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Abstract
The spread of human immunodeficiency virus (HIV) infection and the resulting acquired

immune deficiency syndrome (AIDS) is a major health concern in many parts of the world,

and mathematical models are commonly applied to understand the spread of the HIV epi-

demic. To understand the spread of HIV and AIDS cases and their parameters in a given

population, it is necessary to develop a theoretical framework that takes into account realis-

tic factors. The current study used this framework to assess the interaction between individ-

uals who developed AIDS after HIV infection and individuals who did not develop AIDS

after HIV infection (pre-AIDS). We first investigated how probabilistic parameters affect the

model in terms of the HIV and AIDS population over a period of time. We observed that

there is a critical threshold parameter, R0, which determines the behavior of the model. If R0

� 1, there is a unique disease-free equilibrium; if R0 < 1, the disease dies out; and if R0 > 1,

the disease-free equilibrium is unstable. We also show how a Markov chain Monte Carlo

(MCMC) approach could be used as a supplement to forecast the numbers of reported HIV

and AIDS cases. An approach using a Monte Carlo analysis is illustrated to understand the

impact of model-based predictions in light of uncertain parameters on the spread of HIV.

Finally, to examine this framework and demonstrate how it works, a case study was per-

formed of reported HIV and AIDS cases from an annual data set in Malaysia, and then we

compared how these approaches complement each other. We conclude that HIV disease

in Malaysia shows epidemic behavior, especially in the context of understanding and pre-

dicting emerging cases of HIV and AIDS.

Introduction
Acquired immune deficiency syndrome (AIDS), caused by infection with human immunodefi-
ciency virus (HIV), is one of the most alarming and deadly diseases in human history. The
total number of people living with HIV and AIDS in 2013 was 35 million [1]. The spread of
AIDS through populations has caused panic and economic disturbance. In the last three
decades since the emergence of AIDS, many interdisciplinary scientific efforts have coalesced
to model the spread of this disease. In 1989, Hyman and Stanley [2] generated mathematical
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models based on the underlying transmission mechanisms of HIV/AIDS that were used to
understand and anticipate its spread in different populations. In 1991, Romieu et al. [3] pre-
sented work demonstrating how to model the spread of HIV/AIDS in Mexico City; the goal of
their work was to provide a conceptual framework to help understand the transmission
dynamics of infection and give a reasonable estimation of the short-term cumulative number
of AIDS cases. Mathematical modeling of the spread of HIV/AIDS has become even more use-
ful in the modern era of AIDS research. In 2011, Nyabadza [4] presented a simple deterministic
HIV/AIDS model that applied ordinary differential equations to the current South African sit-
uation and considered the use of condoms, sexual partner acquisition, behavior change, and
treatment; their results suggested that HIV/AIDS could be controlled through these measures.
Naresh [5] calculated the spread of the AIDS epidemic with immigration among HIV-infected
individuals, and the findings revealed a constant flow of immigrating susceptible individuals
and individuals infected with HIV. Merli [6] presented an exploration of the implications of
patterns of sexual behavior for the spread of HIV in China; this model reflected the uncertainty
surrounding key parameters, and the analyses used showed a range of possible outcomes. In
1999, Kakehashi formulated a mathematical model to describe the spread of HIV/AIDS among
adult commercial sex workers in Japan that was used to analyze the effect of introducing HIV-
infected commercial sex workers into a population without HIV [7]. De Arazoza and Lounes
(2002) outlined how a non-linear model could be used to develop an epidemic with contact
tracing, specifically in Cuba. These authors suggested that to control the spread of HIV/AIDS,
the target group must be in contact with individuals who carry HIV [8]. In 2008, Kim [9] for-
mulated a simple continuous model for the transmission of HIV, although this model failed to
consider the demographic parameters that have a significant impact on modeling the spread
of HIV. Furthermore, most of these previous models have serious drawbacks. For instance,
most of these models failed to demonstrate how the impact of AIDS causes the death of HIV-
infected individuals. These models also typically describe changes in time and are therefore
referred to as ‘dynamic’models, where time is the independent variable. Similar work was con-
ducted by Haario et al. (2006) [10], who proposed various strategies to combine two quite pow-
erful ideas in the Markov chain Monte Carlo method (MCMC), adaptive Metropolis samplers
and delayed rejection, to study the spread of algae.

The current study assessed the robustness of a new method for predicting the spread of
AIDS among HIV-infected individuals. We used Monte Carlo-based methods, including
importance sampling and MCMC approaches, which are more useful in dealing with the non-
linearity and interdependency of parameters through their application to a model describing
the dynamics of HIV [11]. MCMC is one of the most important numerical techniques for cre-
ating a sample from the posterior distribution, and it has been widely used in mathematical
modeling to quantify parameter uncertainties [10,12,13]. In the current study, we formulated a
deterministic mathematical model to reflect the trend of AIDS cases after HIV infection, and
we also applied MCMC approaches by considering the uncertainty in the model parameters
and the model output to supplement the mathematical model.

Materials and Methods
We present the simplest HIV disease models where individuals classified as a sexually active
population are divided into four classes: susceptible, S(t); infected, (HIV) I(t); pre-AIDS cases
who did not progress to AIDS after HIV infection, A1(t); and AIDS cases who have AIDS after
HIV infection at time t, A2(t). HIV can be transmitted to a susceptible person when they come
into contact with an infected person via the appropriate transmission routes. In 2003, Rao [14]
formulated a model for individuals who did or did not develop AIDS after the HIV epidemic in
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India. Unlike the model from this report [14], our model assumed that γ is the rate at which an
individual will fully move from A1(t) class to A2(t) class, which is a very significant indicator of
when an intervention should be introduced. We assumed that the infected individuals are capa-
ble of having children that are either infected with HIV or will not have HIV. However, the sus-
ceptible class has a recruitment rate equivalent to the birth rate, b, which is independent of
vertical transmission. Moreover, this model assumes that infected newborn babies enter the
HIV class at the rate of b(I + A1 + A2), for which we assume that I, A1, and A2 are sexually
active, and πb(I + A1 + A2) are individuals who are infected and enter the HIV stage. The por-
tion π of these individuals is assumed to be infected with HIV (categorized in the I class), and
the complementary portion (1 − π)b(I + A1 + A2) is considered susceptible (and moves to the
susceptible class S). The removal rate of infected HIV individuals who enter the AIDS class is
represented by α; the portion of HIV-infected individuals is δ. This model also assumes that at
rate δα, some of the HIV-infected cases transition to the AIDS group, whereas the remaining
HIV-infected cases move to the class of individuals who do not develop AIDS (pre-AIDS) after
an HIV infection rate of (1 − δ)α, where 0� δ� 1. The model also assumes the natural death
rate μ of individual deaths from all four compartments. β is the contact rate between suscepti-
ble individuals and exposed or HIV-infected individuals. AIDS patients are given an additional
disease-induced mortality rate: σ> 0, ε> 0 and ρ> 0 for I(t), A1(t) and A2(t), respectively.
This form of a susceptible–infected–pre-AIDS–AIDS (SIA1A2) model can be used to model
HIV disease based upon the assumption that once an individual becomes infected, that individ-
ual remains infectious for life, as shown in Fig 1.

The deterministic systems of nonlinear differential equations describing the SIA1A2 models
of HIV disease with additional demographics (birth and death) for an individual population

Fig 1. Schematic representation of the SIA1A2 model. The flow chart of the SIA1A2 model.

doi:10.1371/journal.pone.0131950.g001
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are listed as follows:

dS
dt

¼ bSþ ð1� pÞbðI þ A1 þ A2Þ � bIS� mS ð1Þ

dI
dt

¼ pbðI þ A1 þ A2Þ þ bIS� ðmþ aþ sÞI ð2Þ

dA1

dt
¼ ð1� dÞaI � ðmþ εþ gÞA1 ð3Þ

dA2

dt
¼ ad I � ðmþ rÞA2 þ gA1 ð4Þ

The summation of 1)–(4) and substituting S = N − I − A1 − A2 into (2) are given by

dN
dt

¼ bN � mN þ ða� sÞI � εA1 � rA2 ð5Þ

dI
dt

¼ pbðI þ A1 þ A2Þ þ bIS� ðmþ aþ sÞI ð6Þ

dA1

dt
¼ ð1� dÞaI � ðmþ εþ gÞA1 ð7Þ

dA2

dt
¼ ad I � ðmþ rÞA2 þ gA1 ð8Þ

where N(t) represents the total population.

MCMC approach
The MCMCmethod consists of algorithms for inverse modeling, in particular identifiability
[15], which includes the local and global sensitivity analysis, and this was employed to estimate
parameter uncertainties [10,16,17]. One of the MCMCmethods suited for use with dynamic
models is delayed rejection adaptive metropolis [10], which was applied to analyze how the
model fits the reported HIV and AIDS cases. The MCMCmethod was applied to sample from
the probability distribution by creating a Markov chain with a set of parameters, which com-
bine the parameter values representing the parameter distribution at the equilibrium distribu-
tion. We set the prior distribution for the parameters to θ and independent variables t (for
details see [11]). Similarly, we set y to represent our system of non-linear Eqs (1)–(4) model
(e.g., f(t, θ)). We also assumed that χ is the additive and the independent Gaussian error, with
unknown variance σ2. These terms can be defined as follows:

y ¼ f ðt; yÞ þ w ð9Þ

w � Nð0; s2Þ ð10Þ

The posterior for the parameters is estimated as [16]

p
�
yjy; s2

� / exp �0:5
SSðyÞ
s2

� �� �
� ppriðyÞ ð11Þ
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where SS is the sum of squares function SS(θ) = ∑ (yi − f(ti, θi))
2 and ppri (θ) is the prior distribu-

tion of the parameters. To obtain proper results from the MCMCmethod, a constrained least
squares approach is necessary to provide initial estimates of θi. If the non-informative prior ppri
(θ) is constant for all of the values of (θ), this can be ignored.

For the reciprocal of the error variance (σ−2), a gamma distribution is used:

ppriðs�2Þ � G

 
n0

2
;
n0

2
S20

!
: ð12Þ

The reciprocal of the error variance at each MCMC step is sampled from a gamma distribu-
tion [18] as follows:

pðs�2jðy; yÞÞ � G
n0 þ n

2
;
n0S

2
0 þ SSðyÞ
2

� �
; ð13Þ

where n0 and n input arguments to the function and the number of observations, respectively
[11].

Equilibrium, stability analysis and material
In this section, we describe the selection of equilibrium points to determine whether the popu-
lations are constant or changing. Additionally, we determined whether the model system was

stable or unstable. At equilibrium, (5)-(8) becomes dN
dt
¼ dI

dt
¼ dA1

dt
¼ dA2

dt
¼ 0.

bN � mN þ ða� sÞI � εA1 � rA2 ¼ 0 ð14Þ

pbðI þ A1 þ A2Þ þ bIðN � I � A1 � A2Þ � ðmþ daþ sÞI ¼ 0 ð15Þ

ð1� dÞaI � ðmþ εþ gÞA1 ¼ 0 ð16Þ

ad I � ðmþ rÞA2 þ gA1 ¼ 0 ð17Þ
From (16) and (17) we get

A1 ¼
ð1� dÞaI
mþ εþ g

ð18Þ

A2 ¼
aIðdmþ dεþ gÞ

ðmþ rÞðmþ εþ gÞ ð19Þ

By submitting (18) and (19) into (14), and solving for I, A1, and A2, we obtain:

I ¼ ðmþ rÞðmþ εþ gÞNðb� mÞ
ðmþ rÞ�ðs� aÞðmþ εþ gÞ þ aεð1� dÞ�þ raðdmþ dεþ gÞ

A1 ¼
ð1� dÞa

ðmþ εþ gÞ

(
ðmþ rÞðmþ εþ gÞNðb� mÞ

ðmþ rÞ½ðs� aÞðmþ εþ gÞ þ aεð1� dÞ� þ raðdmþ dεþ gÞ g
A2 ¼

aðdmþ dεþ gÞ
ðmþ rÞðmþ εþ gÞ

(
ðmþ rÞðmþ εþ gÞNðb� mÞ

ðmþ rÞ½ðs� aÞðmþ εþ gÞ þ aεð1� dÞ� þ raðdmþ dεþ gÞ g
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Local stability of the equilibrium point
To determine the stability of the endemic equilibrium, we assessed the eigenvalues of the char-
acteristic equation of the corresponding Jacobian matrix, JðN�; I�;A�

1;A
�
2Þ ¼ JðE�Þ, which is

given by

JðE�Þ ¼

b� m a� s �r �ε

0 pbþ bN � ðmþ aþ sÞ pb pb

0 ð1� dÞa 0 �ðmþ εþ gÞ
0 da �ðmþ rÞ g

2
666664

3
777775 ð20Þ

The characteristic polynomial equation corresponding to J(E
�
) is given by

f ðlÞ ¼ ðl1 � bþ mÞðl2 þ aþ sþ m� pb� bNÞðl3 � 0Þðl4 � gÞ ¼ 0 ð21Þ

where

l1 ¼ b� m;

l2 ¼ pbþ bN � ðmþ aþ sÞ;
l3 ¼ 0;

l4 ¼ g:

By substituting the appropriate parameter values into the eigenvalues from Table 1, we
obtained λ1 = -0.0797, λ2 = 17.42408, λ3 = 0, and λ4 = 9.998e- 01 from the above Jacobian
matrix at the point E

�
(17). Thus, E

�
is unstable because threshold parameter basic reproduc-

tion number R0 is unconditionally greater than unity. This result represents a major concern
and an unsatisfactory indicator from the public health point of view because the aim is to stabi-
lize the epidemic at the disease-free equilibrium.

Moreover, to determine whether the disease will continue to spread, we evaluated the stabil-
ity of the disease-free equilibrium point. The reproduction number R0 is a threshold value that
can be used to determine the stability of the disease-free equilibrium [19–23]. We write the
right-hand side of system (5)-(8) as F − V with the following equations:

F ¼

0

bIN

0

0

0
BBBBBBB@

1
CCCCCCCA

ð22Þ

V ¼

mN � bN þ ða� sÞI þ εA1 þ rA2

�pbðI þ A1 þ A2Þ þ ðmþ aþ sÞI

�ð1� dÞaI þ ðmþ εþ gÞA1

� daI þ ðmþ rÞA2 � gA1

0
BBBBBBB@

1
CCCCCCCA

ð23Þ
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Then, we consider the Jacobian matrices associated with F and V:

JF ¼

0 0 0 0

0 bN 0 0

0 0 0 0

0 0 0 0

0
BBBBB@

1
CCCCCA ð24Þ

JV ¼

m� b a� s r ε

0 mþ aþ s�pb �pb �pb

0 �ð1� dÞa mþ εþ g 0

0 �da �g mþ r

0
BBBBB@

1
CCCCCA ð25Þ

The basic reproduction number of the system is obtained as the spectral radius of the matrix
JF � J�1

V is

R0 ¼
bNðmþ rÞðmþ εþ gÞ

ðmþ rÞfðmþ εþ gÞðmþ aþ s� pbÞ � apbð1� dÞg � apbðdmþ dεþ gÞ : ð26Þ

Source of data
The data source included the first reported cases of HIV/AIDS in Malaysia in 1986. The data
used in this paper were based on information collected and collated by the Ministry of Health
[24]. The formulated model was used to analyze the reported HIV and AIDS cases per year for
Malaysia between 1986 and 2011. In 1985 and 1986, the total population in Malaysia was
15.8827 and 16.3294 million, respectively. The difference between the 1985 and 1986 popula-
tions is 446,700 individuals who are susceptible to HIV infection after exposure. In 1986, three
individuals were infected with HIV, and these cases represented the initial infected I(0)

Table 1. Summary of sensitivity values.

Value Scale L1 L2 Mean Min Max

β 3.7e-05 3.7e-05 3.2e+00 5.3e-01 3.2e+00 0.0e+00 6.7122

α 1.8e-01 1.8e-01 4.7e-01 7.0e-02 3.8e-02 -7.4e-01 0.7532

μ 8.2e-01 8.2e-01 2.1e+01 3.2e+00 -2.1e+01 -3.1e+01 0.0000

δ 9.9e-01 9.9e-01 2.4e-01 4.9e-02 2.4e-01 0.0e+00 0.6339

ρ 2.1e-03 2.1e-03 2.5e-03 4.3e-04 -2.5e-03 -6.9e-03 0.0000

ε 4.2e-03 4.2e-03 2.7e-05 4.7e-06 -2.7e-05 -7.2e-05 0.0000

σ 1.0e-03 1.0e-03 6.6e-03 1.0e-03 -6.8e-03 -1.2e-02 0.0000

π 9.7e-01 9.7e-01 4.1e+00 6.1e-01 4.1e+00 0.0e+00 5.9892

b 7.4e-01 7.4e-01 2.0e+01 3.0e+00 2.0e+01 0.0e+00 28.8486

γ 9.9e-01 9.9e-01 1.6e-03 3.3e-04 1.6e-03 0.0e+00 0.0036

Where β = the contact rate between susceptible individuals and exposed or HIV-infected individuals, α = removal rate, μ = nature death rate, δ = the

portion of HIV-infected individuals, ρ = disease-induced mortality rate of A1(t), ε = disease-induced mortality rate of A2(t), σ = disease-induced mortality

rate of I(t), π = the portion of individuals infected with HIV, b = birth rate, γ = is the rate at which an individual will fully move from A1(t) class to A2(t) class.

doi:10.1371/journal.pone.0131950.t001
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compartment (HIV cases), and one individual developed AIDS after HIV infection (the A2(0)
compartment). Thus, there were 446,696 individuals in the susceptible S(0) class, which indi-
cates that the number of pre-AIDS cases after the HIV infection A1(0) class was 0.

Table 2. Summary of the estimated parameters, standard errors, t values and p-values.

Initial values Estimates Std. error t value Pr (> | t |)

β 3.699e-05 4.004e-05 1.089067e-05 3.56205518 9.315890e-04

α 1.773e-01 3.820e-01 4.294214e-02 3.45664816 1.264768e-03

μ 8.226e-01 9.264e-01 1.109851e-02 74.52726655 2.961994e-46

δ 9.861e-01 7.447e-03 2.056357e-03 3.01488412 4.348000e-03

ρ 2.114e-03 4.407e-06 2.366662e-01 2.54282300 7.284635e-01

ε 4.245e-03 6.659e-07 1.268450e+00 8.33906336 1.891227e-10

σ 9.973e-04 4.210e-06 2.549067e-01 18.8500850 9.762707e-01

π 9.890e-01 9.999e-01 7.012398e-01 1.37962601 1.750032e-01

b 7.369e-01 8.467e-01 5.762974e-03 127.09270183 6.022192e-56

γ 9.896e-01 9.998e-01 8.012397e-01 1.36972601 1.741032e-01

Where β = the contact rate between susceptible individuals and exposed or HIV-infected individuals, α = removal rate, μ = nature death rate, δ = the

portion of HIV-infected individuals, ρ = disease-induced mortality rate of A1(t), ε = disease-induced mortality rate of A2(t), σ = disease-induced mortality

rate of I(t), π = the portion of individuals infected with HIV, b = birth rate, γ = is the rate at which an individual will fully move from A1(t) class to A2(t) class.

doi:10.1371/journal.pone.0131950.t002

Fig 2. Best-fit and initial model run for HIV cases. Comparison of yearly reported HIV case simulations
with fitted parameters during the 25-year (1986–2011) calibration and validation periods. Comparing and
evaluating the performances of the plotted graph can be used for further studies. The dotted line represents
the estimated parameters, with black representing the initial parameters.

doi:10.1371/journal.pone.0131950.g002
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Results and Discussion
This section discusses the various results obtained using Malaysian data to analyze the accuracy
of our model. Ten parameters were used to enable us to determine the inaccuracies of the
model and to obtain better graphical representations.

Model fitting has become an art and requires a good understanding of the behavior of the
applied model for the known parameters. The mathematical Eqs (1)–(4) are nonlinear and
depend on constant parameters. The following sections will address the issue of determining
parameter values that minimize a measure of badness-of-fit, usually a least square function or a
weighted sum of squared residuals. This analysis will provide an estimate of the parameter
uncertainty and will quantify the effects of that uncertainty on the data.

We chose parameters with the highest sensitivity values, as shown in Table 1.
Based on the summary statistics shown in Table 1, it is clear that parameter ε has the

least effect on the output variables, whereas b shows the highest sensitivity value. This
result shows that HIV-infected, pre-AIDS, and AIDS individuals are born at a rate of b, the
newborn baby birth rate, which is more significant than the remaining nine parameters.

When L1 ¼
X

jSijj
n

and L2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

ðS2ijÞ
n

r
are the L1 norm, this condition is referred to as

the least absolute deviations, and the L2 norm is known as the least squares. The mean repre-
sents the mean of the sensitivity functions, the Min represents the minimal value of the sensi-
tivity functions, and Max represents is the maximal value of the sensitivity functions, as shown
in Table 2.

Fig 3. Best-fit and initial model run for AIDS cases. Comparison of yearly reported AIDS case simulations
with fitted parameters during the 25-year (1986–2011) calibration and validation periods. Comparing and
evaluating the performances of the plotted graph can be used for further studies. The dotted line represents
the estimated parameters, with black representing the initial parameters.

doi:10.1371/journal.pone.0131950.g003
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Table 2 shows that all ten parameters have a small standard error, which provides a good
representative of the real data of the entire population. Because the standard error is also
inversely proportional to the sample size, this implies that the larger the sample size, the
smaller the standard error. There were 25 data points with a degree of freedom of 23. All of
the parameters have p-values less than 0.05, which suggests that the differences of overall
parameters are statistically noteworthy. Because the t-values are significantly greater and
because p-values are smaller as t-values get larger, there is a difference between the four com-
partments (i.e., S(t), I(t), A1(t), and A2(t)).

The empirical mean and standard deviation for each variable, standard error of the mean,
and their respective 95% confident intervals are reported in Table 2. The disease-induced mor-
tality rate ε for AIDS A1(t) cases that did not progress to AIDS after HIV infection at time t
showed the highest standard deviation, which has a significant impact on the spread of AIDS.

For comparison, the initial model output and the best-fit model are plotted against the data
shown in Fig 2 and Fig 3.

The following figures show the simulations from the MCMC approach for each parameter.
From Fig 4, the traces of the MCMC chain (grey line) show that the chain has converged,

which indicates that there is no apparent drift. The last figure also shows the error variances for
each observed variable.

Fig 4. MCMC parameter values per iteration. The traces of the MCMC chain (grey line) show that the chain
has converged, indicating that there is no apparent drift. The last Fig also shows the error variances for each
observed variable.

doi:10.1371/journal.pone.0131950.g004
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In Fig 5, the pairs plot shows a strong relationship between parameters γ and ρ (the rate at
which an individual will fully move from A1(t) class to A2(t) class and the disease-induced mor-
tality rate for A2(t), respectively). This plot visualizes the pairwise relationship in the upper
panel, the correlation coefficients in the lower panel, and the marginal distribution for each
parameter, represented by a histogram, on the diagonal. This figure also shows the correlation
between the mean HIV reported cases and the various parameters, as well as their positive
relationships.

As shown in Fig 6, the high variances were observed in the following compartment order:
S> I> A2 > A1, which shows the predictive accuracy of the model reflected by the variance of
the predictive distribution. The large variance is due to either the uncertainties in the model or
noise in data collection, and this model fit the noisy data reasonably well.

Conclusion
This study demonstrates how to model the spread of AIDS after HIV infection. As with any
modeling study of such a complex system as HIV and AIDS, several assumptions were neces-
sary to make the analysis tractable. We assumed that there were sexual interactions between
the susceptible and HIV-infected populations, that infected newborn babies moved directly to
the HIV class and that a fraction of the remaining population also moved to the susceptible

Fig 5. Pairs plot of the MCMC samples for the ten parameters. The pairs plot shows a strong relationship
between parameters γ and ρ (the rate at which an individual will fully move from the A1(t) class to the A2(t)
class and the disease-induced mortality rate for A2(t), respectively). This plot visualizes the pairwise
relationship in the upper panel, the correlation coefficients in the lower panel, and the marginal distribution for
each parameter, represented by a histogram, on the diagonal. This Fig also shows the correlation between
mean HIV reported cases and the various parameters, as well as their positive relationships.

doi:10.1371/journal.pone.0131950.g005
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class to increase the growth of the total population. The model also assumed that γ is the rate at
which an individual will fully move from A1(t) class to A2(t) class; this rate was not considered
by the model reported in a previous study [14]. HIV/AIDS continues to infect the susceptible
population if no control measures are swiftly enacted, and the endemic point, if it existed,
could have been stable if all the eigenvalues were negative. The reproduction number R0 is a
threshold value or number that determines the stability of the disease-free equilibrium. If R0 >

1, then an epidemic of AIDS occurs, and if R0 < 1, then the disease-free equilibrium is locally
asymptotically stable and disease becomes endemic. Our results show that the disease-free
steady state is unstable because the basic reproduction number R0 was 13.22657. These results
show that the number of HIV cases and AIDS cases is still epidemic within the Malaysian pop-
ulation, and this will have policy implications for the most at-risk groups of populations, espe-
cially the HIV-infected population (Fig 2 and Fig 3). The public health implication of this
instability is that HIV will continue to infect the susceptible population because in the rate of
newborn babies b(I + A1 + A2), b is the parameter with the highest value compared with the
other parameters. Thus, there must be effective intervention measures that will continue to
minimize the spread of the HIV epidemic within the unaffected population. Furthermore,
there must be effective ways to minimize the spread of pre-AIDS A1(t) cases that progress to
AIDS after HIV infection, especially the rate of newborn babies b(I + A1 + A2), because this
had the highest impact on disease spread and indicated that more infected HIV/AIDS individ-
uals are born at these stages than at the other stages. Our results further suggest that without
the intervention of antiretroviral medication (drug treatment), the rate γ at which an individual

Fig 6. Sensitivity range of yearly reported HIV and AIDS cases. The high variances were observed in the
following compartment order: A1 > A2 > I > S. This shows that there was predictive accuracy of the model
reflected by the variance of the predictive distribution. The large number for the variance is due to either the
uncertainties in the model or noise in data collection, and the model fit the noisy data reasonably well.

doi:10.1371/journal.pone.0131950.g006
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will fully move from the A1(t) class to the A2(t) class is 0.99/year. This information will assist
policymakers in deciding at which stage to introduce intervention measures. The analysis pre-
sented herein with MCMC can be applied to a large class of HIV/AIDS epidemic models by
taking into account both the uncertainty in the model parameters and other characteristics of
the target posteriors by generating chains of samples. Contrasts were found as the posterior
standard deviations exceeded the standard errors, as shown in Table 2 and Table 3. The graphi-
cal descriptions further demonstrate and support the empirical results and the long-term
model prediction. We conclude that the predictive distributions generated predicted the model
to a large degree of accuracy, as shown in Fig 6. Finally, there were some significant differences
in the estimated parameters that will be useful to public health, potentially representing a prac-
tical and more effective way to epidemiologically model AIDS disease after HIV infection.
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