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Abstract: Streptococcus suis (S. suis), an emerging zoonotic pathogen, can cause streptococcal toxic
shock-like syndrome (STSLS) in humans with high mortality. STSLS is characterized by high bacterial
burden, an inflammatory cytokine storm, multi-organ dysfunction, and ultimately acute host death.
Although it has been found that a significantly high level of IL-17A was induced in an NLRP3-
dependent manner during STSLS development, the role of IL-17A on S. suis STSLS remains to be
elucidated. In this study, we found that the epidemic strain SC 19 caused a significantly higher level
of IL-17A than the non-epidemic strain P1/7. In addition, higher bacterial burden was observed
from SC 19-infected il17a−/− mice than il17a+/+ mice, although acute death, tissue injury and
inflammatory cytokines storm were observed in both types of mice. Furthermore, compared with
il17a+/+ mice, the level of neutrophils recruitment was lower in il17a−/− mice, and the levels of
induced antimicrobial proteins, such as CRAMP, S100A8 and lipocalin-2, were also decreased in
il17a−/− mice. In conclusion, this study demonstrated that IL-17A does not contribute to the severe
inflammation, although it may play a minor role for bacterial clearance by inducing antimicrobial
proteins and promoting neutrophil recruitment during STSLS.

Keywords: Streptococcus suis; Interleukin-17A; streptococcal toxic shock-like syndrome; bacterial
clearance; neutrophils; antimicrobial proteins

1. Introduction

Streptococcus suis (S. suis) is an important swine pathogen that causes severe economic
losses to the porcine industry and is also considered as an emerging zoonotic pathogen
which represents a significant threat to human health [1–3]. So far, more than 1600 human
S. suis infections have been reported worldwide [4], and S. suis infection has been identified
as the leading and second cause of adult meningitis in Vietnam and Thailand [2]. S. suis
infection mainly induces meningitis, septicemia, arthritis, endocarditis, pneumonia and
endophthalmitis, and the pooled case-fatality rate is 12.8% [4]. However, the two large-scale
outbreaks of human S. suis epidemics in China (the first time had 25 cases with 14 deaths
in Jiangsu in 1998, and the second time had 204 cases with 38 deaths in Sichuan in 2005),
which led to the unusual development of streptococcal toxic shock-like syndrome (STSLS),
with high mortality, raised serious concerns for global public health and challenged the
conventional conception of S. suis infections being sporadic in humans [2,5,6].
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STSLS is characterized by high bacterial burden, an inflammatory cytokine storm,
multi-organ dysfunction, and ultimately acute host death [5]. Our previous study indicated
that the epidemic S. suis SC 19 that induced a high expression of SLY, with high membrane
perforation activity, which caused several events, including cytosolic K+ efflux, and NLRP3
inflammasome hyperactivation, was essential for the induction of cytokines storm and
STSLS in a mouse model [7]. The conclusion was also confirmed by another group [8].
However, how NLRP3 hyperactivation caused STSLS remains to be elucidated.

A significantly high level of IL-17A was induced in an NLRP3-dependent manner
during STSLS development [7,9,10], which prompted us to consider the role of IL-17A on
STSLS [11]. The potential function of IL-17 on acute infection was to: (1) promote neutrophil
recruitment for microorganism clearance [12,13], (2) stimulate the production of antimi-
crobial proteins (e.g., S100A8, lipocalin-2, and CRAMP) for bacterial killing [11,14–17],
(3) promote the expression of proteins maintaining intestinal epithelial integrity for limiting
infection spreading [18,19], (4) induce matrix metalloproteinases for tissue damage [18],
and (5) downregulate and reorganize tight junction molecules for BBB disruption and then
cause CNS diseases [11,20–22]. This means that IL-17A may potentially play roles on S.
suis clearance or in strengthening inflammation, so whether it is beneficial or inhibitory for
the development of STSLS is unclear. Therefore, the present study was to evaluate the role
of Interleukin-17A signaling during STSLS development in a mouse model.

2. Results and Discussions
2.1. IL-17A Was Induced during STSLS

The previous study indicated that IL-17A was induced in an NLRP3-dependent
manner during STSLS [7]. To evaluate the potential role of IL-17A on STSLS, we first
compared the IL-17A level induced by the epidemic strain SC 19, which can cause STSLS,
and a non-epidemic strain P1/7, which cannot cause STSLS but can cause meningitis. The
epidemic strain SC 19 caused a significantly higher level of IL-17A than the non-epidemic
strain P1/7 (Figure 1), suggesting that IL-17A was significantly induced during STSLS.

Pathogens 2021, 10, 766 2 of 8 
 

 

and challenged the conventional conception of S. suis infections being sporadic in humans 

[2,5,6].  

STSLS is characterized by high bacterial burden, an inflammatory cytokine storm, 

multi-organ dysfunction, and ultimately acute host death [5]. Our previous study indi-

cated that the epidemic S. suis SC 19 that induced a high expression of SLY, with high 

membrane perforation activity, which caused several events, including cytosolic K+ ef-

flux, and NLRP3 inflammasome hyperactivation, was essential for the induction of cyto-

kines storm and STSLS in a mouse model [7]. The conclusion was also confirmed by an-

other group [8]. However, how NLRP3 hyperactivation caused STSLS remains to be elu-

cidated. 

A significantly high level of IL-17A was induced in an NLRP3-dependent manner 

during STSLS development [7,9,10], which prompted us to consider the role of IL-17A on 

STSLS [11]. The potential function of IL-17 on acute infection was to: (1) promote neutro-

phil recruitment for microorganism clearance [12,13], (2) stimulate the production of an-

timicrobial proteins (e.g., S100A8, lipocalin-2, and CRAMP) for bacterial killing [11,14–

17], (3) promote the expression of proteins maintaining intestinal epithelial integrity for 

limiting infection spreading [18,19], (4) induce matrix metalloproteinases for tissue dam-

age [18], and (5) downregulate and reorganize tight junction molecules for BBB disruption 

and then cause CNS diseases [11,20–22]. This means that IL-17A may potentially play 

roles on S. suis clearance or in strengthening inflammation, so whether it is beneficial or 

inhibitory for the development of STSLS is unclear. Therefore, the present study was to 

evaluate the role of Interleukin-17A signaling during STSLS development in a mouse 

model. 

2. Results and Discussions 

2.1. IL-17A Was Induced during STSLS 

The previous study indicated that IL-17A was induced in an NLRP3-dependent man-

ner during STSLS [7]. To evaluate the potential role of IL-17A on STSLS, we first compared 

the IL-17A level induced by the epidemic strain SC 19, which can cause STSLS, and a non-

epidemic strain P1/7, which cannot cause STSLS but can cause meningitis. The epidemic 

strain SC 19 caused a significantly higher level of IL-17A than the non-epidemic strain 

P1/7 (Figure 1), suggesting that IL-17A was significantly induced during STSLS. 

 

Figure 1. The level of IL-17A caused by the epidemic strain SC 19 was significantly higher than that 

of the non-epidemic strain P1/7. Wild-type (WT) mice were intraperitoneally infected with S. suis 

SC 19 or P1/7. The level of IL-17A in the blood were determined at the indicated time points (two-

tailed, unpaired t-tests, n = 5). 

2.2. Knockout of il17a could not Decrease Mortality during STSLS 

STSLS, caused by the epidemic S. suis strain, is characterized by high bacterial bur-

den, an inflammatory cytokine storm, multi-organ dysfunction, and ultimately acute 

Figure 1. The level of IL-17A caused by the epidemic strain SC 19 was significantly higher than that
of the non-epidemic strain P1/7. Wild-type (WT) mice were intraperitoneally infected with S. suis SC
19 or P1/7. The level of IL-17A in the blood were determined at the indicated time points (two-tailed,
unpaired t-tests, n = 5).

2.2. Knockout of il17a Could Not Decrease Mortality during STSLS

STSLS, caused by the epidemic S. suis strain, is characterized by high bacterial burden,
an inflammatory cytokine storm, multi-organ dysfunction, and ultimately acute death [5].
Our previous study demonstrated that NLRP3 inflammasome was indispensable for the
development of STSLS. However, how inflammasome activation contributes to STSLS
still remains to be elucidated. Since IL-17A was induced in an NLRP3-dependent manner



Pathogens 2021, 10, 766 3 of 8

during STSLS, and IL-17A might have a potential role for bacterial invasion, we considered
the role of IL-17A induction by NLRP3 on the severe inflammation.

To directly evaluate the role of IL-17A on STSLS, il17a+/+ and il17a−/− mice were
infected with the epidemic S. suis strain SC 19. As described before, the infection caused
all il17a+/+ mice to die within two days (Figure 2A); however, the infection also caused
all il17a−/− mice to die within two days (Figure 2A). In addition, the infection caused
il17a+/+ and il17a−/− mice to exhibit similar clinical symptoms (Figure 2B). These results
indicated that IL-17A, as a downstream of NLRP3 inflammasome, might not contribute to
the acute death caused by the epidemic S. suis strain.
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Figure 2. Knockout of il17a could not decrease mortality and alleviate the tissues injury during STSLS. The il17a-deficient
mice (il17a−/−) and the wild-type mice (il17a+/+) were intraperitoneally infected with S. suis SC 19. (A) Survival of mice
infected with S. suis (log-rank test, n = 10). (B) Clinical symptom scores of mice infected with S. suis (two-way RM ANOVA,
n = 10). (C) H&E staining of infected tissue sections from mice at 12 h post-infection with S. suis. Congestion in spleen and
lung is indicated by a “red arrow”; necrosis in the liver is indicated by a “yellow arrow”; vacuolated degeneration in the
liver is indicated by a “black arrow”; infiltration of inflammatory cells in the lung is indicated by a “green arrow”. Scale bar
indicates 50 µM. Error bars represent the mean ± standard deviations.

2.3. Knockout of il17a Could Not Alleviate the Tissues Injury during STSLS

Infection of mice with the epidemic strain could cause acute tissue injury [7], such
as severe congestion in the spleen, severe necrosis and vacuolated degeneration in the
liver, and severe congestion and dense infiltration of inflammatory cells in the lung, which
were also observed in the infection on il17a+/+ mice in the present study (Figure 2C). It is
not surprising that infection in il17a−/− mice could not alleviate the tissue injury during
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STSLS (Figure 2C). As dysfunctions of multiple organs are the major reason for acute death
during STSLS, the similar organ damage in il17a+/+ and il17a−/− mice indicated that
IL-17A may not play an essential role in the dysfunction of multiple organs, which is an
important reason for acute death during STSLS.

2.4. Knockout of il17a Strengthened Serum Inflammatory Cytokines Storm

Infection of the epidemic strain can lead to inflammatory cytokines storm in mice,
and can then further induce dysfunction of multiple organs, eventually leading to acute
death. The infection model was confirmed in the present study (Figure 3A). As expected,
the knockout of il17a failed to decrease the serum inflammatory cytokines storm, and even
induced higher serum inflammatory cytokines, such as IL-1β, IFN-γ, IL-12p70, and IL-10
at 12 h post-infection (Figure 3A). It indicated that IL-17A could not decrease the cytokine
storm during STSLS.
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Figure 3. IL-17A could not decrease the cytokine storm during STSLS but was beneficial for S. suis clearance at 12 h
post-infection. The il17a-deficient mice (il17a−/−) and the wild-type mice (il17a+/+) were intraperitoneally infected with
S. suis SC 19. (A) Cytokine levels in the blood at the indicated time points were determined (two-tailed, unpaired t-tests,
n = 5). (B) The bacterial burden in the blood, liver, lung, and brain at the indicated time points were determined (two-tailed,
unpaired t-tests, n = 5). Scale bar indicates 50 µM. Error bars represented the mean ± standard deviations.

2.5. IL-17A Is Beneficial for S. suis Clearance at 12 h of Post-Infection

Infection of the epidemic strain could cause mice to exhibit high bacterial burden
in various tissues, which was also observed in the present study (Figure 3B). Although
IL-17A was confirmed to be beneficial for the invasion of various pathogens, the knockout
of il17a could not decrease the bacterial burden in various tissues (Figure 3B). However, the
knockout of il17a seemed to cause more bacterial load in the blood at 12 h post-infection
(Figure 3B), which might explain the high inflammatory cytokine response at 12 h post-
infection (Figure 3B). More interesting, IL-17A was also induced to a high level at 12 h
post-infection (Figure 1). It indicated that IL-17A could take an effect for S. suis clearance
during STSLS.
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2.6. IL-17A Signaling Contributes to Activation of Neutrophils for Controlling Infections

The infection of mice with the epidemic strain SC 19 could induce a high level of
IL-17A at 12 h post-infection (Figure 1). Interestingly, the bacterial burden in blood at that
time point was decreased in il17a+/+ but not in il17a−/− mice (Figure 3B), suggesting
that IL-17A might contribute to the resistance to S. suis infection.

The proceeding IL-17A function indicated that IL-17A might promote neutrophil re-
cruitment for microorganism clearance [12,13], or stimulate the production of antimicrobial
proteins for bacterial killing [11,14]. As neutrophils were essential for S. suis clearance
in vivo, the decreased level of neutrophils recruitment could provide an explanation for
the decreased resistance of il17a−/− mice to S. suis (Figure 4A). In addition, the levels of
induced antimicrobial proteins, such as CRAMP, S100A8 and lipocalin-2, also decreased
in il17a−/− mice (Figure 4B), suggesting that the induction of IL-17A could be benefi-
cial to bacterial clearance by inducing antimicrobial proteins and promoting neutrophil
recruitment, at least at the detected time point.
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Figure 4. IL-17A could contribute to the production of antimicrobial peptides and the recruitment of neutrophils. The
il17a-deficient mice (il17a−/−) and the wild-type mice (il17a+/+) were intraperitoneally infected with S. suis SC 19. At
the indicated time points, all mice were euthanized by carbon dioxide inhalation to collect the blood via cardiac puncture.
(A) Flow cytometric analysis of leukocytes in blood (two-tailed, unpaired t-tests, n = 5). (B) Real-time PCR analysis of
CRAMP, S100A8 and lipocalin-2 transcription in blood. β-actin was used as the internal control (two-tailed, unpaired
t-tests, n = 3). Neutrophils: phycoerythrin (PE)-conjugated anti-mouse Ly6G, monocytes: fluorescein isothiocyanate
(FITC)-conjugated anti-mouse F4/80. Error bars represent the mean ± standard deviations.

3. Materials and Methods
3.1. Bacterial Strain and Culture Conditions

The epidemic strain of S. suis serotype 2, SC-19, belongs to ST7, which shows high
pathogenicity in humans, mice and pigs [23]. The non-epidemic strain of S. suis serotype 2,
P1/7, belongs to ST1, which induces only sporadic cases of meningitis and septicemia in
pigs [24]. S. suis was grown in tryptic soy agar (TSA) (Difco, Detroit, MI, USA) or tryptic
soy broth (TSB) (Difco, Detroit, MI, USA) plus 10% newborn bovine serum at 37 ◦C.

3.2. Experimental Infections of Mice with Streptococcus suis

Five- to six-week-old C57BL/6 (il17a+/+) mice and/or il17a−/− mice (purchased from
Huazhong Agricultural University) with similar body weights were randomly grouped and
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challenged with 0.5 mL of S. suis strains SC 19 (8 × 108 CFU/mL) or phosphate-buffered
saline (PBS) by intraperitoneal (i.p.) injection to evaluate the pathogenicity of S. suis.

All mice were monitored three times a day and for a total of seven days for mortality
and clinical signs. The clinical scores were assigned as follows: 0 = no symptoms and
rapid response to external stimuli; 1 = ruffled coat and slow response to external stimuli;
2 = respond only to repeated stimuli; 3 = no response to external stimuli, or neurological
symptoms, etc.; and 4 = dead. Mice exhibiting extreme lethargy or neurological symptoms
were considered moribund and were humanely euthanized.

3.3. Measurement of Cytokine Response and Bacterial Burden

In addition to the evaluation of mortality, experimental infections were also performed
to evaluate the cytokine response and bacterial burden during S. suis infection [25]. At the
indicated time points, all mice were euthanized by carbon dioxide inhalation, and blood
was collected via cardiac puncture. Fifty microliters of blood were serially diluted and
then plated on TSA plates to evaluate the bacterial load. Two hundred microliters of blood
were used to prepare plasma for analysis of the IL-1β, TNF-α, IL-6, IL-17A, IL-12p70, IL-10,
and IFN-γ levels using the Electrochemiluminescence U-PLEX Biomarker Group 1 (Mouse)
Multiplex Assays (MSD, Rockville, MD, USA). Two hundred microliters of blood were
used for real-time polymerase chain reaction (RT-PCR).

Part of liver, lung and spleen tissues were collected and fixed in 10% neutral buffered
formalin. The remaining liver lung and brain were weighed and homogenized for bacterial
load evaluation.

3.4. Histopathology Examinations

For histopathology examinations, samples were fixed in 10% neutral buffered for-
malin, embedded in paraffin, cut in 2–4 µm-thick slices, and stained by hematoxylin and
eosin (H&E).

3.5. Reverse Transcription and Real-Time Polymerase Chain Reaction (RT-PCR)

Total RNA was extracted from the blood with TRIzol reagent (Aidlab Biotech, Beijing,
China). The total RNA (500 ng) in each sample were subjected to cDNA synthesis using
M-MLV Reverse Transcriptase (Promega, Madison, WI, USA). RT-PCR was performed with
QuantStudio 6 Flex (ABI, Foster City, CA, USA) using BioEasy SYBRGreen master mix
(Bioer Technology, Hangzhou, China) according to the manufacturer’s recommendations.
The transcriptional levels of the target mRNA were normalized to β-actin. Primers for the
quantitation RT-PCR were as follows: CRAMP-F, GCTGTGGCGGTCACTATCAC; CRAMP-
R, TGTCTAGGGACTGCTGGTTGA; S100A8-F, GGAAATCACCATGCCCTCTA; S100A8-R,
TGGCTGTCTTTGTGAGATGC; lipocalin-2-F, CACGGACTACAACCAGTTCG; lipocalin-2-
R, TGATGTTGTCGTCCTTGAGG; β-actin-F, CACTGCCGCATCCTCTTCCTCCC; β-actin-
R, CAATAGTGATGACCTGGCCGT.

3.6. Flow Cytometric Analysis

Flow cytometric analysis was performed as described, with some modifications [26].
Samples of peripheral blood (0.2 mL) from il17a+/+ and il17a−/− mice were collected
from a tail vein in the presence of EDTA as an anticoagulant. The red blood cells (RBS)
were removed by incubation with lysing buffer (BioLegend, San Diego, CA, USA) at room
temperature for 5 min. The white blood cells (WBC) were collected by centrifugation
at 300× g at room temperature for 10 min and washed once with PBS. The Fc receptors
were blocked with anti-murine CD16/CD32 at 4 ◦C for 30 min to prevent nonspecific
binding. The cells were then stained with phycoerythrin (PE)-conjugated anti-mouse Ly6G
(BioLegend, San Diego, CA, USA) and fluorescein isothiocyanate (FITC)-conjugated anti-
mouse F4/80 (BioLegend, San Diego, CA, USA), and subsequently incubated at 4 ◦C for
60 min in the dark. After staining, the cells were washed with 2 mL of flow cytometric
buffer and centrifuged at 300× g at 4 ◦C for 10 min. The cells were resuspended in 500 µL
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of flow cytometric buffer, after removing the cell supernatant. All samples were acquired
on a cytoflex flow cytometer (Backman, Indianapolis, IN, USA), and data were analyzed
using CytExpert software version 2.2 (Backman, Indianapolis, IN, USA).

3.7. Statistical Analysis

All assays were repeated at least three times. All data are expressed as the mean ± standard
deviations. Unless otherwise specified, the data were analyzed using two-tailed, un-
paired t-tests. The survival rates were analyzed with a log-rank test, using GraphPad
Prism 6 (GraphPad Software, La Jolla, CA, USA). For all tests, p < 0.05 was considered
statistically significant.

4. Conclusions

The present study demonstrated that IL-17A does not contribute to the severe inflam-
mation, although it may play a minor role for bacterial clearance through the induction of
antimicrobial proteins and the promotion of neutrophil recruitment. The results also indi-
cate that the other signaling but not IL-17A induced by NLRP3 induction was responsible
for the severe inflammation during STSLS.

Author Contributions: Conceptualization, A.-D.Z. and L.X.; methodology, and formal analysis,
L.X. and X.L.; Investigation, L.X., X.L., P.X., R.L. and K.-L.X.; resources, M.-Z.W., M.-L.J. and A.-
D.Z.; writing—original draft preparation, L.X.; writing—review and editing, L.X., X.L. and A.-D.Z.;
data curation, L.X. and X.L.; visualization, L.X.; supervision, project administration, and funding
acquisition, A.-D.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (grant
number: 31772714). The funders had no role in the study design, data collection or interpretation.

Institutional Review Board Statement: This study was carried out in strict accordance with the
Guide for the Care and Use of Laboratory Animals Monitoring Committee of Hubei Province,
China. The pro-tocol and procedures were approved by the Scientific Ethics Committee of Huazhong
Agricultural University (Permit Number: HZAUMO-2019-048). All efforts were made to minimize
the number of animals used and animal suffering.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in article.

Acknowledgments: We are grateful to Xiang Liu (NIH, USA) for his help on discussion of the results.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gottschalk, M. Streptococcocis. In Diseases of Swine, 10th ed.; Zimmerman, J., Karriker, L., Ramirez, A., Schwartz, K., Stevenson,

G., Eds.; Blackwell Publishing: Ames, IA, USA, 2012; pp. 841–855.
2. Segura, M. Streptococcus suis: An emerging human threat. J. Infect. Dis. 2009, 199, 4–6. [CrossRef]
3. Wertheim, H.F.; Nghia, H.D.; Taylor, W.; Schultsz, C. Streptococcus suis: An emerging human pathogen. Clin. Infect. Dis. 2009,

48, 617–625. [CrossRef]
4. Huong, V.T.; Ha, N.; Huy, N.T.; Horby, P.; Nghia, H.D.; Thiem, V.D.; Zhu, X.; Hoa, N.T.; Hien, T.T.; Zamora, J.; et al.

Epidemiology, clinical manifestations, and outcomes of Streptococcus suis infection in humans. Emerg Infect. Dis. 2014,
20, 1105–1114. [CrossRef] [PubMed]

5. Ye, C.; Zheng, H.; Zhang, J.; Jing, H.; Wang, L.; Xiong, Y.; Wang, W.; Zhou, Z.; Sun, Q.; Luo, X.; et al. Clinical, experimental, and
genomic differences between intermediately pathogenic, highly pathogenic, and epidemic Streptococcus suis. J. Infect. Dis 2009,
199, 97–107. [CrossRef]

6. Tang, J.; Wang, C.; Feng, Y.; Yang, W.; Song, H.; Chen, Z.; Yu, H.; Pan, X.; Zhou, X.; Wang, H.; et al. Streptococcal toxic shock
syndrome caused by Streptococcus suis serotype 2. PLoS Med. 2006, 3, e151.

7. Lin, L.; Xu, L.; Lv, W.; Han, L.; Xiang, Y.; Fu, L.; Jin, M.; Zhou, R.; Chen, H.; Zhang, A. An NLRP3 inflammasome-triggered cytokine
storm contributes to Streptococcal toxic shock-like syndrome (STSLS). PLoS Pathog. 2019, 15, e1007795. [CrossRef] [PubMed]

8. Song, L.; Li, X.; Xiao, Y.; Huang, Y.; Jiang, Y.; Meng, G.; Ren, Z. Contribution of Nlrp3 Inflammasome Activation Mediated by
Suilysin to Streptococcal Toxic Shock-like Syndrome. Front. Microbiol. 2020, 11, 1788. [CrossRef]

http://doi.org/10.1086/594371
http://doi.org/10.1086/596763
http://doi.org/10.3201/eid2007.131594
http://www.ncbi.nlm.nih.gov/pubmed/24959701
http://doi.org/10.1086/594370
http://doi.org/10.1371/journal.ppat.1007795
http://www.ncbi.nlm.nih.gov/pubmed/31170267
http://doi.org/10.3389/fmicb.2020.01788


Pathogens 2021, 10, 766 8 of 8

9. Yang, X.P.; Fu, J.Y.; Yang, R.C.; Liu, W.T.; Zhang, T.; Yang, B.; Miao, L.; Dou, B.B.; Tan, C.; Chen, H.C.; et al. EGFR transactivation
contributes to neuroinflammation in Streptococcus suis meningitis. J. Neuroinflamm. 2016, 13, 274. [CrossRef] [PubMed]

10. Sun, Y.; Liu, H.; Du, R.; Li, S.; Qu, G.; Zhu, R.; Zhao, S.; Gu, J.; Sun, C.; Feng, X.; et al. Characteristic Comparison of Meningitis
and Non-meningitis of Streptococcus suis in an Experimentally Infected Porcine Model. Inflammation 2018, 41, 368–377. [CrossRef]

11. Isailovic, N.; Daigo, K.; Mantovani, A.; Selmi, C. Interleukin-17 and innate immunity in infections and chronic inflammation. J.
Autoimmun. 2015, 60, 1–11. [CrossRef] [PubMed]

12. Chen, K.; Eddens, T.; Trevejo-Nunez, G.; Way, E.E.; Elsegeiny, W.; Ricks, D.M.; Garg, A.V.; Erb, C.J.; Bo, M.H.; Wang, T.; et al. IL-17
Receptor Signaling in the Lung Epithelium Is Required for Mucosal Chemokine Gradients and Pulmonary Host Defense against
K. pneumoniae. Cell Host Microbe 2016, 20, 596–605. [CrossRef]

13. Cho, J.S.; Pietras, E.M.; Garcia, N.C.; Ramos, R.I.; Farzam, D.M.; Monroe, H.R.; Magorien, J.E.; Blauvelt, A.; Kolls, J.K.; Cheung,
A.L.; et al. IL-17 is essential for host defense against cutaneous Staphylococcus aureus infection in mice. J. Clin. Investig. 2010,
120, 1762–1773. [CrossRef] [PubMed]

14. Conti, H.R.; Bruno, V.M.; Childs, E.E.; Daugherty, S.; Hunter, J.P.; Mengesha, B.G.; Saevig, D.L.; Hendricks, M.R.; Coleman, B.M.;
Brane, L.; et al. IL-17 Receptor Signaling in Oral Epithelial Cells Is Critical for Protection against Oropharyngeal Candidiasis. Cell
Host Microbe 2016, 20, 606–617. [CrossRef]

15. Liang, S.C.; Tan, X.Y.; Luxenberg, D.P.; Karim, R.; Dunussi-Joannopoulos, K.; Collins, M.; Fouser, L.A. Interleukin (IL)-22
and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J. Exp. Med. 2006,
203, 2271–2279. [CrossRef]

16. Ge, Y.; Huang, M.; Yao, Y.M. Biology of Interleukin-17 and Its Pathophysiological Significance in Sepsis. Front. Immunol. 2020,
11, 1558. [CrossRef] [PubMed]

17. Christmann, C.; Zenker, S.; Martens, L.; Hubner, J.; Loser, K.; Vogl, T.; Roth, J. Interleukin 17 Promotes Expression of Alarmins
S100A8 and S100A9 During the Inflammatory Response of Keratinocytes. Front. Immunol. 2020, 11, 599947. [CrossRef]

18. Dungan, L.S.; Mills, K.H. Caspase-1-processed IL-1 family cytokines play a vital role in driving innate IL-17. Cytokine 2011,
56, 126–132. [CrossRef] [PubMed]

19. Kinugasa, T.; Sakaguchi, T.; Gu, X.; Reinecker, H.C. Claudins regulate the intestinal barrier in response to immune mediators.
Gastroenterology 2000, 118, 1001–1011. [CrossRef]

20. Waisman, A.; Hauptmann, J.; Regen, T. The role of IL-17 in CNS diseases. Acta Neuropathol. 2015, 129, 625–637. [CrossRef]
21. Huppert, J.; Closhen, D.; Croxford, A.; White, R.; Kulig, P.; Pietrowski, E.; Bechmann, I.; Becher, B.; Luhmann, H.J.; Waisman, A.;

et al. Cellular mechanisms of IL-17-induced blood-brain barrier disruption. FASEB J. 2010, 24, 1023–1034. [CrossRef]
22. Asano, T.; Ichiki, K.; Koizumi, S.; Kaizu, K.; Hatori, T.; Fujino, O.; Mashiko, K.; Sakamoto, Y.; Miyasho, T.; Fukunaga, Y. IL-17 is

elevated in cerebrospinal fluids in bacterial meningitis in children. Cytokine 2010, 51, 101–106. [CrossRef] [PubMed]
23. Yang, C.; Zhao, J.; Lin, L.; Pan, S.; Fu, L.; Han, L.; Jin, M.; Zhou, R.; Zhang, A. Targeting TREM-1 Signaling in the Presence of

Antibiotics is Effective Against Streptococcal Toxic-Shock-Like Syndrome (STSLS) Caused by Streptococcus suis. Front. Cell. Infect.
Microbiol. 2015, 5, 79. [CrossRef] [PubMed]

24. King, S.J.; Leigh, J.A.; Heath, P.J.; Luque, I.; Tarradas, C.; Dowson, C.G.; Whatmore, A.M. Development of a multilocus sequence
typing scheme for the pig pathogen Streptococcus suis: Identification of virulent clones and potential capsular serotype exchange.
J. Clin. Microbiol. 2002, 40, 3671–3680. [CrossRef] [PubMed]

25. Xu, L.; Lin, L.; Lu, X.; Xiao, P.; Liu, R.; Wu, M.; Jin, M.; Zhang, A. Acquiring high expression of suilysin enable non-epidemic
Streptococccus suis to cause Streptococcal toxic shock-like syndrome (STSLS) through NLRP3 inflammasome hyperactivation.
Emerg Microbes Infect. 2021, 1–26. [CrossRef]

26. OuYang, X.; Guo, J.; Lv, Q.; Jiang, H.; Zheng, Y.; Liu, P.; Zhao, T.; Kong, D.; Hao, H.; Jiang, Y. TRIM32 Drives Pathogenesis in
Streptococcal Toxic Shock-Like Syndrome and Streptococcus suis Meningitis by Regulating Innate Immune Responses. Infect.
Immun. 2020, 88. [CrossRef]

http://doi.org/10.1186/s12974-016-0734-0
http://www.ncbi.nlm.nih.gov/pubmed/27756321
http://doi.org/10.1007/s10753-017-0692-4
http://doi.org/10.1016/j.jaut.2015.04.006
http://www.ncbi.nlm.nih.gov/pubmed/25998834
http://doi.org/10.1016/j.chom.2016.10.003
http://doi.org/10.1172/JCI40891
http://www.ncbi.nlm.nih.gov/pubmed/20364087
http://doi.org/10.1016/j.chom.2016.10.001
http://doi.org/10.1084/jem.20061308
http://doi.org/10.3389/fimmu.2020.01558
http://www.ncbi.nlm.nih.gov/pubmed/32849528
http://doi.org/10.3389/fimmu.2020.599947
http://doi.org/10.1016/j.cyto.2011.07.007
http://www.ncbi.nlm.nih.gov/pubmed/21824786
http://doi.org/10.1016/S0016-5085(00)70351-9
http://doi.org/10.1007/s00401-015-1402-7
http://doi.org/10.1096/fj.09-141978
http://doi.org/10.1016/j.cyto.2010.03.001
http://www.ncbi.nlm.nih.gov/pubmed/20350814
http://doi.org/10.3389/fcimb.2015.00079
http://www.ncbi.nlm.nih.gov/pubmed/26618144
http://doi.org/10.1128/JCM.40.10.3671-3680.2002
http://www.ncbi.nlm.nih.gov/pubmed/12354864
http://doi.org/10.1080/22221751.2021.1908098
http://doi.org/10.1128/IAI.00957-19

	Introduction 
	Results and Discussions 
	IL-17A Was Induced during STSLS 
	Knockout of il17a Could Not Decrease Mortality during STSLS 
	Knockout of il17a Could Not Alleviate the Tissues Injury during STSLS 
	Knockout of il17a Strengthened Serum Inflammatory Cytokines Storm 
	IL-17A Is Beneficial for S. suis Clearance at 12 h of Post-Infection 
	IL-17A Signaling Contributes to Activation of Neutrophils for Controlling Infections 

	Materials and Methods 
	Bacterial Strain and Culture Conditions 
	Experimental Infections of Mice with Streptococcus suis 
	Measurement of Cytokine Response and Bacterial Burden 
	Histopathology Examinations 
	Reverse Transcription and Real-Time Polymerase Chain Reaction (RT-PCR) 
	Flow Cytometric Analysis 
	Statistical Analysis 

	Conclusions 
	References

