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Abstract: This paper presents a novel method for nonprehensile manipulation of parts on a circularly
oscillating platform when the effective coefficient of dry friction between the part and the platform
is being dynamically controlled. Theoretical and experimental analyses have been performed to
validate the proposed method and to determine the control parameters that define the characteristics
of the part’s motion. A mathematical model of the manipulation process with dynamic dry friction
control was developed and solved. The modeling showed that by changing the phase shift between
the function for dynamic dry friction control and the function defining the circular motion of the
platform, the part can be moved in any direction as the angle of displacement can be controlled in a
full range from 0 to 2π. The nature of the trajectory and the mean displacement velocity of the part
mainly depend on the width of the rectangular function for dynamic dry friction control. To verify the
theoretical findings, an experimental setup was developed, and experiments of manipulation were
carried out. The experimental results qualitatively confirmed the theoretical findings. The presented
analysis enriches the classical theories of nonprehensile manipulation on oscillating platforms, and
the presented findings are relevant for mechatronics, robotics, mechanics, electronics, medical, and
other industries.

Keywords: nonprehensile manipulation; dry friction; vibration and control; oscillating platform;
planar motion

1. Introduction

Two-dimensional manipulation and transportation of various objects are commonly
used in many fields such as research, various industries, and medicine. There are many
processes in manufacturing where objects/parts require sorting, positioning, transporta-
tion, orientation, classification, and/or assembly. These tasks can be carried out using
either prehensile or nonprehensile methods. Prehensile methods usually involve grasping
by some sort of grippers. In the case of nonprehensile manipulation, the parts to be ma-
nipulated are subjected only to unilateral constraints, e.g., placing an object on a platform.
Nonprehensile manipulation methods have a lot of advantages, such as when there is no
involvement of gripping, picking up, or other type of force or form closure, the stress on
the part is minimum, workspace can be large, and lower operational times are required. A
major advantage of nonprehensile manipulation is that it can be achieved with relatively
simpler technological equipment.

Parts on a horizontal platform can be moved by various means. For example, this can
be performed by using parallel manipulators [1–4] by applying piezoelectric or electromag-
netic actuated planar micromanipulators [5–8], by pushing with robot end-effectors [9–11],
by transporting with devices which move together with the parts to be displaced (e.g.,
mobile robots) [12–14], by employing actuator arrays under a flexible surface [15], by
applying acoustic manipulation techniques [16–19], etc.

Methods utilizing vibrations are very versatile as they can be applied to manipulate
objects of various sizes (ranging from nano/micro scale to heavy parts). Additionally,
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these methods can be applied to manipulate high temperature parts at contaminated
environments, and they are suitable for individual parts and bulk materials. Moreover,
they do not require expensive and complex equipment. Therefore, these methods are being
extensively studied in scientific literature and applied in industrial practice [20].

There were many attempts to employ flexural vibrations induced in vibrating plates for
nonprehensile manipulation task as the position and orientation of the particle can be con-
trolled depending on the node shapes of the plate induced by particular frequencies [21–25].
However, these methods are mostly suited for manipulating micro-scale particles.

Frictional forces play a major role in nonprehensile manipulation methods that employ
vibrating platforms. To make a part move on an oscillating platform, an asymmetry
must exist to ensure that net friction forces over one oscillation cycle do not cancel out.
Frei et al. [26] demonstrated that friction forces can be employed to move parts along a
horizontal platform by vibrating the platform with two degrees of freedom. The horizontal
and vertical oscillations were excited to generate a system asymmetry causing a non-
zero resultant net friction force. By placing some small actuator cells next to each other,
individual trajectories can be imposed on multiple parts. However, it requires a large
array of lots of individual actuator cells, and achievable trajectories are limited to the
geometrical parameters of the cells. Umbanhowar et al. [27] studied the role of anisotropic
friction of textured surfaces such as micro-machined silicon and fabrics and showed that
the asymmetry due to direction-dependent surface friction properties can be used in
conjunction with an asymmetrically oscillating platform to help design friction-induced
velocity fields on the surface of the plate, which can be employed for manipulation tasks.

Mayyas [28] analyzed the stick-slip dynamics of a part moving on an oscillating
platform, intended to be used for two-dimensional manipulation. A temporal system
asymmetry (also called time-asymmetry, it occurs when the forward and reverse motion
have different speeds) was applied, and the part’s motion forward was possible when the
platform acceleration in the forward direction generated an inertial force, which was lower
than the friction force, or the backward acceleration generated an inertial force, which
was higher than the friction force. A vibrating platform actuated by one actuator via a
mechanism comprised of an active joint and a passive viscoelastic joint was proposed for
manipulation tasks by Higashimori et al. [29]. In this case, omnidirectional nonprehensile
manipulation was implemented by controlling the orientation and shape of the spatially
asymmetric vibrational orbit of the platform by changing the frequency and offset angle of
the sinusoidal displacement input to the actuator.

Reznik et al. [30] studied body motion on a vibrating platform by applying asymmetric
excitation. The motion of parts along a straight-line trajectory was achieved through this
temporal asymmetry. Reznik et al. [31] proposed a method of nonprehensile manipulation
on a platform excited by several actuators in an asymmetric manner to create average
frictional force fields. This asymmetric excitation allowed them to move several parts
individually. Viswarupachari et al. [32] investigated the directional motion of a part over
a flat horizontal rigid platform vibrating asymmetrically. The directional movement was
feasible as their system exhibited both the spatial asymmetry and the temporal asymmetry.
A nonprehensile manipulation method employing a horizontal oscillating platform was
investigated by Liutkauskienė et al. [33]. The dynamic directionality necessary for the part’s
motion was accomplished through the asymmetry created as different frequencies with a
phase shift were excited for the x and y directions of the platform. This sort of excitation
eliminates the spatial symmetry. It was observed that the part can be moved along a
defined trajectory by controlling the frequencies and the phase shift. A vibrating trough
with finlike asperities was employed for handling of granular materials by Chen et al. [18].
The directional movement of the material was caused by the force asymmetry generated
by the finlike asperities.

Fedaravičius et al. [34] proposed a vibrational transportation method by creating a
frictional system asymmetry. Parts were transported along a straight line on a platform
subjected to horizontal harmonic oscillations while manipulating with the friction force by
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periodically exciting additional vibrations in the contact zone. Dunst et al. [35] proposed a
method for handling of dry fine powders by employing coordinated manipulations of ef-
fective friction. A pipe subjected to axial low frequency vibrations was applied for powder
handling. The dynamic manipulations with the effective friction force were carried out by
periodically exciting radial high frequency vibrations of the tube. This technique demon-
strated an increased flowability, decreased adhesion, and lower agglomeration degree.

The literature review showed that an asymmetry is a necessary condition to achieve
the part’s motion on a periodically oscillating platform. Temporal, spatial, or force asymme-
tries are commonly used in nonprehensile manipulation systems that utilize vibrations. The
novelty of this work is that a horizontal platform subjected to circular oscillating motion is
employed for omnidirectional nonprehensile manipulation while other systems employ
other types of oscillating motion, and a frictional asymmetry is created by dynamically
controlling the effective dry friction between the part and the platform instead of temporal,
spatial, or force asymmetries that are commonly used in other nonprehensile manipulation
methods that utilize vibrations. The effective friction force can be reduced by exciting high
frequency vibrations [36–40]. Therefore, the effective dry friction force can be dynamically
reduced in a predefined manner in respect of the period of the circular motion of the plat-
form by periodically exciting high frequency vibrations in the contact zone. The purpose of
the presented analysis is to propose a method of nonprehensile manipulation employing
dry friction control and to determine the parameters that define the characteristics of the
part’s motion.

2. Theoretical Analysis
2.1. Dynamics of Manipulation Employing Dry Friction Control

The dynamic model of manipulation of a part on a circularly oscillating platform
using dry friction is shown in Figure 1.
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Figure 1. Dynamic model of nonprehensile manipulation on a circularly oscillating platform with
dry friction control: (1) part; (2) platform; (3) piezoelectric actuator.

The manipulation system consists of a horizontal platform excited in two perpendicu-
lar directions by harmonic excitation with a phase shift:{

ξ = ξ0 + Ae cos ωt,

η = η0 + Ae cos(ωt + ε),
(1)

where t is time, Ae is the excitation amplitude (the radius of the circular motion), ω is the
angular frequency of the circular excitation, and ε is the phase shift between the harmonic
waves along the ξ and η axes (it is equal to π/2 for circular motion).
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It is assumed that the part is flat, and the mass of the part is concentrated in the mass
center. When the part is sliding in respect to the platform, the projections the acceleration
of the mass center are written as follows: aξ =

..
x +

..
ξ =

..
x− Aeω2 cos ωt,

aη =
..
y +

..
η =

..
y− Aeω2 cos(ωt + ε).

(2)

The part’s motion on the platform is influenced by the dry friction force Ffr that acts

opposite to the relative velocity expressed as
√

.
x2

+
.
y2. The projections of the dry friction

force are written as follows:
Ff r ξ = −µ(ωt)mg cos

(√
.
x2

+
.
y2, x

)
= −µ(ωt)mg

.
x√

.
x2
+

.
y2

,

Ff r η = −µ(ωt)mg cos
(√

.
x2

+
.
y2, y

)
= −µ(ωt)mg

.
y√

.
x2
+

.
y2

.
(3)

Then, the following equilibrium can be written:{
maξ = Ff r ξ ,
maη = Ff r η .

(4)

Inserting Equations (2) and (3) into Equation (4), the equations of motion of the part
on the platform are written as follows:

..
x + µ(ωt)g

.
x√

.
x2
+

.
y2

= Aeω2 cos ωt,

..
y + µ(ωt)g

.
y√

.
x2
+

.
y2

= Aeω2 cos(ωt + ε),
(5)

where µ(ωt) is the rectangular function for dynamic dry friction control.
The effective dry friction coefficient is being controlled in respect of the period of the

function defining the circular motion of the platform by the following rectangular function:

µ(ωt) =

{
µ2, when φ + 2πn < ωt < φ + ∆τ + 2πn,

µ1, for all other ωt values,
(6)

where n = (0, 1, 2, . . . ), µ1 is the nominal dry friction coefficient between the platform
surface and the part, µ2 is the dynamically reduced effective dry friction coefficient, φ is the
phase shift between the function for dynamic dry friction control and the function defining
the circular motion of the platform, ∆τ is the width of the rectangular function for dynamic
dry friction control (Figure 2).

The parameter ∆τ can also be viewed as a fraction of the period of the circular
oscillations where the effective dry friction coefficient is reduced (becomes equal to µ2).
The principle of dynamic dry friction control is presented in Figure 2. As it was discussed
earlier, a dynamic reduction in the effective dry friction coefficient can be performed by
exciting high frequency vibrations between the platform and the part.
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Figure 2. Principle of dry friction control in respect of the period of the function defining the circular
motion of the platform.

2.2. Modeling Results

A numerical modeling of part manipulation was carried out. The modeling software
was developed in the MATLAB (MathWorks, Natick, MA, USA) programing language and
the motion equations were solved numerical by using the Runge-Kutta ordinary differential
equation solver ode45s with an adaptive time-stepping scheme. A maximum integration
step time of 10−4 s was defined to ensure numerical stability of solution at every time step.
The absolute and relative tolerance of the solver was set to 10−6. These parameters yielded
stable and reliable results of the analyzed problem at a reasonable simulation time.

When the platform circularly oscillates in the horizontal plane, and the dry friction is
constant, the part can be moved at some distance initially in a spiral or wavy trajectory,
depending on the excitation parameters. However, eventually the part starts to oscillate
around the point of equilibrium in a circular trajectory (Figure 3, as µ = const) [41]. To make
the part move along a prescribed direction, it is necessary to create a system asymmetry. In
this research, a frictional system asymmetry is proposed when the effective coefficient of
dry friction is being dynamically reduced for some fraction of the period of the circular
platform’s oscillations. In this case, the part continues to be moving (Figure 3, as µ 6= const).
This sort of dynamic dry friction control allows one to control the motion of the part as well.
The nature of the part’s motion depends on the dry friction control parameters (Figure 4).
Therefore, this technique can be applied for conveying and nonprehensile manipulation
tasks, as parts can be displaced at any distance and in any direction. The trajectories of the
part after 3 circular oscillation cycles are presented in Figure 3.
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Figure 3. Displacement of the part when µ1 = 0.122, µ2 = µ1/8, g = 9.81 m/s2, Ae = 0.31 mm, ω = 62.8 rad/s, ε = π/2, φ = 0,
∆τ = π/4: (a) displacement vs. time and the effective dry friction coefficient vs. time; (b) motion trajectory of the part and
the angle of displacement α.
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(2) Ae = 0.31 mm, and (3) Ae = 0.32 mm; (a) φ = 0, ∆τ = π/10; (b) φ = 0, ∆τ = π/4; (c) φ = 11π/9, ∆τ = π/4; and (d) φ = 17π/9,
∆τ = π/4.

In this research, the covered distance was considered to be the strait line connecting
the starting point P1 and the ending point P2 of the trajectory (Figure 3b). The displacement
angle α is considered to be an angle between the horizontal and the covered distance
(Figure 3b).

The modeling of the manipulation process with dry friction control showed that both
the direction and the velocity of the motion of the part can be controlled over a wide range
by changing φ and ∆τ. It was found that the nature of the trajectory of the part’s motion
mainly depends on ∆τ (Figure 4a,b). When ∆τ increases, a higher system asymmetry is
created, and due this reason the displacement of the part increases at the same number of
circular oscillation cycles, since the trajectory becomes less circular (more stretched).

The angle of displacement mainly depends on the phase shift φ (Figure 4c,d). The
angle of the net force vector affecting the part per cycle is influenced by φ since the function
for dynamic dry friction control that causes the frictional system asymmetry is shifted by φ
from the function defining the circular motion of the platform.

The angle of displacement α can be controlled in a full range from 0 to 2π by changing
the phase shift φ (Figure 5). Figure 5 also demonstrates how the nature of the trajectory
is being controlled by changing ∆τ. At a lower ∆τ value (∆τ = π/6), the displacements
are significantly lower, and the trajectories are more circular (Figure 5a) compared to the
trajectories with a higher ∆τ (∆τ = π) presented in Figure 5b. Higher levels of the system
asymmetry create higher net forces affecting the part per cycle, resulting in a displacement.
Due to this and since ∆τ is associated with the level of the asymmetry of the analyzed
system, the trajectories at the higher value of ∆τ are less stretched and the displacements
are significantly higher in Figure 5b.
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Figure 5. Trajectories of the part at different values of the phase shift φ when µ1 = 0.12, µ2 = µ1/8, g = 9.81 m/s2, Ae = 0.28 mm,
ω = 62.8 rad/s, ε = π/2, (1), φ = 0, (2), φ = π/4; (3), φ = π/2; (4), φ = 3π/4; (5), φ = π; (6), φ = 5π/4; (7), φ = 3π/2; (8), φ = 7π/4:
(a) as ∆τ = π/6; (b) as ∆τ = π.

The influence of the system parameters on the mean displacement velocity v of the
part was determined. The mean displacement velocity v was calculated by dividing the
covered distance after 20 circular oscillation cycles by the traveling time. As ∆τ increases
up to 3π/2, the mean displacement velocity v also increases (Figure 6a). This is attributed to
a higher asymmetry of the system. However, a further increase in ∆τ results in a decrease
in v (Figure 6a), since the system asymmetry starts to decrease with a further increase in
∆τ in this range.
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Figure 6. Mean displacement velocity depending on: (a) ∆τ when µ2 = µ1/8, g = 9.81 m/s2, Ae = 0.28 mm, ω = 62.8 rad/s,
ε = π/2, φ = 0; (b) µ1/µ2 when µ1 = 0.1, g = 9.81 m/s2, ω = 62.8 rad/s, ε = π/2, φ = 0, ∆τ = π/6; (c) circular excitation
amplitude Ae when µ1 = 0.1, µ2 = µ1/8, g = 9.81 m/s2, ε = π/2, φ = π/2, ∆τ = 2π/3; (d) circular excitation frequency ω

when µ2 = µ1/8, g = 9.81 m/s2, ε = π/2, Ae = 0.28 mm, φ = π/2, ∆τ = 2π/3.
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Figure 6b shows how v depends on the ratio of the nominal dry friction coefficient
µ1 to the reduced effective dry friction coefficient µ2. The ratio µ1/µ2 has a significant
influence on the mean displacement velocity v. As µ1/µ2 increases, the displacement
velocity v increases as well (Figure 6b). This is also attributed to a higher asymmetry of the
system as higher µ1/µ2 ratios results in a higher level of the system asymmetry. The mean
displacement velocity v increases as Ae increases (Figure 6c). Similarly, as ω increases, v
increases as well (Figure 6d) due to a higher angular velocity of the platform. Also, higher
v values were observed at lower µ1 values (Figure 6b,d). The modeling revealed that v
does not depend on the phase shift φ.

The modeling showed that the displacement angle α varies in a full range from 0 to 2π
depending on the phase shift φ. A linear relation between α and φ was observed (Figure 7a).
It was demonstrated that ∆τ has some influence on the displacement angle α (Figure 7b).
As ∆τ increases, α slowly decreases. Sudden changes in α depicted in Figure 7a,b is due
to the fact that the zero value of the angle (the horizontal) is crossed (Figure 4d). The
ratio µ1/µ2 does not have a high influence on the displacement angle α. Figure 7c shows
the influence of the circular excitation amplitude on the displacement angle α. At higher
amplitudes (higher than 1 mm), a negligible influence of Ae on the displacement angle α

was observed (Figure 7c). Similar processes were observed as the angular frequency of
the circular excitation was varying (Figure 7d). The modeling demonstrated that the ratio
µ1/µ2 does not have a high influence on the displacement angle α.
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3. Experimental Analysis
3.1. Methodology

An experimental analysis of manipulation of parts on a horizontal circularly oscillating
platform with dynamic dry friction control was carried out to verify the theoretical findings.
To control the effective dry friction dynamically in respect of the period of the circular
excitation, high frequency vibrations were applied. The scheme of the mechatronic system
used for the experiments is presented in Figure 8a, and a general view of the experimental
platform for nonprehensile manipulation with dry friction control is presented in Figure 8b.
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friction control: (a) scheme where (1) part to be manipulated; (2) platform; (3) elastic rods; (4) piezoelectric actuator;
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camera; (14) computer; (b) general view of the platform for nonprehensile manipulation with dry friction control.

The setup consists of a part (1) to be manipulated which is placed on a platform
(2) mounted on four elastic rods (3) (Figure 8a). The upper part of the platform is made
of duralumin, and its upper surface is polished to an average surface roughness of about
0.4 µm. A piezoelectric actuator (4) is mounted between the upper and lower parts of
the platform. An electric motor (5) with an eccentric mechanism (6) is attached to the
lower part of the platform. The electric motor is powered by a direct current power supply
(7) (HY3002-2, Mastech, Shenzhen, China). Circular oscillations of the platform are excited
by the eccentric mechanism.

The phase of the circular excitation is monitored by an optical reference sensor (8) (P–
95, Brüel and Kjær). The signal of the optical reference sensor is processed by a vibration
analyzer (9) (Vibrotest 60, Brüel and Kjær, Nærum, Denmark). The signal of high-frequency
excitation for the piezoelectric actuator is generated by an arbitrary waveform generator
(11) (DG4202, RIGOL, Beijing, China) and amplified by a piezo linear amplifier (11) (EPA-
104, Piezo Systems Inc., Cambridge, MA, USA). The signal for the piezoelectric actuator
is composed of high frequency pulse sequences, which are synchronized in respect to the
phase of the circular excitation. Similarly, like it is shown in Figure 2, the piezoelectric
actuator is activated for a fraction of ∆τ in each period of the circular excitation of the
platform with a phase shift of φ. The frequency of the high-frequency excitation for the
piezoelectric actuator was 5890 Hz. The piezoelectric actuator was periodically exciting
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vertical vibrations of the platform’s upper surface with an amplitude of 0.5 µm. When
the piezoelectric actuator is activated, the effective friction force is reduced as a result
of the dynamic processes, which occur in the contact between the part and the platform.
Employing this technique, the effective dry friction force between the part and the platform
can be dynamically controlled in a predefined manner. The output from the optical
reference sensor as well as the signal for the piezoelectric actuator generator are monitored
by a digital oscilloscope (12) (DS1054, RIGOL).

A high-speed camera (13) (Phantom v711, 1280 × 800 CMOS sensor, 1 Mpx, 20 µm
pixel size) was used to record the displacement of the part. The camera was equipped with
a Canon MP-E 65 mm f/2.8 1-5x Macro Lens. The camera was controlled by a computer
(14). To digitize the displacement of the part, a video processing program was developed,
employing the normalized cross-correlation approach.

3.2. Experimental Results

Using the mechatronic system shown in Figure 8, experiments of the proposed method
employing dynamic dry friction control were carried out manipulating a cylindrical silver-
coated part (φ6 × 0.8 mm, 0.201 g).

The experiments verified the theoretical findings and demonstrated that the angle of
displacement α can be controlled by changing the phase shift φ (Figure 9a). A comparison
between the modeling and experimental results was made. The dependency of α on φ
obtained by the model showed a good agreement with the experimental values (Figure 9a).
Figure 9b shows a comparison of the experimental and modeling results of the displacement
angle α depending on ∆τ. The experimental results confirmed that ∆τ has a less significant
influence on α (Figure 9b). The modeled dependence of α depending on ∆τ also showed a
good agreement with the experimental values.
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Experimental and modeling results of v vs. ∆τ are shown in Figure 10. In the analyzed
range, an increase in the mean displacement velocity v was observed as ∆τ was increasing.
A comparison between the modeling and the experiments also showed a good agreement.
This confirms the theoretical findings and demonstrates how the mean displacement
velocity depends on the level of the system asymmetry.
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when µ1 = 0.1, µ2 = µ1/8, g = 9.81 m/s2, Ae = 0.28 mm, ω = 62.8 rad/s, ε = π/2, φ = 0.

Figure 11 shows part’s trajectories at various φ and ∆τ values captured during the
experiments. The trajectories demonstrate how the part is directed towards any direction
by changing the phase shift φ. Figure 11 also demonstrates that the part is displaced further
under higher ∆τ values, after the same number of circular oscillation cycles. This nature of
the part’s motion was close to the one observed in the modeling results.
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4. Conclusions

A novel method of nonprehensile manipulation of parts on a horizontal platform
oscillating in circular motion with dynamic friction control is proposed.

A mathematical model of the proposed manipulation method was developed and
solved numerically to provide a theoretical verification of the functionality of the proposed
method as well as determine the control parameters that define the motion characteristics.
The modeling results showed that by changing the phase shift φ between the function for
dynamic dry friction control and the function defining the circular motion of the platform,
the part can be moved in any direction as the angle of displacement can be controlled
in a full range from 0 to 2π. The nature of the trajectory of the part’s motion mainly
depends on the width ∆τ of the rectangular function for dynamic dry friction control. This
parameter can be associated to the level of the system asymmetry. When ∆τ increases, the
displacement of the part increases at the same number of circular oscillation cycles, since
the motion trajectory of the part becomes less circular (more stretched). Also, the mean
displacement velocity v increases as ∆τ increases. This is attributed to a higher asymmetry
of the system. However, when a critical value of ∆τ is exceeded, v starts to decrease since
the system asymmetry becomes lower again.
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To verify the theoretical findings, an experimental setup for manipulation of parts on a
horizontal circularly oscillating platform with dynamic dry friction control was developed
and manufactured. The experimental results qualitatively confirmed the theoretical find-
ings as the dependencies of α on φ, α on ∆τ, and v on ∆τ obtained by the model showed a
good agreement with the experimental values. The experimentally captured nature of the
part’s motion was close to the one observed in the modeling results.

The research results demonstrate that the proposed method of creating a frictional
system asymmetry by employing dynamic dry friction control can be applied for conveying
and omnidirectional nonprehensile manipulation tasks. As the technical equipment for
the implementation of this method is relatively simple and compact, from the practical
point of view, this method is very versatile and can be used in various environments with
objects/parts of various sizes.

The presented analysis enriches the classical theories of nonprehensile manipulation
on oscillating platforms, and the presented findings are relevant for mechatronics, robotics,
mechanics, electronics, medical, and other industries.
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