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Abstract
The whiteflyBemisia tabaci is a cosmopolitan insect species complex that harbors the obli-

gate primarysymbiontPortiera aleyrodidarumand several facultative secondary symbionts

includingWolbachia, which have diverse influences on the host biology. Here, for the first

time, we revealed two different localization patterns ofWolbachia present in the immature

and adult stages of B. tabaciAsiaII7 cryptic species. In the confined pattern,Wolbachiawas
restricted to the bacteriocytes, while in the scattered patternWolbachia localized in the bac-

teriocytes, haemolymph and other organs simultaneously. Our results further indicated that,

the proportionof B. tabaciAsiaII7 individuals with scatteredWolbachiawere significantly

lower than that of confinedWolbachia, and the distribution patterns ofWolbachiawere not

associated with the developmental stage or sex of whitefly host. This study will provide a

new insight into the various transmission routes ofWolbachia in different whitefly species.

Introduction
The associations among inherited bacterial symbionts and arthropods are very common in
nature [1, 2], and these symbionts can be defined as primary or secondary ones as per their bio-
logical effects on arthropod hosts. The primary symbionts (such as Portiera in whitefly and
Carsonella in psyllid) are obligate and have mutualism relationships with their hosts, providing
essential nutrients under limited or unbalanced diets. Primary symbionts are generally local-
ized in specialized cells called bacteriocytes, grouped together in a bacteriome [3]. In some
cases, the primary endosymbionts become part of the “extended genome” of their host, being
transferred vertically from a female host to her progeny [4]. Secondary endosymbionts are usu-
ally not required for the survival or reproduction of their hosts, but they may manipulate host
reproduction, or help in the host’s defense against thermal stress, natural enemies and patho-
gens [5–8]. Similar to the primary endosymbionts, secondary endosymbionts are usually pres-
ent in the gonads of hosts and can be transmitted vertically [9]. However, sometimes they are
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also been found in haemolymph, malpighian tubules, salivary glands, fat body, ovarian cells,
gut structures and brains of their hosts [10–14]. Among the secondary endosymbionts, Wolba-
chia is one of the most abundant species that infects insects, mites, spiders and isopods [9, 15–
18]. It is well-established that Wolbachia can promote its own transmission throughout the
host population by manipulating host reproduction. The typical manipulation includes cyto-
plasmic incompatibility (CI), parthenogenesis, feminization and male-killing [19].

Many arthropod individuals harbor more than one species of endosymbiont, and the possi-
bilities of endosymbiont horizontal transmission may be highly associated with their localiza-
tions in hosts, which are known to be much diverse. To know the spatial distribution of
endosymbionts in their hosts is the cornerstone in understanding the key aspects of symbiont-
host interactions as well as the fitness, phenotype and dynamics of these bacteria. Caspi-Fluger
et al. [3] found two distribution patterns of Rickettsia in the sweetpotato whitefly Bemisia
tabaci, the scattered pattern located throughout the host hemocoel but not in the bacteriocytes,
while another confined pattern was restricted to the bacteriocytes.Meanwhile, the scattered
Rickettsia increased largely during the 21 days of post-adult emergence. The localization of
Wolbachia within its arthropod hosts has been intensively studied, especially in Drosophila
reproductive organs (ovaries and testes), but in whitefly hosts, only one study from Gottlieb
et al. [20] revealed that Wolbachia was detectedmostly at the circumference of and inside the
bacteriocytes in the invasive B. tabaci Q biotype. Here, we investigate the infection dynamics
and localization of Wolbachia in its B. tabaci AsiaII7 host via PCR and fluorescence in situ
hybridization (FISH) methods.We propose that Wolbachia can also have varied localization
patterns in B. tabaci AsiaII7 host and these patterns may not relate to the developmental stages
of its whitefly host.

Materials and Methods
Whitefly B. tabaci AsiaII7 cryptic species (formerly Cv biotype), which is a serious pest of agri-
culture in South China [21], was used in the current study. The AsiaII7 B. tabaci was originally
collected from hibiscus (Hibiscus rosa-sinensis) in 2013 at Yuancheng city (114°41'28"E, 23°
44'13"N), Guangdong province of China. The population was firstly reared on the same plant
species in separate greenhouses at South China Agricultural University (SCAU) with ambient
temperature, photoperiod and humidity, and then a subcolony was reared under constant labo-
ratory conditions (26.0±0.5°C, RH 70–80%, 14:10 L:D photoperiod; light intensity was approx-
imately 3000Lux) for experimental use. The purities of both greenhouse and laboratory
populations were monitored monthly by sequencing the mitochondrial COI DNA according
to the methods described by Qiu et al. [21].

Detection ofWolbachia in AsiaII7 whitefly
The presence of Wolbachia in AsiaII7 B. tabaci at different developmental stages was detected
by PCRmethod. The 3rd - 4th instar nymphs, male and female adults of AsiaII7 B. tabaci were
individually homogenized in lysis buffer, while 15–20 eggs were homogenized together due to
the potential low titer of Wolbachia within them.Whitefly DNA samples were extracted as pre-
viously described by Ahmed et al. [22]. The special primers used for Wolbachia detectionwere
the Wolbachia surface protein (wsp) primers from Braig et al. [23] (wsp-81F: 5'-TGGTCCAA
TAAGTGATGAAGAAAC-3', wsp-691R: 5'-AAAAATTAAACGCTACT CCA-3') and the 16S
rDNA primer from Li et al. [24] (315f: 5'-GCATGAGTGAAGAAGGCC-3',628R-5'-AGAT
AGACGCCTTCGCCA-3').The PCR procedure for wsp and 16S rDNA genes was as follows:
firstly pre-denaturation at 95°C for 3 min then followed by 35 cycles of 94°C for 35 sec, 55°C
for 30 sec and 72°C for 30 sec, and finally a 10 min extension period at 72°C. All PCRs were
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performed in a 25μl reaction volume that included 2.5 mMMgCl2, 200 mM for each dNTPs,
1μM of each primer, and 1 unit DNA Taq polymerase (Invitrogen, Guangzhou, China). After
amplification, 5μl of the PCR product was visualized on a 1% agarose gel containing GoldView
colourant and then photographed. When bands with the expected size were visible in the gels,
the remaining 20μl of PCR product was sent for sequencing. Each PCR detection included a
positive (DNA of Portiera aleyrodidarum) and negative (ddH2O) control to identify the DNA
quality. Between 25–30 individuals of nymphs, male and female adults were screened in this
experiment.

FISH visualization ofWolbachia in AsiaII7Whitefly
Eggs, 3rd instar nymphs, male and female adults of AsiaII7 B. tabaci (20 individuals for each
stage) were randomly collected and placed in Carnoy’s fixative. FISH detections were per-
formed with the symbiont-specific 16S rRNA of Wolbachia (W2-Cy3: 5’-CTTCTGTGAGTAC
CGTCATTATC-3’) and the method describedby Gottlieb et al. [25]. Stained whitefly samples
were mounted and viewed under a Nikon eclipse Ti-U FluoView inverted microscope, and a
no-probe staining AsiaII7 whitefly specimenwas used as a negative control in the FISH detec-
tion. The individual numbers of different Wolbachia localization patterns in the nymph and
adult stages of AsiaII7 were recorded. Experiments were repeated 3 times, and the proportion
of whitefly individuals with scattered and confinedWolbachia were finally calculated.

In order to investigate whether the location patterns of Wolbachia change or not during the
development of AsiaII7 immatures, the egg, nymph and adult samples (3–5 samples for each
stage) from the same parent whitefly were collected.Wolbachia was visualized by FISH using
the same probe and methods stated above. In an additional experiment, 5 females and their
eggs (F1 generation) were collected separately. The location patterns of Wolbachia in the
mother females and their eggs (F1 generation) were also examined by FISH. The experiments
were repeated three times.

Data analysis
The mean percentages of different Wolbachia localization patterns in the egg, nymph and
adult stages of whitefly were analyzed using Proc Means program (SAS 9.2), and the differences
were compared using t-test (PRT program, SAS, 9.2) at a significance level α = 0.05.

Results

Wolbachia infection in AsiaII7 whitefly
The results of Wolbachia PCR screening based on wsp and 16S rDNA genes showed identical
infection results both in the immature and adult stages of AsiaII7 B. tabaci including egg,
nymph, male and female adults; all were infected with Wolbachia (Fig 1). The infection per-
centages of Wolbachia in nymph, male and female adults were 92.9% (26/28), 90.5% (19/21)
and 96.2% (25/26), respectively, revealing a high infection status of Wolbachia in the AsiaII7 B.
tabaci populations.

FISH visualization ofWolbachia in AsiaII7 whitefly
Results of fluorescence in situ hybridization revealed two localization patterns of Wolbachia in
all the developmental stages of AsiaII7 B. tabaci, a scattered pattern and a confined pattern. In
the eggs, the confined pattern of Wolbachia was very distinct, which was restricted in the bac-
teriome localized at one end of the whitefly egg (Fig 2a), while in the scattered pattern this
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symbiont was pervasive in the whole egg (Fig 2b). Moreover, it seems that more Wolbachia
was concentrated in the pedicel end of the egg than other parts in the scattered localization
pattern.

When infecting the AsiaII7 whitefly nymph in a confined pattern, Wolbachia was detected
mostly around or inside the bacteriomes located in the abdomen of hosts (Fig 3a). However, on
the contrary, the scattered Wolbachia symbiont was visualized not only in the bacteriomes but
also in different body regions of nymph (Fig 3b). The localization of Wolbachia in the adults of
AsiaII7 B. tabaci was similar to that in the nymphs; confined symbiont was restricted to the
bacteriomes in the abdomens of males and females, and scattered Wolbachia was found both
in and outside of the bacteriomes, located in the organs of abdomen, thorax and head (Figs 4a
and 4b, 5a and 5b). The detection of the location patterns of Wolbachia in the egg, nymph and
adult samples from same parent whitefly, indicated that location patterns did not change dur-
ing the whole developmental period. Adult females infected with confinedWolbachia always
producedWolbachia-confined eggs, while those infected with scattered Wolbachia always

Fig 1. The infectionofWolbachia in the different stages of AsiaII7Bemisia tabaci.Wolbachiawas detected by PCR
with the specificwsp primers, an expected DNA band of approximately 610 bp positively appeared in all the samples. M:
DNAmarker;Lanes 1–6 are positive control (Portiera, ~1000 bp), negative control (ddH2O), egg, nymph, male and
female adults of AsiaII7 respectively.

doi:10.1371/journal.pone.0162558.g001
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producedWolbachia-scattered eggs. In addition, our results also indicated that the distribution
patterns of Wolbachia symbiont were not associated with the sex of whitefly host.

Dynamics ofWolbachia localization in AsiaII7 whitefly
Although both the confined and scattered localization patterns of Wolbachia were detected in
the AsiaII7 B. tabaci, FISH visualization results revealed that the scattered localization pattern
was significantly lower than the confined one. The percentages of host individuals infected
with scattered Wolbachia were 19.73 ±1.85%, 21.6 ±1.62%, 23.6±2.64% and 24.4±1.96% for egg
nymph, adult males and adult females, respectively (Fig 6, S1 Table, M±SE). Again, it seems
that the distribution patterns of Wolbachia symbiont are not associated to the developmental
stage (nymph or adult) and sex of host (male or female).

Discussion
During the past two decades, the associations of bacterial endosymbionts and their arthropod
hosts have become a matter of interest. A significant increase in studies on related topics sug-
gests that these symbionts play significant roles in the biology of their hosts [8, 26–28]. Among
arthropods, sap-feeding insects such as whitefly, aphid, psyllid and leafhopper, usually harbor

Fig 2. FISH visualization ofWolbachia in the eggs of AsiaII7Bemisia tabaci.Panel a-b: confined and
scatteredWolbachia in whitefly eggs; panel c: the negative control whitefly egg hybridization without specific
probe. Left panels: fluorescence in dark field; right panels: fluorescence in bright field. E: AsiaII7B. tabaci
egg.

doi:10.1371/journal.pone.0162558.g002
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abundant species of secondary endosymbionts, including Rickettsia, Wolbachia, Arsenophonus,
Cardinium, Serratia and Regiella [20, 29–33]. Endosymbionts are usually diverse in different
host species, and even or in different geographical populations of the same host species. For
example, B. tabaci is a small hemipterous insect that feeds on the phloem sap of numerous host
plants. It is currently considered as a complex of at least 24 distinct cryptic species, which are
morphologically indistinguishable but differ markedly in their host range, ability to transmit
viruses and the endosymbionts they are infected with [28, 34]. Therefore, investigation on indi-
vidual endosymbiont species and their distribution patterns has been an area of interest due to
their important effects on host fitness. In this study, although the confocal microscope images
of primary Portiera and secondaryWolbachia are not available, we have systematically and dis-
tinctly showed two different localization patterns of Wolbachia in all the developmental stages
of the same whitefly host, AsiaII7 B. tabaci. Moreover, the distribution patterns were similar to
those previously found in Rickettsia symbiont. The differences in symbiont localizationwere
thought to be the results of a genetic modification in host factors that control the movement of
symbiont, or of a change in the bacterium itself so affectingmobility [3].

It is well known that the obligate primary endosymbionts such as Buchnera in aphids, Por-
tiera in whiteflies and Carsonella in psyllids are generally confined and localized in the special

Fig 3. FISH visualization ofWolbachia in the nymphs of AsiaII7Bemisia tabaci.Panel a-b: confined and
scatteredWolbachia in nymphs; panel c: the negative control whitefly nymph hybridization without specific
probe. Left panels: fluorescence in dark field; right panels: fluorescence in bright field. B: bacteriome in
whitefly host, H: haemolymph tissue of whitefly host.

doi:10.1371/journal.pone.0162558.g003
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cell bacteriocytes,which are highly related to strictly vertical transmission from parents to off-
spring [3, 29, 35], while the secondary symbionts are generally distributed in other organs of
host insects. Thus, it is speculated that the various locations of these symbionts may be highly
associated with their different physiological roles in their hosts [6, 8, 36–38]. Primary symbi-
onts are essential for host survival and development, providing the host with essential amino
acids and vitamins [3]. Thus, the long term co-evolution of primary symbionts with an insect
host has meant the forming of their own mechanisms to ensure their vertical transmission. For
secondary symbionts, their distributions may indicate that they are not necessary for host sur-
vival, but they may have more functions relating to host biology, so affecting the phenotype of
the host. In this study, the scattered Wolbachia was found both in and outside of the bacter-
iomes, distributed in the reproductive system and other tissues of AsiaII7 B. tabaci host,
whereas the confinedWolbachia was only found within the bacteriomes. The DNA sequencing
of 16S rDNA and wsp genes revealed that these two patterns of Wolbachia are 100% and 99.9%
identical to each other (BLQ unpublished data), but whether their physiological functions are
same or not, still needs to be further investigated.

Wolbachia is not the only endosymbiont with more than one localization pattern in its
whitefly host. In B. tabaci Middle East-Asia Minor 1 cryptic species (MEAM1, formerly B

Fig 4. FISH visualization ofWolbachia in the male adults of AsiaII7B. tabaci.Panel a-b: confined and
scatteredWolbachia in male adults; panel c: the negative control whiteflymale hybridization without specific
probe. Left panels: fluorescence in dark field; right panels: fluorescence in bright field. B: bacteriome in
whitefly host, H: haemolymph tissue of whitefly host.

doi:10.1371/journal.pone.0162558.g004
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biotype), Caspi-Fluger et al. [3] revealed that the secondary symbiont Rickettsia presents two
distinct localization patterns throughout development and adulthood in its whitefly host,
which is similar to the Wolbachia location patterns discovered in current study: in the scattered
pattern, Rickettsia is localized throughout the whitefly hemocoel, excluding the bacteriocytes,
while in the confined pattern, Rickettsia is restricted to the bacteriocytes. In pea aphids, Rickett-
sia, Hamiltonella, Serratia and Regiella were found in three localizations within their hosts: sec-
ondary bacteriocytes,oocytes, sheath cells, salivary glands and haemolymph [31, 39, 40]. The
localizations of these symbionts in these organs may give us some clues to their possible hori-
zontal transmission routes. For example, by localizing in the reproductive system, male-borne
symbionts can be acquired by females and subsequently established stable, maternally trans-
mitted associations [41], by localizing in the salivary glands, Rickettsia can be inputted into the
phloem of a plant by a donor whitefly and then easily taken up by a recipient whitefly feeding
on the same plant leaves [42]. In addition, when localized in the haemolymph, Wolbachia has a
high possibility to be phoretically picked up by parasitoids when they are probing to check a
donor whitefly nymph and therefore input this symbiont into another individual during the
next probing exercise [43].

Fig 5. FISH visualization ofWolbachia in the female adults of AsiaII7B. tabaci.Panel a-b: confined and
scatteredWolbachia in female adults; panel c: the negative control whitefly female hybridization without
specific probe Left panels: fluorescence in dark field; right panels: fluorescence in bright field. B: bacteriome
in whitefly host, H: haemolymph tissue of whitefly host.

doi:10.1371/journal.pone.0162558.g005
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In conclusion, during this study we have shown that one insect host can harbor different
distribution patterns of Wolbachia in the bacteriocytes and haemolymph simultaneously.
These new findings are helpful to understand why there is a high abundance of symbionts
includingWolbachia in arthropod communities in nature. The physiological roles of these
symbionts in different localization patterns should be further investigated, as most of them are
directly involved in phenotype characteristics of their individual host species, including virus
transmission, chemical resistance, heat tolerance, host’s immunity and also host protection
against parasites and pathogens.

Supporting Information
S1 Table. The related raw experimental data for Fig 6, Locationpatterns ofWolbachia in
the different stages of AsiaII7 B. tabaci.
(XLS)
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