process of leukocyte migratory

events and suppress immune system attack of cancers. These findings may explain elevated

expression of ANXA1 in infiltrating leukocytes. Alternately, as a substrate protein of EGFR,

ANXA1 may contribute to neoplasm growth via autocrine and paracrine effects and sustain

Fig 6. Cluster 1 selected from the PPI network.

https://doi.org/10.1371/journal.pone.0230905.g006
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the preinvasive properties of malignant cancers through autocrine signaling induced by the N-

terminal peptide [21].

All the samples we selected were from cancer patients with an exact diagnosis, most reach-

ing a diagnosable stage. At this stage, the immune system is weaker with regard to combating

cancer and cannot effectively stop the malignant growth of tumors. ANXA1 is expressed at low

levels in PBMCs with benign tumors, which would affect malignant expansion. Decreased

expression of ANXA1 has been shown to be responsible for a strong delay of proliferation,

migration/invasion, and angiogenesis in melanoma, lung carcinoma, NSCLC, breast cancer,

and prostate cancer models [22]. In general, ANXA1 is aberrantly expressed in both benign

and malignant tumor stages compared with that in the healthy population. Because of its

abnormal expression in PBMCs, ANXA1 might be a meaningful biomarker for cancer diagno-

sis and is considered a primary mediator of anti-inflammatory activity.

Our study also found IFI44, IFI44L, and OAS1 to be overexpressed. These genes are associ-

ated with interferons. Expression of OAS1 is induced by interferons against cancers. IFI44
belongs to the INF-α family, mediating the inflammatory response. IFI44L might be a novel

tumor suppressor that affects cancer stemness, metastasis, and drug resistance in cancer cells.

Fig 7. Cluster 2 selected from the PPI network.

https://doi.org/10.1371/journal.pone.0230905.g007
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Radiotherapy and systemic chemotherapy are the traditional choices of treatments for

patients with cancer. However, they also induced a range of side effects due to their nonselec-

tive killing of malignant and normal cells. Immune checkpoint blockade has improved cancer

treatment with lower rates of treatment-related toxicity. Abnormal changes in the molecular

characteristics of the immune microenvironment are also helpful for the early diagnosis of

malignant tumors and for understanding of immunosuppression in patients. In this study,

overexpression of ANXA1 in the PBMCs of cancer patients, depending on the cancer

Fig 8. Cluster 3 selected from the PPI network.

https://doi.org/10.1371/journal.pone.0230905.g008

Table 4. The KEGG pathway enrichment analysis of Cluster 1.

Geneset Description Size Overlap Expected Enrichment Ratio P Value FDR

hsa04060 Cytokine-cytokine receptor interaction 294 18 0.74789128 24.0676692 0 0

hsa04062 Chemokine signaling pathway 189 18 0.48078725 37.4385965 0 0

hsa04620 Toll-like receptor signaling pathway 104 5 0.26456018 18.8992915 4.73E-06 5.14E-04

hsa05163 Human cytomegalovirus infection 225 6 0.57236578 10.482807 1.37E-05 0.00111274

hsa05120 Epithelial cell signaling in Helicobacter pylori infection 68 3 0.17298166 17.3428793 6.30E-04 0.04108467

hsa05167 Kaposi sarcoma-associated herpesvirus infection 186 4 0.47315571 8.45387663 0.00107644 0.05848636

hsa05164 Influenza A 171 3 0.43499799 6.89658356 0.0087241 0.40629393

hsa04623 Cytosolic DNA-sensing pathway 63 2 0.16026242 12.4795322 0.01091775 0.44489832

hsa04622 RIG-I-like receptor signaling pathway 70 2 0.17806935 11.2315789 0.01335851 0.48387498

hsa05323 Rheumatoid arthritis 90 2 0.22894631 8.73567251 0.02149547 0.62095381

hsa04144 Endocytosis 244 3 0.62069889 4.83326143 0.02266138 0.62095381

hsa04657 IL-17 signaling pathway 93 2 0.23657786 8.45387663 0.0228572 0.62095381

hsa05142 Chagas disease (American trypanosomiasis) 102 2 0.25947249 7.70794634 0.02715131 0.6808712

hsa04668 TNF signaling pathway 110 2 0.27982327 7.14736842 0.03122221 0.72703143

https://doi.org/10.1371/journal.pone.0230905.t004
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proliferation status, suggests the potency of ANXA1 as a biomarker of the identification of can-

cer. This finding might help us in detecting cancer much earlier. Furthermore, this ANXA1
overexpression depending on the cancer proliferation status suggests the potency of ANXA1 as

a biomarker of the identification of cancer, aiding in the identification of cancer early.

This study was exploratory, defining a specific tool using PBMCs as biomarker for identify-

ing solid tumors at an early stage. This approach has not yet been popularized and requires for-

mal and independent validation. Nonetheless, we hope to continue this research on the basis

of our results.

Conclusions

ANXA1 is involved in the immunosuppressive mechanism of tumor-bearing hosts and can be

used as a new strategy involving the use of the host’s own immunity to achieve tumor suppres-

sion. IFI44, IFI44L and OAS1 are potential diagnostic biomarkers, though the results for these

genes were not as remarkable as those for ANXA1. However, our study mainly describes the

variation in ANXA1 in several solid cancers, and the inclusion of more cancer types and appli-

cation of further experiments for validation are needed.
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