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Abstract
This study tested the hypothesis that analyzing longitudinal item scores of the Unified 
Parkinson's Disease Rating Scale could allow a smaller trial size and describe a drug's 
effect on symptom progression. Two historical studies of the dopaminergic drug rop-
inirole were analyzed: a cross-over formulation comparison trial in 161 patients with 
early-stage Parkinson's disease, and a 24-week, parallel-group, placebo-controlled ef-
ficacy trial in 393 patients with advanced-stage Parkinson's disease. We applied item 
response theory to estimate the patients’ symptom severity and developed a longitu-
dinal model using the symptom severity to describe the time course of the placebo 
response and the drug effect on the time course. Similarly, we developed a longitudi-
nal model using the total score. We then compared sample size needs for drug effect 
detection using these two different models. Total score modeling estimated median 
changes from baseline at 24 weeks (90% confidence interval) of −3.7 (−5.4 to −2.0) 
and −9.3 (−11 to −7.3) points by placebo and ropinirole. Comparable changes were 
estimated (with slightly higher precision) by item-score modeling as −2.0 (−4.0 to 
−1.0) and −9.0 (−11 to −8.0) points. The treatment duration was insufficient to es-
timate the symptom progression rate; hence the drug effect on the progression could 
not be assessed. The trial sizes to detect a drug effect with 80% power on total score 
and on symptom severity were estimated (at the type I error level of 0.05) as 88 and 
58, respectively. Longitudinal item response analysis could markedly reduce sample 
size; it also has the potential for assessing drug effects on disease progression in 
longer trials.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Large trials are required for detecting drug effects on the symptoms of Parkinson's 
disease, as measured by the total score of the Unified Parkinson's Disease Rating 
Scale instrument. Differentiating disease-modifying drugs from symptom-relief 
drugs is a major challenge.

http://www.psp-journal.com
https://doi.org/10.1002/psp4.12601
https://orcid.org/0000-0002-9791-4727
https://orcid.org/0000-0001-8240-0865
https://orcid.org/0000-0001-9841-2342
mailto:﻿
https://orcid.org/0000-0002-2255-3904
https://orcid.org/0000-0003-1258-8297
http://creativecommons.org/licenses/by-nc/4.0/
mailto:elodie.plan@farmaci.uu.se


310  |      CHEN et al.

INTRODUCTION

Parkinson's disease (PD) affects approximately 1% of the 
population aged older than 65  years.1 It is a slowly pro-
gressive neurodegenerative disease manifested by a broad 
range of symptoms.2 Diagnosis occurs with the onset of 
motor symptoms, for example, bradykinesia, muscular ri-
gidity, rest tremor, and postural and gait impairment, but 
the disease begins years before diagnosis, with nonmotor 
symptoms such as constipation and rapid eye movement 
sleep behavior disorder. Following diagnosis, additional 
nonmotor features such as pain, fatigue, and mild cognitive 
impairment develop. In advanced PD, further motor and 
nonmotor symptoms develop, for example, postural insta-
bility with frequent falls, freezing of gait, urinary symp-
toms, orthostatic hypotension, and dementia. Accordingly, 
patients experience increasing clinically significant dis-
ability over time as a result of symptoms and long-term 
complications of dopaminergic therapy, including fluctua-
tions, dyskinesia, and psychosis.2 Available treatments re-
lieve symptoms without clear evidence of reducing the rate 
of disease progression.3

The most widely used clinical measurements to quantify 
the disability and impairment of patients with PD over time are 
the Unified Parkinson's Disease Rating Scale (UPDRS) and, 
lately, the newer version, the Movement Disorder Society–
sponsored revision of the UPDRS (MDS-UPDRS).4,5 The 
scales assess the consequences of the disease in areas such 
as mental status, daily living, motor functionality, treatment 
complications, and adverse effects by scoring 44 questions 
(items) mostly from 0 to 4, with higher scores reflecting more 
severe disease. The items are composed of the following 
components: (I) mentation, behavior, and mood; (II) activ-
ities in daily living; and (III) motor examination (including 
left/right assessment).

The common approach for evaluating treatment effects is 
to analyze the sum of all item scores, that is, the total score. A 
key assumption for this approach is that all items have equal 

importance in reflecting the overall disability.6 In contrast, 
item response theory (IRT) offers an alternative. It estimates 
a patient's disease severity (or disability level) as a latent 
variable directly from the item level scores and with the ac-
knowledgment that each item bears varying importance for 
informing the disease severity. Several pharmacometric mod-
els applying IRT for disease areas using composite scales have 
been developed,7–12 and a comprehensive tutorial presenting 
the framework of the IRT in the pharmacometric context is 
available.13 Simulations using the UPDRS and Alzheimer's 
Disease Assessment Scale–Cognitive Subscale (a standard 
efficacy end point for clinical trials in Alzheimer's disease) 
have shown promising evidence that longitudinal modeling 
of a composite end point analyzed using IRT could enhance 
the study power.7,12

The efficacy of an investigative drug is typically as-
sessed using the end-of-treatment observations in a placebo-
controlled study. However, multiple assessments made 
during the treatment present an opportunity for longitudinal 
analysis to describe the time course of treatment response, 
which can be important for understanding whether a drug 
slows down the disease progression. Longitudinal modeling 
is also advocated by the pharmacometric community and 
supported by regulatory bodies for its potential to enhance 
trial efficiency.14–16

In a previous report of simulation-based longitudinal 
modeling of PD, where IRT analysis demonstrated the po-
tential for higher study power than total score analysis, a 
hypothetical drug effect was assumed to reduce the linear 
disease progression with an immediate onset, and the pla-
cebo effect was not accounted for.7 Because a drug effect 
typically takes time to be observed and a placebo effect 
is inevitable in clinical trials, it is useful to capture these 
aspects in a trial simulation. Furthermore, in the previ-
ous report, the total score was derived from item scores 
that were simulated from the item response model (IRM); 
as such, the comparison could potentially favor the IRT 
analysis.

WHAT QUESTION DID THIS STUDY ADDRESS?
To what extent can analyzing item scores, instead of the total score, reduce the sample 
size of placebo-controlled trials?
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
Longitudinal modeling showed an approximately 30% sample-size reduction for de-
tecting the treatment effect observed in a placebo-controlled trial of ropinirole.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, AND/
OR THERAPEUTICS?
Item-score analysis, where applicable, can reduce the time and cost of developing 
drugs for Parkinson's disease. Used in the longitudinal modeling of trials of adequate 
duration, it also has the potential to more efficiently estimate a drug's effect on the 
symptom progression rate.
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Given this background, we explored a framework of lon-
gitudinal modeling for understanding the time course of the 
drug effect (symptom and slowdown of disease progression) 
and placebo effect on PD and compared the study power 
of two longitudinal modeling approaches—analyzing total 
score versus disease severity estimated by IRT—using his-
torical clinical trial data.

METHODS

Studies analyzed

We used the UPDRS data from two published studies of 
ropinirole, a nonergot dopamine agonist. One was a cross-
over comparison of immediate-release and extended-
release formulations in patients with early-stage PD,17 
and the other was a parallel comparison of ropinirole to 
placebo as an adjunct therapy to levodopa (l-dopa) in 
patients with advanced-stage PD at individually titrated 
doses between 6 and 24  mg/day, where symptoms were 
measured at 11 visits over 24 weeks starting from base-
line.18 The analysis included the baseline data from the 

first trial and all data from the second trial. The postbase-
line data from the first trial were not included; the lack 
of placebo arm made those data unsuitable for comparing 
the time course between the drug and placebo treatments. 
Both trials were approved by the relevant institutional re-
view boards. Details on study designs, inclusion/exclu-
sion criteria, and assessment schedules were reported in 
the original publications.17,18 For summaries of patient 
characteristics and the data included in the current analy-
sis, see Table 1.

Pharmacometric analyses

Initially, we developed two longitudinal models to describe 
the placebo/drug treatment effects in the advanced-PD study 
on UPDRS total scores (total score model [TSM]) and on 
the disease severity estimated using the IRT (IRM). Based 
on these models, we performed simulations investigating the 
power for detecting the drug–placebo treatment difference. 
Model estimation and simulations were performed by means 
of nonlinear mixed effect modeling using NONMEM ver-
sion 7.3.19,20

T A B L E  1   Summary of patient characteristics and data used

Patient baseline characteristics

Age, years, mean 
(min-max)

Weight, kg, mean 
(min-max) Sex, count

Prior concomitant drugs, count

Selegiline Amantadine Anticholinergics Levodopa

Early PD, N = 161 61 (37–84) 77 (50–137) Female 70
Male 91

No 114
Yes 47

No 132
Yes 29

No 143
Yes 18

No 161
Yes 0

Advanced PD, N = 391 66 (34–87) 74 (42–144) Female 145
Male 246

No 302
Yes 89

No 300
Yes 91

No 381
Yes 10

No 0
Yes 391

UPDRS item score dataa

Early-PD study, N = 161 Advanced-PD study, N = 391

Baseline Baseline placebo Baseline ropinirole Longitudinal placebo Longitudinal ropinirole

N n N n N n N n N n

161 7004 190 8330 201 8765 189 22,882 200 25,186

UPDRS total score dataa

Early-PD study, N = 144 Advanced-PD study, N = 389

Baseline Baseline placebo Baseline ropinirole Longitudinal placebo Longitudinal ropinirole

N n N n N n N n N n

144 144 179 179 185 185 187 484 199 542

The analysis included baseline data from the early-PD study, and both baseline and longitudinal data from the advanced-PD study. The total score is the sum of the 
scores of 44 items.
Abbreviations: max, maximum; min, minimum; PD, Parkinson’s disease; UPDRS, Unified Parkinson's Disease Rating Scale.
aN = number of patients; n = number of item scores.
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Item response model

The methodology for applying the IRT to pharmacometric mod-
eling has been described previously in detail.13 The UPDRS is 
designed to measure the PD disease severity through the individ-
ual item scores, and the IRT is well suited for the analysis of such 
composite scale data. Essentially, the more severe a patient's con-
dition is, the more likely the patient would have a higher score 
for an item in the instrument (e.g., 0, 1, 2, etc. for normal, mild, 
moderate, etc., respectively). In other words, the probability for a 
patient to have a certain score on a given item is a function of that 
patient's disease severity. The IRT thus uses the probability func-
tions for all scores of all items collectively to estimate the disease 
severity for each patient at a given time. We applied a previously 
reported IRT model for UPDRS, which was developed using the 
baseline and placebo data from the two studies included here. 
The model included three latent severity variables reflecting cer-
tain aspects of the symptom severity and estimated through items 
that were (i) patient reported (items 1–17), (ii) clinician assessed 
and nonsided (items 18, 19, 20, 22, 27–31), and (iii) clinician 
assessed and sided (items 20, 21, 22, 23–26, evaluated for the 
right and left sides) for which a mixture component estimated the 
proportion of two subpopulations depending on their more disa-
bled (dominant) side at baseline. Correlations between the latent 
variables were estimated within each study. Further information 
can be found in the original publication.6

Longitudinal models

The conceptual framework guiding this analysis is illus-
trated in Figure 1, which shows the longitudinal models of 

disease progression, the effect of a placebo treatment, the 
effect of drugs that cause symptom relief without affecting 
the progression, and the effect of drugs that slow down the 
progression.

It is well established that the symptom progression of PD, 
as measured by the UPDRS, is approximately linear over 
time over a relatively short period such as the duration of 
a clinical trial.21–23 Many reports have shown that during a 
double-blind trial, the placebo treatment typically improves 
the symptoms to a small extent without altering the progres-
sion rate—effectively causing a slight downward shift of 
the underlying disease progression—and such effect takes 
a short time to stabilize.18,24–26 The onset of this effect was 
modeled as an exponential function of time as supported by 
the data pattern; a greater onset rate meant an earlier achieve-
ment or stabilization of the placebo effect. Equation (1) de-
scribes Symptom in terms of either the UPDRS total score or 
each of the latent symptom severity variables estimated by 
the IRT model, for placebo-treated patient i at time t. In this 
equation, Baseline, Progression rate, Placebo, and Onset rate 
are the baseline, the progression rate over time, the placebo 
effect, and the onset rate of the placebo effect, respectively, 
for patient i.

Conceivably, a drug may relieve the symptoms further, 
also without altering the progression rate. In a placebo-
controlled trial, this drug effect would be reflected by a 
further shift of the time course, compared to the placebo 
effect. Equation (2) describes Symptom, also in terms of 

(1)
Symptom

i
(t)=Baseline+(Progression rate) ⋅ t

+ (Placebo) ⋅
(

1−e
−Onset rate⋅t

)

F I G U R E  1   Longitudinal model with arbitrary scales to illustrate the importance of trial duration for correctly describing drug effects on 
the worsening of a symptom over time. The black dotted line indicates an underlying natural progression, which is not observable in a trial. The 
red line indicates observations for placebo treatment. The purple line indicates observations for symptom-relief agents. The pink line indicates 
observations for the progression slow-down agents. The left panel shows a trial of adequate duration. The right panel shows a shorter trial is 
inadequate for correctly describing these effects
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either the UPDRS total score or each of the latent symp-
tom severity variables estimated by the IRT model, for 
drug-treated patient i at time t. In this equation, Baseline, 
Progression rate, Placebo, Drug, and Onset rate are the 
baseline, the progression rate over time, the placebo effect, 
the drug effect, and the onset rate of the drug effect, respec-
tively, for patient i.

Alternatively, the drug may slow down the progression, 
so patients treated by the drug would show a different under-
lying progression rate while maintaining the placebo effect 
on the symptoms.27 This is described in Equation (3), where 
Drug is the drug effect on the progression rate, and all other 
parameters are the same as in Equation 2.

Therefore, the effect of the symptom-relief drugs is re-
flected as a downward parallel shift from the time course of 
placebo, whereas the effect of the progression-altering drugs 
is reflected as an eventual divergence from the placebo time 
course (Figure 1).

We fitted the longitudinal models described in Equations 
(1) to (3) using both the IRM (where Symptomi represents 
each of the symptom severity variables estimated by IRT) 
and the TSM (where Symptomi represents UPDRS total 
score) to explore whether ropinirole altered the symptom 
progression rate or simply showed greater symptom relief 
than placebo. Description on the individual level was en-
sured through a random effect associated with each of the 
symptom severity variables in the IRM and a random effect 
associated with some of the fixed effect parameters in the 
TSM. The IRM included multiple latent variables estimated 
from different UPDRS items, and we estimated the placebo 
and drug effects on each latent variable separately. The fit 
was performed on all data, the Drug parameter was assumed 
null for the placebo data and estimated for the drug data.

Evaluation of study power

For a comparison of power between the IRM and the TSM, 
we generated the power curves using both longitudinal mod-
els by employing a modified Monte Carlo mapped power 
(MCMP) approach.20,28 Compared with alternative meth-
ods,29,30 the MCMP approach offers greater computational 
efficiency by drawing samples from the results of model fit-
ting to a single (large) dataset, instead of requiring model 
fitting to a large number of sample data sets.

In the MCMP, a stochastic simulation is preceded by the 
estimation of full and reduced models, followed by hypoth-
esis testing using the likelihood ratio test (LRT), where the 
overall likelihood is substituted by the sum of individual con-
tributions to the likelihood. In NONMEM, this corresponds 
to the sum of each individual's contribution to the objective 
function value (iOFV), the OFV being approximately propor-
tional to minus twice the natural logarithm of the likelihood 
of the data.19 In our case, the MCMP was modified such that 
the “observed” iOFVs were used (no simulation) based on 
the real data.

Thus, we fitted two models to the data from both ropinirole-
treated and placebo-treated patients in the advanced-PD tri-
al—a full model that included a drug effect for the ropinirole 
arm and a reduced model not including any drug effect but 
otherwise identical—to generate the iOFV for each patient. 
The difference in iOFV between the full and reduced mod-
els (ΔiOFVs) was calculated for each patient. We then drew 
10,000 treatment-stratified virtual trial data sets of ΔiOFV 
values for a wide range of samples sizes. The LRT was then 
applied to the sum of the ΔiOFVs from all patients in that trial 
(ΣΔiOFVs), which is approximately χ2 distributed. For each 
sample size, the proportion of the virtual trials that showed 
a difference in the ΣΔiOFVs corresponding to p  =  0.05 or 
0.1 for the χ2 distribution would represent the study power at 
that p value. The actual critical ΣΔiOFVs values used in the 
MCMP were derived through the randomization test in Perl 
speaks NONMEM applied to the observed data of the pla-
cebo patients letting them be assigned randomly to active and 
placebo treatments.20,31 The critical values for the IRM were 
11.62 (p = 0.05) and 8.10 (p = 0.1), and the corresponding 
values for the TSM were 4.00 and 2.76.

RESULTS

Understanding the time course of placebo and 
drug effects

When the longitudinal IRM was fitted to the estimated dis-
ease severity, the disease Progression rate could not be 
estimated with adequate precision. This was somewhat ex-
pected because of the short treatment duration of 24 weeks 
and the small data set, considering the slow progression and 
high variability in the data (Figure 2). Effectively, without 
the Progression rate, the model describing the placebo effect 
and drug effect time courses took the form of Equation (4). 
In this model, the placebo produced a gradual effect of symp-
tom relief, and the drug produced a greater relief.

(2)
Symptom

i
(t)=Baseline+(Progression rate) ⋅ t

+ (Placebo + Drug) ⋅
(

1−e
−Onset rate⋅t

)

(3)Symptom
i
(t)=Baseline+(Progression rate + Drug) ⋅ t

+ (Placebo) ⋅
(

1−e
−Onset rate⋅t

)

(4)

Symptom
i
(t) = Baseline + (Placebo + Drug) ⋅

(

1 − e
−Onset rate ⋅ t

)
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The data supported the estimation of separate parame-
ters for the Placebo effect and the Onset rate on the four la-
tent variables (Figure  3). The Placebo effects were −0.167, 
−0.172, −0.300, and −0.059 for the latent variables reflect-
ing patient-reported items, clinician-assessed nonsided items, 
clinician-assessed items on the initially more severe side, and 
clinician-assessed items on the initially less severe side, re-
spectively. The Onset rate of the Placebo and Drug effects for 
these latent variables varied slightly at 0.15 – 0.3 week−1 (0.15, 
0.30, 0.27, and 0.22  week−1 for patient-reported, nonsided, 
initially less-severe side, and initially more-severe side items, 

respectively). The data were insufficient to estimate separate 
Drug effects on the different latent variables; a common symp-
tomatic effect of −0.539 was estimated for all latent variables

Similarly, when the longitudinal TSM was fitted to the 
observed total score data, the Placebo effect was successfully 
estimated, but the disease progression rate could not be de-
scribed (p  >  0.05). The model parameters of Placebo and 
symptom-relief Drug effects were estimated to be −3.7 and 
−6.5 respectively, with an Onset rate of 0.13 week−1.

Both longitudinal TSM and IRM exhibited adequate pre-
dictive performance when compared with the total UPDRS 

F I G U R E  2   Visual predictive checks for total scores simulated from the item response model (upper) and total score model (lower). The lines 
describe the 5th, 50th, and 95th percentiles of the observations; the bands are the model-simulated 90% confidence intervals of the corresponding 
percentiles
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F I G U R E  3   The model-estimated speed and magnitude of change from baseline for the latent variables. See the “Item Response Model” 
section in “Methods” for descriptions of the multiple latent variables
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observations (Figure  2). The TSM-estimated median (90% 
confidence interval) change in total UPDRS at week 24 for 
placebo and ropinirole groups were −3.7 (−5.4 to −2.0) 
and −9.3 (−11 to −7.3), respectively. Similarly, the IRM-
simulated corresponding values were −2.0 (−4.0 to −1.0) 
and −9.0 (−11 to −8.0).

The estimated model parameters with their precision and 
corresponding NONMEM control streams are presented in 
the Supplementary Material.

Evaluation of study power

The sample size comparison for detecting a drug effect by 
the IRM versus the TSM analysis generated by the modi-
fied MCMP, in a parallel study of equal randomization, is 
shown in Figure 4. For the same study power, applying the 
IRM needed fewer patients than applying the TSM. At the 
significance level of 0.05, the sample sizes required for 80% 
power to detect a drug effect by the TSM and IRM were 
found to be 88 and 58 patients (34% smaller for the IRM), 
and the corresponding sample sizes for 90% power would 
be 126 and 90 patients (29% smaller for the IRM). At the 
less stringent significance level of 0.1, the sample sizes re-
quired for 80% power to detect a drug effect by the TSM 
and IRM would be 70 and 48 patients (31% smaller for the 
IRM).

DISCUSSION

There is a pressing need for drugs that can slow down func-
tional deterioration in PD. Differentiating drugs that change 
the disease progression trajectory from drugs that relieve 
the symptoms without altering the progression trajectory 

is a challenge for drug developers and approvers alike. For 
example, there is inconsistent evidence whether l-dopa, 
the standard-of-care pharmacotherapy for PD, slows down 
the disease progression.24 Based on the paradigm shown in 
Figure 1, we conducted longitudinal modeling to test whether 
ropinirole, an approved dopaminergic agent, showed evi-
dence of altering the disease progression rate. Both the lon-
gitudinal TSM and IRM adequately estimated the placebo 
effect and its onset rate. The models also successfully quanti-
fied the magnitude of the drug effect; however, it is important 
to point out that the parameters estimated from the short trial 
in patients with advanced PD may not be applicable to other 
patient populations or trial settings.

Neuroimaging data from patients with PD have suggested 
possible neuroprotection by ropinirole.32 However, neither 
model could estimate the underlying progression rate and 
hence were unable to test whether the drug altered this pro-
gression rate. This was not unexpected: the treatment duration 
was 24 weeks—most likely too short to observe any notable 
progression, as noted by the original trial publication.18

These findings highlighted the importance of the treat-
ment duration: a short trial does not provide enough infor-
mation to describe the underlying progression rate; it could 
even provide misleading information on a placebo or drug 
effect. For example, observations in the early phase of the 
trial for a symptom-relief drug described in Figure 1 might 
erroneously show a divergence between the placebo and 
drug responses, suggesting a change in the progression rate. 
Similarly, observation times are also important for differenti-
ating the nature of the drug effect: infrequent observations in 
the early phase of a trial could also lead to unreliable data for 
this differentiation.33 Crucially, the claim of whether a drug 
changes the disease progression should not rely solely on the 
slope of the symptom progression; it must also be supported 
by biological evidence.33

F I G U R E  4   Power for detecting the drug effect (significance levels 0.1 and 0.05, one degree of freedom) based on analyses using a 
longitudinal item response model or total score model
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The differential progression among different aspects of 
the symptoms in PD is well recognized.21,22,34 It is con-
ceivable that a drug or placebo treatment can relieve the 
symptoms or slow down the progression of these different 
aspects to varying extent. The IRM used in this investi-
gation included multiple latent variables, representing 
patient-reported, nonsided, and sided items.6,8 Data from 
the advanced-PD study suggested that the effect of placebo 
treatment varied for the different latent variables (Figure 3). 
The data could not differentiate the drug effect on the re-
spective latent variables. These observations speak to the 
utility of item response analysis in understanding the dif-
ferentiated symptom profile in an integrated fashion and 
assessing the placebo or drug effect on this profile; they 
also prompt the need for further investigations in larger and 
longer trials in more diverse patients.

Sample size requirement for detecting a drug effect de-
pends on the size of the effect as well as the assessment sched-
ule and duration of the trial. Given the nature of the data set 
that we used—the observed magnitude of symptom relief and 
the observation frequency and schedule—our analysis sug-
gested reduced sample size with the IRM compared with the 
TSM. For example, the sample sizes saving for detecting the 
drug effect with 80% power at p = 0.05 would be 34%.

The potential sample size savings by IRM analysis of PD 
trials has been previously reported.7 Buatois et al.7 built a lin-
ear longitudinal IRM using 48-month MDS-UPDRS observa-
tional (instead of clinical trial) data. They then used the model 
to simulate longitudinal item–level data for a hypothetical drug 
that would reduce the slope of the progression rate, derived 
the total scores from the item scores (in absence of real data), 
and demonstrated notable potential savings in sample size by 
item response analysis compared with total score analysis for 
detecting the effect of a hypothetical drug on the progression 
slope. The exercise did not consider the placebo effect in a trial.

In comparison, the placebo time course captured by our 
model would be essential for simulation-based design of fu-
ture trials: it informs the assessment time requirement for un-
derstanding the nature of the drug effect and for optimizing 
trial efficiency. Furthermore, deriving total scores from an 
IRM and subsequently comparing the efficiency between the 
TSM and the IRM could conceivably bias in favor of the IRM 
approach. Our work using real total score data during both 
placebo and drug treatments in a historical trial conceivably 
allowed a more reliable and fairer sample size comparison 
for the two approaches, complementing and confirming their 
findings.

In summary, this work generated strong evidence that 
item response analysis of the UPDRS could significantly 
reduce the sample size for drug effect detection compared 
with the standard total score approach. We also propose that 
longitudinal modeling could be used to explore whether a 
drug slows down symptom progression. Trials for drugs 

aimed at slowing down neurodegeneration are large and 
lengthy because of slow disease progression, a large placebo 
effect, and high end-point variability. Better understanding 
of these emerging methodologies through broad application 
will be highly valuable in the pursuit of disease-modifying 
treatments, especially benefiting trials for small patient 
populations.
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