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Abstract

Receptor avidity through multivalency is a highly sought-after property of

ligands. While readily available in nature in the form of bivalent antibodies,

this property remains challenging to engineer in synthetic molecules. The dis-

covery of several bivalent venom peptides containing two homologous and

independently folded domains (in a tandem repeat arrangement) has provided

a unique opportunity to better understand the underpinning design of multiva-

lency in multimeric biomolecules, as well as how naturally occurring multiva-

lent ligands can be identified. In previous work, we classified these molecules

as a larger class termed secreted cysteine-rich repeat-proteins (SCREPs). Here,

we present an online resource; ScrepYard, designed to assist researchers in

identification of SCREP sequences of interest and to aid in characterizing this

emerging class of biomolecules. Analysis of sequences within the ScrepYard

reveals that two-domain tandem repeats constitute the most abundant SCREP

domain architecture, while the interdomain “linker” regions connecting the

functional domains are found to be abundant in amino acids with short or

polar sidechains and contain an unusually high abundance of proline residues.

Finally, we demonstrate the utility of ScrepYard as a virtual screening tool for

discovery of putatively multivalent peptides, by using it as a resource to iden-

tify a previously uncharacterized serine protease inhibitor and confirm its pre-

dicted activity using an enzyme assay.
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1 | INTRODUCTION

Multivalency is a common property of biomolecules that
describes the interaction between two molecules through
multiple nonoverlapping binding interfaces. The advan-
tage of multivalency is two-fold (1) higher specificity due
to a larger interaction interface, and (2) enhanced bind-
ing kinetics and thermodynamics that result in high avid-
ity (Mammen et al., 1998; Vauquelin & Charlton, 2013).
Nowhere is this better recognized than in the adaptive
immune system where antibodies use multivalency as a
key mechanism in responding to infections through the
dimeric nature of the antigen recognizing regions and the
symmetry in the Y-shaped structure (Uvyn & De
Geest, 2020). Mimicry of this process has resulted in the
field of antibody therapeutics, which have had a tremen-
dous impact on contemporary pharmaceutical develop-
ment (Miller & Lanthier, 2015). Despite the success of
antibody therapeutics, there are a number of limitations;
these include a requirement of a good (unique and acces-
sible) antigen, relatively poor thermal and chemical sta-
bility, and that antigen recognition may or may not lead
to the desired (or any) functional outcome (Rodgers &
Chou, 2016). Where antibodies are limited, small mole-
cules often excel, with the caveat of poor selectivity that
can potentially lead to serious side-effects. Peptides offer
an attractive middle ground, providing higher specificity
than small molecules due to their larger binding interface
whilst being as functionally potent as antibodies. Indeed,
peptides have received substantial attention over the past
few decades, demonstrating an exceptional capacity for
use as molecular probes which target many therapeuti-
cally relevant biomolecules (Dutertre & Lewis, 2010;
Muttenthaler et al., 2021; Pennington et al., 2018). They
are also increasingly being developed into novel thera-
peutics, with approximately 80 peptide drugs now
approved for use, and over 150 peptides currently under-
going clinical trials (Muttenthaler et al., 2021).

Disulfide-rich peptides (DRPs) have emerged as a par-
ticularly attractive class of peptides due to their covalent
intramolecular disulfide bonds. These bonds act as cross-
braces to increase structural stability and backbone rigid-
ity, resulting in resistances to proteolysis and extreme
physicochemical conditions (i.e., extremes of pH and
temperature) (Gongora-Benitez et al., 2014). The majority
of DRPs characterized to date are highly potent neuro-
toxins isolated from animal venoms and consist of a

single domain (Mobli et al., 2017). However, the thera-
peutic potential of many potent single domain DRPs are
limited due to poor selectivity. For example, the analgesic
potential of several voltage-gated sodium channel inhibi-
tors is overshadowed by their effect on other physiologi-
cally crucial ion channels (Deuis et al., 2017; Zhang
et al., 2018). Interestingly, there are several reports of nat-
urally occurring multi-domain DRPs that display a multi-
valent mode-of-action (Bohlen et al., 2010; Chassagnon
et al., 2017; Guyot et al., 2020; Van de Locht et al., 1995;
Van de Locht et al., 1996). All of these characterized
multi-domain DRPs contain a tandem repeat
(TR) architecture, where the individual domains share
high internal sequence homology. Previous bioinformat-
ics studies of these TR-DRPs revealed that they belong to
the larger molecular class that we have defined as
secreted cysteine-rich repeat proteins (SCREPs) (Maxwell
et al., 2018).

To date, three venom derived TR-DRPs have been
characterized in detail; including two spider derived ion
channel modulating toxins; DkTx (τ-theraphotoxin-Hs1a;
UniProtKB ID P0CH43) from Cyriopagopus schmidti
(Bohlen et al., 2010) and π-hexatoxin-Hi1a (henceforth
Hi1a; UniProtKB ID A0A1L1QJU3) from Hadronyche
infensa (Chassagnon et al., 2017), and the serine protease
inhibitor rhodniin (UniProtKB ID Q06684) from Rhod-
nius prolixus (Van de Locht et al., 1995). All three TR-
DRPs use bivalency—simultaneously binding to two
receptor sites—as a mechanism to enhance and prolong
their pharmacological effects (Bohlen et al., 2010;
Chassagnon et al., 2017; Van de Locht et al., 1995). The
larger interaction interface observed in the bivalency of
SCREPs (Bae et al., 2016; Gao et al., 2016) demonstrates
their capacity for improved target selectivity compared to
their single domain counterparts, such as the improved
selectivity of DkTx compared with τ-theraphotoxin-Pc1b
(Vanillotoxin-2; UniProt ID P0C245) (Bohlen
et al., 2010). This provides an opportunity to leverage
existing knowledge of venom derived DRPs in the search
for peptides with higher specificity toward therapeutic
targets. Additionally, the relatively slow dissociation rates
of bivalent DRPs make them ideal molecular probes for
studying channel structure (Gao et al., 2016).

However, despite their attractiveness, there is cur-
rently no resource designed for mining or browsing
SCREPs. Common databases dedicated to sequence
repeats often focus on genomic DNA sequences (Boby
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et al., 2005; Gelfand et al., 2007; Le Fleche et al., 2001), or
short amino acid repeats (Kalita et al., 2006). For exam-
ple, PRDB (Jorda & Thierry, 2012) defines repeats as
short periodic amino acid sequences that are directly
adjacent to one another, while RepeatsDB (Paladin
et al., 2017) uses structural information obtained from
the Protein Data Bank to define protein repeats. Data-
bases containing large numbers of DRPs such as Cono-
Server (Kaas et al., 2010) and the Knottin database
(Postic et al., 2018) are likely to contain examples of
SCREPs, but they do not include any curation relating to
peptide domain organization (architecture). Here, we
present ScrepYard, an online database of SCREPs
extracted using a refined and automated datamining
pipeline. Open access to this database is provided to facil-
itate discovery and further investigation of SCREPs,
extending the available resources for uncovering the
underlying mechanisms that drive their fascinating mul-
tivalent activity.

2 | DATABASE CONSTRUCTION

The following section will outline the construction of the
ScrepYard database. This process is comprised of three
distinct stages: SCREP datamining, SCREP architecture
annotation, and the upload of data to ScrepYard
(Figure 1).

2.1 | Datamining

2.1.1 | Generating the initial dataset

Three datasets are downloaded from UniProtKB(Bairoch
et al., 2005) (1) those that are manually curated (Swiss-
Prot subset) and non-Swiss-Prot sequences (UniProt-
TrEMBL) that contain either (2) the annotation “signal
peptide” or (3) have a subcellular annotation of
“secreted”. All three datasets are filtered to exclude
sequences with subcellular location annotation of
“intramembrane,” “topological domain,” and “trans-
membrane.” The outputs of the three filters are merged
and used as the initial dataset.

2.1.2 | Data refinement and SCREP
extraction

The initial dataset is subsequently refined by applying a
keyword filter to remove known non-SCREPs based on
their annotations. Currently the keyword list consists of
“intracellular” (Maxwell et al., 2018), “disulfide isomer-
ase” (Wilkinson & Gilbert, 2004), “double CXXCH motif”
(Chivers et al., 1996), “ferredoxin” (Schurmann &
Buchanan, 2008), “sulfur” (Baghshani & Abadi, 2014;
Lill, 2009), “zinc” (Brandt et al., 2009), “iron” (Lill, 2009),
“cytochrome” (Meunier et al., 2004), “thioredoxin”
(Arner & Holmgren, 2000), and “dehydrogenase” (Brandt
et al., 2009). This heuristic approach allows for continual
optimization of the pipeline with the addition of new
keywords as these are identified and ongoing updates to
the database.

After the keyword filter, SignalP [v-5.0 (Armenteros
et al., 2019)] is used to recognize and remove the signal
peptide from each sequence in the dataset, generating
mature protein sequences. In some cases, secreted pro-
teins are sequenced from native material such as venom
secretions, and do not contain a signal peptide region,
for example, the spider toxin DkTx (UniProt ID
P0CH43). Proteins that are not recognized by SignalP
are directly grouped together with the mature
sequences. Finally, the SCREP processing algorithm
(SPA) is applied to remove all sequences that contain
>500 or <20 amino acids (AAs) and sequences that con-
tain <4 cysteine residues. The upper limit is set to avoid
collecting much larger proteins, for example, transmem-
brane receptors, and the lower limit is set to avoid possi-
ble false identification of small non-domain repetitive
elements. All remaining sequences are then processed
to identify regions with internal sequence homology by
use of an iterative BLAST function [see also Maxwell
et al. (Maxwell et al., 2018)].

FIGURE 1 Flowchart outlining the construction of the

ScrepYard database. The process can be divided into three stages,

(1) SCREP datamining (green), (2) SCREP architecture annotation

(purple), and (3) the compiling and upload of SCREP data to

ScrepYard (orange). Key processes for each step shown on the right.
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2.2 | Architecture annotation

2.2.1 | Generation of domain information

The dataset of extracted SCREP sequences requires fur-
ther processing to accurately characterize each SCREP
architecture including the specific domain types occur-
ring in each SCREP, the order in which they appear, the
sequence length of each domain, and the inter-domain
linkers. The first step in SCREP annotation generates
domain information. We utilize InterProScan (v-5.48), a
consortium of several protein databases that predict
domains using sequence-based recognition methods
(Jones et al., 2014). As InterProScan consists of multiple
databases, a single domain may be identified multiple
times with slight differences in domain boundaries. To
refine the InterProScan output data, the series of identi-
fied domains for each SCREP sequence is clustered by
the database used, for example, Pfam, Prosite, and so
on. In each cluster, identified regions are sorted accord-
ing to their start and end positions. If an overlap exists
between annotated domains, preference is given to the
smallest recognized domain. The database-cluster with
the highest number of recognized domains is then
selected as the representative series of domain annota-
tions for the SCREP candidate. If the number of domain
annotations are identical, the database-cluster is selected
according to a database preference list: Pfam (Mistry
et al., 2021) > Prosite (Sigrist et al., 2010) > SMART
(Letunic et al., 2021) > CDD (Lu et al., 2020)
> SUPERFAMILY (Gough et al., 2001). After extracting
the nonredundant domain annotations, each domain
within a SCREP is numbered in sequential order accord-
ing to its location from N- to C-terminus.

2.2.2 | Defining TR architecture

For each SCREP, a series of internal BLAST functions
(default parameter, e-value <10) are performed between
all identified domains to determine interdomain
sequence homology. Domains are defined as TR if a
BLAST alignment can be found between neighboring
domains (e-value <10) or are deemed nonhomologous
(e-values >10) and defined as non-TR (nTR) domains.
After defining the number of domains and whether they
are TR of nTR domains, the SCREP architecture is anno-
tated according to the sequential order of TR / nTR
domains, (i.e., all three domain SCREPs may be anno-
tated as TR1-TR2-TR3, TR1-TR2-nTR3, and
nTR1-TR2-TR3) distinguishing between all possible com-
binations of TR and nTR domains. Finally, the sequence

length of various SCREP elements including the N- and
C-termini, the individual domains, and the interdomain
linker regions are calculated based on the identified
domain boundaries. In SCREPs containing more than
one linker, that is, containing ≥3 domains, each linker is
sequentially numbered in the same way as the domains
described above. Finally, we note that our approach to
generate SCREP architecture annotation relies on the use
of InterProScan, and in instances where ordered regions
are not recognized by this tool, no annotations are pro-
duced in the ScrepYard output.

2.3 | Data upload

2.3.1 | SCREP database generation

To remove any duplicate SCREPs from ScrepYard, CD-
HIT [v-4.8.1 (Li et al., 2001)] is used with a threshold of
0.999. CD-HIT is only applied to sequences that origi-
nate from TrEMBL (Boeckmann et al., 2003) as they
have not been manually curated and may contain errors
resulting in sequence duplication and fragmentation.
All manually curated SCREPs that originate from Swis-
sProt (Boutet et al., 2016) are maintained without apply-
ing CD-HIT. All SCREP domain annotations and other
relevant information, such as taxonomy and cysteine
content, is compiled, formatted, and uploaded to
ScrepYard.

2.3.2 | ScrepYard updates

The content in ScrepYard is automatically updated every
3 months. For each update, all newly released and
recently modified sequences from UnitProtKB are pro-
cessed. Any existing SCREPs that are found as new
entries in the updated UniProtKB dataset are removed
from ScrepYard and re-processed (this is to account for
any slightly modified SCREP sequences). The newly pro-
cessed data are then merged with the existing SCREPs
database. Previous database iterations are archived on
the Nectar Research Cloud (Barker et al., 2019) for 1 year,
after which archived data are stored on a local server at
the Centre for Advanced Imaging, University of Queens-
land, Australia.

The SCREP recognition process relies heavily on
existing third-party software, including blast+, InterProS-
can, SignalP, and CD-HIT. To ensure the accuracy of
SCREP datamining and annotation, we also perform soft-
ware updates as required. After any software updates, the
entire ScrepYard database is rebuilt.
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3 | DATABASE UTILITY AND
DISCUSSION

3.1 | Database content—SCREP
architectures

In the latest update of ScrepYard (Dec 2022), 183,518
sequences were identified as putative SCREPs from the
total secreted protein dataset (18,791,263 sequences)—
three times as many SCREPs as the previous published
extraction (May 2018), which comprised 60,935 putative

SCREPs from 8,006,061 secreted protein sequences
(Maxwell et al., 2018). The growth in number of
sequences shows the remarkably rapid expansion of
available sequences within UniProtKB, further emphasiz-
ing the need for automated processing tools to extract
sequences of interest.

The data can be broadly broken down into two cate-
gories based on their putative domain annotations,
“InterProScan-identified” (49.3%) and “unknown archi-
tecture” (50.7%) (Figure 2a). The large proportion of
unknown domains reflect the abundance of

FIGURE 2 Distribution of SCREP architectures and linker analysis of two-domain SCREPs. (a) The inner circle demonstrates the two

major clusters of SCREPs; “InterProScan-identified” (SCREPs with predicted domain types) and “unknown architectures” (SCREPs with
unknown domain types). The outer circle demonstrates the different architecture types; unknown architectures (50.7%), pure domain

repeats (PDR) (37.6%), and combinatorial domain repeats (CDR) (11.6%), dividing the PDR's and CDR's into a distribution based on the

length of repeating domains. (b) The frequency distribution of linker lengths within the TR1-TR2 dataset. Most linkers are <20 AAs in

length (85.57%), with the remaining linkers (14.43%) extending between 20 and 100 AAs. (c) A heat map of amino acid composition for all

known two-domain SCREP for linker lengths between 1–20 AAs. AAs are sorted left-to-right in order of decreasing side hydrophobicity

(Monera et al., 1995). (d) A grouped heatmap displaying the abundance of domain specific linker lengths in bacteria, fungi, plants, and

metazoans. Each kingdom contains the four highest occurring domain types, with the frequency of each linker length displayed. The

coloring indicates the relative level of abundance for each domain type
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uncharacterized domain types within UniProtKB, some-
times referred to as the “dark proteome” (Perdigao
et al., 2015). Within the “unknown architecture” dataset
we find a taxonomic bias, where 69.5% of prokaryotic
SCREPs contain unrecognizable domains compared to
just 39.1% of eukaryotic SCREPs (Figure S1). Given the
uncertainties associated with the “unknown architec-
ture” dataset, we have restricted the below analysis of the
database to the “InterProScan-identified” dataset only.

The “InterProScan-identified” dataset can be further
broken down into two groups based on their architecture.
A pure domain repeat (PDR) is defined as having an
architecture that contains only TR domains
(e.g., TR1-TR2 or TR1-TR2-TR3), while combinatorial
domain repeats (CDRs) represent all other architectures
(e.g., nTR1-TR2-TR3 or TR1-TR2-nTR3; see also
Figure 2a). Within PDRs, the TR1-TR2 architecture is
most common, accounting for 24.9% of the entire data-
base. CDRs make a smaller fraction of the database
accounting for 11.7% of all sequences. For both PDRs and
CDRs the most abundant architectures are those with the
fewest number of domains, and in general there is a
decrease in the number of SCREPs with a certain archi-
tecture, as a function of decreasing number of domains
within that architecture (Figure S2).

The cysteine density (percentage of cysteine residues)
within a SCREP is a defining feature of this class of mole-
cules, and in general we would expect that a higher cyste-
ine density would correlate with disulfide-directed, and
hence thermodynamically more stable, folds. Overall, we
find that SCREPs from eukaryotic kingdoms have a
higher cysteine density (Figure S3), consistent with the
more sophisticated disulfide processing machinery in
these higher organisms (Gruber et al., 2006; Van
Anken & Braakman, 2005). Given the central importance
of this feature, we have made it possible to directly refine
search results within ScrepYard by defining a minimum
and maximum cysteine density. We note that while we
have taken the inclusive approach of retaining any
sequences within ScrepYard with a potential domain
repeat that contains a single disulfide bond, this does not
necessarily satisfy the requirement of “cysteine-rich”.
The cysteine-density filter, thus, allows the user to search
or view a subset of the database (default values within
the advanced search are >4 cysteines and >10% cysteine
density).

3.2 | Database content—Linker analysis

An important yet poorly characterized aspect of multiva-
lency is how multiple domains are linked together, and
what effect the “linker” region has on binding and

function. The peptide linker is crucial in ensuring that
each domain is positioned for optimal engagement with
their molecular target (Bae et al., 2016; Bobrovnik, 2007;
Klein et al., 2014; Mack et al., 2012). Elements of the
linker, such as flexibility/rigidity and its effect on spatial
positioning of the domains, play an important role in
defining the intermolecular binding kinetics (Soler &
Fortuna, 2017). Under evolutionary pressure, naturally
occurring multivalent ligands have yielded linkers of a
specific length that have a suitable amount of structural
rigidity for enhanced target engagement (Bohlen
et al., 2010; Chassagnon et al., 2017; Van de Locht
et al., 1995; Van de Locht et al., 1996). These evolved
linkers are consequently also likely to be dependent on
the molecular target of the peptide. ScrepYard has been
designed to be enriched in sequences that contain multi-
valent ligands. Analysis of linker sequences in ScrepYard
may thus provide insights into the basic design principles
that have emerged as a product of an evolutionary pro-
cess in naturally occurring multivalent peptide ligands,
thereby aiding rational engineering of synthetic multiva-
lent peptides.

To further investigate the potential of ScrepYard to
provide insights into linker properties of multivalent pep-
tide ligands, we selected a subset of SCREPs with a two-
domain TR architecture (Figure 2a). We subsequently fil-
tered this subset to remove any sequences that contain a
cysteine residue in the inter-domain linker sequence as
this may indicate incorrectly defined domain boundaries
and/or unrecognized domain regions (Figure 2b).
Although there may be some genuine cases of cysteine
containing linkers, to verify this requires individual
assessment of existing experimental data. Our prelimi-
nary analysis of two-domain SCREPs from SwissProt
(Boutet et al., 2016) with linkers ≤20 AAs that contain a
cysteine, reveal a total of 40 SCREPs. One interesting
example where four cysteine residues form two disulfide
bonds within the linker was observed for the double-
antistasin like peptide (UniProt ID P15358) (Lapatto
et al., 1997). This suggests that there may be a small pop-
ulation of SCREPs with functionally relevant cysteine
residues within the linker region, warranting further
analysis which extends beyond the scope of our current
investigation. Additionally, SCREPs that are posttransla-
tionally processed into two separate domains, via prote-
ase cleavage, were identified and removed from our
analysis (2153 SCREPs in total). Sequences containing a
dibasic site, that is, “KK,” “KR,” “RK,” “RR,” within the
linker region indicate cleavage from subtilisin-like pro-
protein convertases (SPCs) (Rholam & Fahy, 2009). An
example is human endothelin (UniProt ID P05305),
which harbors two homologous endothelin-like domains.
During posttranslation modification, the gene product is
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cleaved by a Furin enzyme at a K91-R92 motif (between
the two TR domains), yielding mature endothelin peptide
and a second endothelin domain with unknown function
(Turner & Murphy, 1996). This example highlights cases
where TRs are posttranslationally cleaved to yield mono-
valent disulfide rich peptides, and as such contain linkers
that do not contribute to multivalent binding.

Next, we restricted the data to proteins that had a cys-
teine density ≥5%, to enrich for potential disulfide-
stabilized protein structures. This dataset is here simply
referred to as the two-domain SCREPs. Within this data-
set we found that the linker length (number of AAs) has
an asymmetric Gaussian distribution with a maximum at
approximately 10 AAs in length and the majority of pep-
tides containing a linker between 1 and 20 AAs (85.57%)
(Figure 2b). As the potential for the existence of an
unrecognized domain within the linker increases with
linker length (regardless of the presence of a cysteine),
subsequent analysis of the amino acid composition
(Figure 2c) and the distribution of linker lengths within
various taxonomic groups and domain types (Figure 2d)
was performed using a subset of peptides containing a
linker of ≤20 AAs. The linkers of these two-domain
SCREPs appear to consist primarily of amino acids with
short or polar sidechains highly enriched in proline and
alanine residues (Figure 2c). The observed linker compo-
sition of these SCREPs aligns with previous findings of
AA occurrence within naturally occurring linker regions
(Chen et al., 2013; George & Heringa, 2002).

The secondary structure prediction tool [MobiDBLite
(Necci et al., 2017)] was then used to predict the presence
of disorder within these linkers. Overall, we find that dis-
ordered linkers are more prevalent in SCREPs with a bac-
terial origin (12.3% of bacterial linkers compared with
0.2% of eukaryotic linkers) (Table S1). Although the exact
functional purposes of these disordered linkers are
unknown, their presence demonstrates natural variability
of structural rigidity. We can only speculate that
increased disorder would lead to lower avidity, or higher
receptor promiscuity, which may reflect the differences
observed between the prokaryotes and the more complex
eukaryotic organisms.

Next, we investigated if there was a relationship
between the linker length and the domain type. It is
known that some DRP domain types are associated with
specific functions (e.g., protease-inhibiting Kunitz
domains). In these cases, if the second domain has
evolved to bind to a common and adjacent receptor site,
there may be evolutionary pressure to restrict the length
and composition of the interdomain linker (Handl
et al., 2007; Tran et al., 2020). In this analysis we find
three general patterns, (1) domains with a broad distribu-
tion of linker lengths, (2) domains that have either short

or longer linkers, or (3) domain types with a highly con-
served linker length (with a sharp distribution,
i.e., length ± 1 residue). Examples of the three types are
as follows:

1. The fungal chitin domains and the metazoan ShKt
domain types appear to have a broad distribution of
linker lengths between 1–20 AAs.

2. The PsiF bacterial domains, and the metazoan Kunitz
and WAP domains appear to favor shorter linker
lengths (<12 AA's), while the Gnk2 plant domain has
a cluster of linkers with a longer length (>14 AAs).

3. Domains with highly conserved linker lengths
include; the CFEM fungal domain, the short (1–3 AA
linkers) bacterial sel1-like repeats, the 2-residue
linkers in Bowman-Birk plant domain, the 7-residue
linkers in proteinase inhibitor plant domain (Prot.I.),
and the 16-residue linkers in phospholipase inhibitor
(Phos.I.) domain.

Examples of where a correlation between linker
length and molecular target may exist can also be found
in the bivalent serine-protease inhibitors rhodniin
(a Kazal-type SCREP; UniProt ID Q06684) and ornitho-
dorin (a peptide with two Kunitz domains with low
sequence similarity; UniProt ID P56409). Despite their
domains being structurally different, both rhodniin and
ornithodorin bind to the same two regions of thrombin
and have very similar linker lengths of 9 and 10 AAs,
respectively (Van de Locht et al., 1995; Van de Locht
et al., 1996). Therefore, we speculate that in some circum-
stances linker length may be indicative of molecular tar-
get (in this case more so than the 3D structure of the
individual domains). Domain types with broad linker-
length distributions may indicate that these domains
have undergone functional divergence, interacting with
structurally diverse targets. Conversely, the highly con-
served lengths such as that observed within the phospho-
lipase inhibitor domain (Phos.I.), suggest interactions
with either a limited number of molecular targets, or a
family of targets with a high degree of structural similar-
ity. Evidently, the elucidation of correlations between
linker length and molecular target may serve as a power-
ful method in discovering novel multivalent ligands of
known receptors.

3.2.1 | Identifying bioactive SCREPs

In addition to annotating the SCREP architectures of nat-
ural multivalent peptides, ScrepYard has been devised to
aid researchers to mine SCREP sequences to identify
multivalent versions of their well-characterized single-
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domain counterparts. Our approach relies on the obser-
vation that the individual domains of two-domain biva-
lent SCREPs reported to date align well with existing
single domain DRPs (Bohlen et al., 2010; Chassagnon
et al., 2017). In addition, evidence suggests DRPs that tar-
get the same receptor tend to convergently evolve similar
primary structures (Undheim et al., 2016), meaning that
within a fold type, there is a high probability that a
SCREP with a particular function shares a relatively high
degree of sequence similarity with a single-domain DRP
with the same function. For example, there is high
sequence identity between the single-domain PcTx-1 iso-
lated from the venom of the spider Psalmopoeus cambrid-
gei (Escoubas et al., 2003) and the two-domain SCREP
Hi1a isolated from the distantly related spider Hadro-
nyche infensa (Chassagnon et al., 2017) (71% and 56%
sequence identity with TR1 and TR2 of Hi1a, respec-
tively). Both PcTx-1 and Hi1a have been confirmed to
modulate the acid sensing ion channel 1a (ASIC1a)
(Berkut et al., 2015; Chassagnon et al., 2017; Escoubas
et al., 2003), with Hi1a exhibiting higher avidity than
PcTx-1 due to a bivalent mode-of-action (Chassagnon
et al., 2017). To apply this evolution-guided mining
approach, we propose that the wealth of functional data
available for single-domain DRPs [such as those curated
in ToxProt (Jungo et al., 2012)] may serve as an ideal
starting point to identify SCREPs with a putative multiva-
lent mode-of-action.

As proof of principle, we employed a batch sequence
analysis method aimed at identifying toxins with known
activity that share sequence identity with SCREPs. A
dataset of experimentally validated bioactive toxins was
extracted from the ToxProt (Jungo et al., 2012) database,
using this as a set of query sequences we performed a
BLAST search between the known toxins and the
SCREPs database. Using this method, we identified 9325
SCREPs which display varying degrees of sequence simi-
larity with known single domain toxins. From these data,
we selected the single-domain DRP Kalicludine-3, a dual-
function toxin isolated from the sea anemone Anemonia
sulcata (UniProt ID Q9TWF8) that inhibits trypsin—a
serine protease from the PA clan superfamily—and
voltage-sensitive potassium channels (Schweitz
et al., 1995). Kalicludine-3 was subsequently used as a
query sequence to further demonstrate the utility of the
ScrepYard BLAST search.

The output shows that Kalicludine-3 has high
sequence homology with d-Gs1a; a putative double
domain SCREP from the marine gastropod Gemmula spe-
ciosa (UniProt ID A0A098LW49) (Figure 3a). Thus, to
determine if d-Gs1a shares the same bioactivity as
Kalicludine-3, a d-Gs1a gene was synthesized and cloned
into an E. coli expression vector for recombinant produc-
tion (Figure S4). Following successful production, we
used NMR spectroscopy to assess the folding of the pep-
tide, and found a highly dispersed NH-fingerprint region,

FIGURE 3 Sequence based identification, NMR confirmation of structural order and trypsin inhibition assay of d-Gs1a (A0A098LW49).

(a) Alignment between Kalicludine-3 with each domain of d-Gs1a. Conserved residues between Kalicludine-3 and d-Gs1a are highlighted in

red, while cysteines are highlighted in yellow. (b) 1D 1H-NMR spectrum of d-Gs1a demonstrating well resolved and dispersed signal within

the NH region, a characteristic feature of a well-defined globular fold. (c) Trypsin assay in the presence of d-Gs1a (0.1 μM and 0.25 μM)

demonstrating inhibition of digestion of a trypsin substrate which fluoresces upon enzymatic cleavage (increased absorbance correlates with

enzyme activity). All trypsin assays were performed in triplicate with 0.5 μM trypsin.
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consistent with a well-defined globular fold (Figure 3b).
As Kalicludine-3 is a known serine protease inhibitor, a
trypsin inhibition assay was performed to test the func-
tion of d-Gs1a. As suspected, we find that the recombi-
nant d-Gs1a peptide shares activity with Kalicludine-3,
showing potent trypsin inhibition in a concentration
dependent manner, and being able to achieve full inhibi-
tion at sub-stoichiometric ratios (Figure 3c). However,
screening for activity against a wide panel of voltage-
gated potassium channels, TRPV1, and ASIC1a channels
(Supplementary methods), revealed that d-Gs1a does not
share the dual functionality of other, venom-derived,
Kunitz-type peptides (Figure S5).

4 | CONCLUSION

Naturally occurring multivalent peptides represent a
valuable source of bioactive ligands, with a potential to
be developed into novel biologics in the pharmaceutical
and agrochemical industries. These molecules benefit
from an evolutionary refinement process that offers
unique insights into the underlying design principles of
multivalency in peptides (Bohlen et al., 2010; Chassagnon
et al., 2017). ScrepYard has been designed to be enriched
for multivalent peptide ligands and provides researchers
with the necessary tools to mine this resource using a
variety of search and browse functions. To demonstrate
the utility of this resource, we show how analyses of
sequences within the database provide new insights into
the significance of interdomain peptide sequences in
defining peptide function. We further outline a targeted
mining approach that enables the identification of novel
SCREPs using the known sequence and bioactivity of
previously studied receptor ligands. Using this approach,
we identify a previously unknown two-domain protease
inhibitor from the marine gastropod Gemmula speciosa.
The construction and demonstrated utility of this
resources promises to improve our understanding of mul-
tivalency while uncovering molecules of pharmaceutical
and agricultural relevance.
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