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Diabetes mellitus (DM) is a fast-growing chronic metabolic disorder that leads

to significant health, social, and economic problems worldwide. Chronic

hyperglycemia caused by DM leads to multiple devastating complications,

including macrovascular complications and microvascular complications,

such as diabetic cardiovascular disease, diabetic nephropathy, diabetic

neuropathy, and diabetic retinopathy. Numerous studies provide growing

evidence that aberrant expression of and mutations in RNA-binding proteins

(RBPs) genes are linked to the pathogenesis of diabetes and associated

complications. RBPs are involved in RNA processing and metabolism by

directing a variety of post-transcriptional events, such as alternative splicing,

stability, localization, and translation, all of which have a significant impact on

RNA fate, altering their function. Here, we purposed to summarize the current

progression and underlying regulatory mechanisms of RBPs in the progression

of diabetes and its complications. We expected that this review will open the

door for RBPs and their RNA networks as novel therapeutic targets for diabetes

and its related complications.
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1 Introduction

Diabetes mellitus is one of the fastest-growing metabolic disorders characterized by

chronic hyperglycemia. In recent decades, the global prevalence of diabetes in adults has

been growing at an astonishing rate. It is estimated that in 2045 there will be 693 million

adults who suffered from diabetes worldwide (Cho et al., 2018; Harding et al., 2019).

Depending on the different mechanisms, diabetes can be divided into two main forms,

type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). T1DM is

considered an auto-immune disease defined by islets β-cell damage and absolute lack

of insulin. T2DM is often accompanied by relatively insufficient insulin secretion and

insulin resistance, preventing insulin from stimulating glucose uptake into target tissues,

resulting in elevated blood glucose levels (Atkinson et al., 2014; Petersmann et al., 2019;

Weir et al., 2020). Persistent hyperglycemia affects nearly every tissue of the body that
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causes severe macrovascular and microvascular complications,

with retinopathy, cardiomyopathy, nephropathy, neuropathy,

and peripheral vascular disease serving as key avenues of

morbidity (Cole and Florez, 2020). Currently, a thorough

knowledge of the molecular pathophysiology of diabetic

complications remains elusive. Emerging evidence supports

that the RNA-binding proteins are involved in the occurrence

and development of diabetes and its complications (Nutter and

Kuyumcu-Martinez, 2018; Salem et al., 2019; Good and Stoffers,

2020; Kelaini et al., 2021). The specific mechanisms will be

described in detail in the present review.

RBPs are typically considered as proteins that are responsible

for modulating post-transcriptional gene expression in the

eukaryotic cells (Gerstberger et al., 2014). Thousands of such

RBPs have been discovered and investigated over the years. RBPs

can recognize and interact with their target RNAs to form

ribonucleoprotein (RNP) complexes which control almost

every aspect of post-transcriptional processing of target RNA

substrates, including pre-mRNA splicing, translational control,

cleavage and polyadenylation, RNA stability, RNA localization,

nuclear export, and RNA editing (Van Nostrand et al., 2020). In

recent years, numerous RBPs have been demonstrated to be

involved in many human diseases, from cardiovascular diseases

and endocrine dysfunction to cancer, and neurodegenerative

disorders (Pereira et al., 2017; Lujan et al., 2018; Yang et al.,

2018; Cao et al., 2021; Kelaini et al., 2021; Klim et al., 2021). It has

been shown that post-transcriptional dysregulation is linked to

diabetes mellitus, which serves as a reminder that RBPs may be

crucial in the pathogenesis of diabetes and its related

complications (Nutter and Kuyumcu-Martinez, 2018).

In this review, we will provide a brief overview of the

mechanisms by which RBPs exercise their functions. Then, we

will explain how these RBPs are dysregulated and their

contribution to the pathological process of diabetes mellitus.

In addition, we would like to focus on the relationships between

RBPs and diabetic complications. We believe that a

comprehensive understanding of the RBPs’ role in diabetes

and its associated complications may aid in the development

of innovative treatments in clinic.

2 Roles of RNA-binding proteins

2.1 Regulators of mRNA life cycle

The mRNA life cycle is a complex system that includes the

process of transforming the newly transcribed mRNA molecules

to fully functional mature mRNA transcripts. RBPs play an

essential role in this process. Recent studies have revealed

some RBPs do not have typical RNA binding domains

(RBDs) but are replaced by at least one intrinsically

disordered region (IDR) through which they can not only be

involved in aggregation of RNPs, but also directly engage in RNA

binding (Hentze et al., 2018). However, most RBPs are

considered to interact with their target RNAs by a limited set

of RBDs, such as the RNA recognition motif (RRM), hnRNP K

homology domain (KH), zinc-finger, and DEAD/DEAH box

helicase (Van Nostrand et al., 2020). The interaction of RBP-

RNA occurs at RBD, which is mainly located within 5′and
3′untranslated regions (UTRs) of RNA, although it can also

be found at the intronic and exonic regions. RBPs usually have a

series of repeats RBDs that work together to improve specificity

and affinity for their target mRNAs. Multiple target mRNAs can

have their expression controlled by a single RBP. Multiple RBPs

can interact with the same mRNA, playing a role in either

cooperation or competition (Pope and Medzhitov, 2018; Van

Nostrand et al., 2020).

The mechanisms of post-transcriptional regulation by RBPs

are complex and elaborate, including 5′capping, alternative

splicing of pre-mRNAs, polyadenylation, RNA degradation

and stabilization, RNA localization and export, proteins

translation (Figure 1) (Corley et al., 2020). RBPs can promote

the maturation of RNA via pre-mRNA alternative splicing,

polyadenylation, RNA editing, and the addition of the 5′ cap
in the target RNAs. RBPs can regulate pre-mRNA alternative

splicing (AS) through binding to the pre-mRNA and interacting

with the spliceosome components, which generate variant

protein isoforms from a single gene, resulting in

transcriptome and proteome diversity (Sperling, 2017).

Previous studies demonstrated that AS controlled by RBPs

plays a crucial role in diabetes and its complications (Verma

et al., 2013; Nutter et al., 2016; Gazzara et al., 2017; Belanger et al.,

2019; Verma et al., 2022). The role of RBPs in AS will be

discussed in detail in the next section.

mRNA can be exported from the nucleus to the cytoplasm to

perform the function of protein translation. RBPs such as eIF4E

is essential for translation of majority of mRNAs. It has been

reported that mRNA Cap-binding protein eIF4E can recognize

the structure of the 5′-m7GTP cap of mRNA and assemble it into

eIF4F complexes which can recruit ribosomes onto mRNA to

perform translational functions (Lazaris-Karatzas et al., 1990;

Osborne and Borden, 2015; Ho and Lee, 2016). However, under

diabetic conditions, the formation of eIF4F complexes is

inhibited and thus affects the translation rate, contributing to

the development of diabetic complications (Schrufer et al., 2010;

Dennis et al., 2015; Miller et al., 2016). Besides, RBPs can trigger

the degradation and RNA decay process by binding to cis-

regulatory RNA elements and recruiting mediators (Pérez-

Ortín et al., 2013). For example, 5′ cap can be removed by

decapping enzymes while 3′-poly A tail can be diminished by

deadenylating enzymes. A well-known element that mediates

degradation is the AU-rich element (ARE) located in the 3′UTRs
of mRNA (Mayr, 2019). Multiple studies showed that RBPs such

as Tristetraprolin (TTP) and ELAV families can regulate the

degradation of target mRNAs that contain the ARE element

(Makita et al., 2021; Sidali et al., 2021). Transcription and
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degradation rates together regulate the content of

intracellular mRNA.

2.2 Regulators of microRNA life cycle

RBPs can also control the post-transcriptional regulatory

process by regulating the biogenesis and function of non-coding

RNAs (Ho et al., 2021; Yao et al., 2022). For instance, RBPs are

required to generate miRNAs and miRNA-mediated gene

expression (Figure 1) (Ciafrè and Galardi, 2013). Immature

miRNAs are normally translated into long primary transcripts

(pri-miRNAs) with a stem-loop structure in the canonical

miRNA biosynthesis pathway (Velázquez-Cruz et al., 2021).

RBPs can influence the processing of pri-miRNA and

precursor (pre-miRNA) biogenesis by identifying and binding

sequences or special structures of the hairpin RNA. For example,

RBP Lin28 can inhibit pri- and pre-let-7 miRNA biogenesis by

interacting with the terminal loop of these immature miRNA via

Drosha and Dicer (Mayr and Heinemann, 2013). Furthermore,

overexpression of Lin28 was reported to increase glucose

utilization in different tissues as well as prevent weight gain

by suppressing let-7 miRNA biogenesis (Zhu et al., 2011; Shinoda

et al., 2013). The interaction between Lin28 and let-7 miRNA

may affect the pancreatic β-cell functions (Sung et al., 2019).

RBPs have the ability to influence the stability and turnover of

mature miRNAs (Ciafrè and Galardi, 2013; Connerty et al., 2015;

Fukao et al., 2015). The Argonaute (AGO) proteins bind to

double-stranded miRNAs and combine with them to form the

miRNA-induced silencing complex (miRISC), in which one

strand of the RNA duplex becomes functional while the other

is deleted. The mature single-stranded miRNA generally binds to

the 3′UTR of their target mRNAs, directing the translational

inhibition and RNA degradation activity of miRISC. RBPs can

bind to the 3′UTR of the target mRNAs to suppress the functions

of miRNA via competing for the same binding motif or

restructuring the target RNAs. In addition, RBPs can also

alter the structure of 3′UTRs to facilitate miRNA binding,

thereby promoting gene post-transcriptional regulation

mediated by miRNA (Connerty et al., 2015; Velázquez-Cruz

et al., 2021).

3 RNA-binding proteins and diabetes
mellitus

3.1 Insulin secretion

Pancreatic islet β-cells are marked by their ability to

synthesize and secrete large amounts of insulin, which

maintain metabolic homeostasis via lowering glycemia

(Campbell and Newgard, 2021). Although the pathogenesis of

the two types of diabetes is not exactly consistent, T1DM and

T2DM share common pathologies, such as decreased β-cell mass

and loss of insulin secretory function (Eizirik et al., 2020). RBPs

regulate a variety of processes in pancreatic β-cell, including
insulin synthesis and secretion (Good and Stoffers, 2020; Demir

et al., 2021). The abundant RNA-binding protein PTBP1 is the

most well-studied regulator of insulin secretion (Magro and

Solimena, 2013). In pancreatic β-cells, PTBP1 stabilizes

preproinsulin mRNA by binding to the pyrimidine-rich region

in its 3′UTR, thereby promoting the protein level of insulin. And

it is regulated by glucose stimulation. In rat insulinoma INS-1

cells, suppression of PTBP1 by RNAi reduces insulin secretion

(Knoch et al., 2004; Knoch et al., 2014). Besides, PTBP1 can also

bind and stabilize 3′UTR of islet cell autoantigen (ICA512)

mRNA, which is considered as an integral membrane protein

of the insulin immature secretory granules (SGs). PTBP1 may

stimulate the translation of insulin SG proteins via cap-

independent mechanisms, which may be mediated by

PTBP1 binding to the 5′UTR of the human preproinsulin

(Ins2) mRNA (Knoch et al., 2004; Fred et al., 2011; Kulkarni

et al., 2011; Knoch et al., 2014). In line with these finds, it was

later discovered that the expression of PTBP1 in glucose-induced

β-cells is mediated by the insulin receptor (IR) signaling pathway

through Akt, and silencing Akt can significantly reduce the level

of PTBP1 expression (Jeong et al., 2018). Accordingly, the level of

RBP HuD decreased in β-cells of diabetes. HuD can bind to the

Ins2 5′UTR to inhibit the translation of Ins2 and reduce insulin

production. After glucose stimulation, Ins2 mRNA is promptly

released from HuD, accompany by enabling translation of

Ins2 mRNA. HuD knockout mice exhibit increased insulin

levels in β-cells, while HUD overexpressed mice do the

opposite (Lee et al., 2012). Furthermore, HuD enhances

mitofusin 2 (Mfn2) expression level by binding to the 3′UTR
of Mfn2 mRNA. In pancreatic β-cells, its decreased expression

causes mitochondrial dysfunction (Hong et al., 2020). RBP

hnRNPK, a member of the poly C-binding protein family, is

phosphorylated and upregulated in islets under conditions

associated with T2D. HnRNPK can bind to the poly C-rich

fragments in JUND mRNA 3′UTR, thus influencing β-cell redox
homeostasis and apoptosis. Post-transcriptional upregulation of

JUND is blocked due to hnRNPK deletion during metabolic

stress. Besides, DDX3X is essential for the efficient translation of

JUND mRNA by interacting with hnRNPK (Good et al., 2019).

In addition, overexpression of RBP Lin28a protects pancreatic β-
cells from damage caused by streptozotocin (STZ) both in vitro

and in vivo. Lin28a enhanced cell survival and proliferation

through activating the PI3K-Akt signaling pathway, which is

possibly regulated by let-7 (Sung et al., 2019). DDX1, an RNA-

binding protein of the DEAD-box helicase superfamily, can

promote translation activity of insulin mRNA by binding to

its mRNA. Free Fatty Acids (FFAs) treatment causes DDX1 to be

phosphorylated and dissociated from insulin mRNA, resulting in

insulin translation inhibition (Li et al., 2018). RNA-binding

protein CUGBP1 is upregulated in the islets of diabetic mice.
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CUGBP1 reduces insulin secretion in reply to glucose and GLP-1

stimulation by binding to the 3′UTR ATTTGTT sequence of

PDE3B (Zhai et al., 2016).

RNA-binding proteins can not only directly bind to mRNA

to regulate β-cell function and insulin secretion, but there have

also been instances of RBPs and circular RNA interacting to

exercise regulatory activities (Wu et al., 2022). For example,

TDP-43 is a nuclear protein that acts as a regulator of gene

expression as well as a DNA- and RNA-binding protein involved

in RNAmetabolism. It has recently been shown that knockout of

TDP-43 in β-cells leads to defective insulin secretion (Araki et al.,
2019). The intronic circRNA (ci-Ins2/ci-INS), generated by

second intron excised from the primary insulin transcript, can

interact with the RBP TDP-43 thereby controlling the expression

of genes essential for insulin secretion in β-cells (Stoll et al.,

2020). CircPPM1F competitively interacted with RBP HuR to

suppress PPM1F translation, thus leading to pancreatic β-cell
apoptosis through promoting M1 macrophage activation.

Besides, two RBPs EIF4A3 and FUS might be oppositely

regulated and maintained the expression of circPPM1F during

the progression of T1DM (Zhang et al., 2020).

3.2 Insulin resistance

Tristetraprolin (TTP, also known as ZFP36) is an RBP that

depresses post-transcriptional gene expression via interacting

with AU-rich elements (AREs) in the 3′UTR of target

mRNAs(Blackshear, 2002). TTP is induced by insulin

stimulation in vitro and in vivo (Cao et al., 2008). The levels

of TTP are decreased in the livers of diabetic mice and humans.

TTP suppression may be due to insulin resistance and reduced

AKT signal that regulates TTP at the promoter level under

diabetic conditions. TTP binds to FGF21 mRNA 3′UTR
leading to a degeneration of FGF21. TTP-KO mice may

improve systemic glucose tolerance and insulin sensitivity by

increasing liver-induced FGF21 (Sawicki et al., 2018). RBP

hnRNP A1 interacts with glycogen synthase (gys1) and

stabilizes its mRNA, thus facilitating glycogen synthesis in

muscle tissue and preserving insulin sensitivity. Severe insulin

resistance is caused by the absence of hnRNP A1 in mice fed a

high-fat diet (HFD) (Zhao et al., 2020). In addition, it was also

reported that myeloid-specific loss of TTP protects against

glucose intolerance and improves insulin sensitivity in obesity

(Caracciolo et al., 2018). Insulin-like growth factor binding

protein (IGFBP1) modulates cellular responses independently

of IGF binding through interaction of the Arg-Gly-Asp (RGD)

sequence of IGFBP-1 with the cell surface integrin receptors.

Previous studies have indicated that increasing the levels of

circulating IGFBP1 improved insulin sensitivity in mice and

humans (Gokulakrishnan et al., 2012; Rajwani et al., 2012).

Furthermore, IGFBP1 increases insulin sensitivity by RGD

integrin-binding domain and activation of focal adhesion

kinase (FAK), thus improving glucose uptake in skeletal

muscle cells. In response to glucose stimulation, RGD peptides

can also increase insulin secretion of β-cells via FAK and

integrin-linked kinase (ILK) activation (Haywood et al., 2017).

4 RBPs and diabetic complications

4.1 Diabetic neuropathy

Diabetic neuropathy affects at least half of patients with the

development of diabetes. Patients with diabetes are

characterized by signs of axonal degeneration and

incomplete regeneration, demyelinating, and

microangiopathy (Feldman et al., 2019; Calcutt, 2020). It has

been reported that decrease of RNA-binding protein ZBP1 fails

axonal RNA localization into the injured axons after sciatic

nerve injury in T1DM rodent model induced by streptozotocin.

This failure of RNA mobilization links to a reduction in axonal

regeneration. When over-expression of ZBP1, this RBP can

rescue in vitro growth defects in injured dorsal root ganglion

(DRGs) from diabetic rats (Jones et al., 2021). Thus it shows

that ZBP1 is a crucial savior in regeneration after axonal injury

in diabetic rats.

Elav-like gene encodes Hu proteins, which belong to the

RBPs superfamily. The Hu proteins family has three neuronal-

specific members HuB, HuC, and HuD (encoded by Elav-like

2,3,4 genes respectively), while the fourth is HuR or HuA

(encoded by Elav-like 1 gene) is omnipresent (Ambrosio et al.,

2021). In another study, the neuronal-specific Hu proteins

expression level was not correlated with its own gene in the

thermal hypoalgesia condition caused by the advanced diabetic

neuropathy. Moreover, the levels of Elavl2 and Elavl3 are

reduced, while HuB is upregulated and HuD is downregulated

in diabetic mice, compared to control one. Compared to control

mice, Elavl genes and Hu proteins levels are significantly

downregulated on the premise that algesic profile is

unchanged under exposure to thermal radiation in diabetic-

resistance mice (Mustăciosu et al., 2019). It has been

certificated HuD protein upregulation in thermal hyperalgesia,

which is the early phases of diabetes while otherwise in the

thermal hypoalgesia condition caused by the advanced phases of

diabetes (Sanna et al., 2014; Sanna et al., 2015). Previous studies

indicated HuD can promote nerve regeneration and axon repair

through interacting with mRNA by regulating its location or

stabilizing the target mRNA (Wang et al., 2015; Gomes et al.,

2017; Sanna et al., 2017). Therefore, it is reasonable to believe that

the regulation of thermal hypoalgesia due to advanced diabetic

neuropathy is closely related to changes in the post-

transcriptional regulation of RNA in which RBPs are involved.

What is more, the expression level of HuC in DRG neurons of

rats with diabetic neuropathy is increased and is closely related to

diabetic colonic hypersensitivity according to our unpublished
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research. We believe that the crucial role of Hu protein family in

diabetic neuropathy can be further comprehended along with

emerging research.

4.2 Diabetic nephropathy

Diabetic nephropathy (DN) is one of the most common

chronic complications of both type 1 and 2 diabetes and is

considered as a main cause of end-stage renal disease (ESRD).

Glomerular basement membrane thickening, mesangial growth

and hypertrophy, and the accumulation of extracellular matrix

(ECM) proteins are all hallmarks of DN (Kanwar et al., 2011;

Zoja et al., 2020). In a type 1 diabetes model, the RNA-binding

protein HuR rapidly upregulated NAPDH oxidase 4 (NOX4)

expression levels by binding to AU-rich elements (Ares) in the

NOX4 mRNA 3′UTR, which induced mesangial cell (MC)

fibrotic injury and kidney damage, and a reno-protective role

was shown by suppressing HuR expression in type 1 diabetic

mouse models (Shi et al., 2020). HuR can also bind to the 3′UTR
Ares of the NOD2, increasing NOD2 expression and mRNA

stability, which leads to glomerular mesangial cells damage and

proteinuria in diabetic rats (Shang et al., 2015). In addition,

transforming growth factor-β1 (TGF-β1) can cause mesangial

extracellular matrix (ECM) proteins like collagen type 1-α2
(Col1a2) and type 4-α1 (Col4a1) to accumulate. Let-7 family

miRNAs protect mouse mesangial cells (MMC) from collagen

accumulation by inhibiting the levels of Col1a2 and Col4a1.

Under diabetic conditions, elevated TGF-β1 expressions cause an
increase in RBP Lin28b level, which is considered as a crucial

inhibitor of let-7 miRNA biogenesis, thereby leading to the

decrease of let-7 miRNA and the accumulation of mesangial

ECM proteins (Park et al., 2014). RBP IMP2 can regulate the

translation of Laminin-β2 (LAMB2), which is a component of the

glomerular basement membrane and is associated with actin

during translation. Decreased expression of IMP2 and Lamb2 in

the diabetic condition leads to impaired mesangial cell migration

and proteinuria (Schaeffer et al., 2012).

As noted above, there is a multitude of RBPs involved in the

pathogenesis of glomerular mesangial cells damage and kidney

injury. But do RBPs have an effect on renal parenchymal cells in

diabetic conditions? The answer is obvious. Heterogeneous

nuclear ribonucleoproteins (hnRNPs) are pre-mRNA binding

proteins that can regulate the processing of mRNA. In renal

proximal tubular cells of Akita hnRNP F-Tg mice, selective

overexpression of RBP hnRNP F lowers expressions of

angiotensinogen (Agt) and TGF-β1 and reduces kidney

hypertrophy and glomerulotubular fibrosis (Lo et al., 2012).

HnRNP F can suppress the transcriptional activity of rat Agt

gene promoter by binding to the insulin-responsive element

(IRE) (Wei et al., 2005). RNA-binding protein TTP expression

was significantly reduced, while HuR expression was elevated in

glomerular podocytes of patients with DKD and db/db mice. The

expression of Interleukin (IL)-17 and claudin-1 are enhanced in

the glomeruli, which are considered as targets of TTP and HuR.

Treating db/db mice with GSK-3β small molecule inhibitors

Eliminates changes in TTP and HuR in the glomeruli and

mitigates overexpression of their target genes, which in turn

also alleviates proteinuria and DKD pathology (Guo et al., 2020).

It was known in previous studies that TTP may negatively

regulate the progression of DKD, whereas HuR does the

opposite (Khalaj et al., 2017; Ross et al., 2017). The imbalance

between them may play a significant role in the occurrence and

development of DKD. Moreover, glucose in high concentration

could upregulate miR-138 level and repress the expression of

SIRT1 by binding to its 3′UTR, resulting in the TTP inhibition in

cultured podocytes as well as db/db mice renal tissues. Lower

TTP expression causes an increase in the expression of

inflammatory factors, leaving podocytes in an inflammatory

state for an extended period of time, which leads to loss of

normal morphology and function (Liu et al., 2021). RBP IGFBP-1

expression is reduced and affects the function of podocytes via

β1-integrin/FAK signaling in human type 2 diabetic glomeruli

(Lay et al., 2021).

4.3 Diabetic cardiomyopathy

Diabetic cardiomyopathy is a type of heart disease

characterized by insulin resistance in heart tissue,

compensatory hyperinsulinemia, and hyperglycemia

progression which can give rise to heart failure (HF). And it

occurs in the absence of basic cardiac diseases such as

hypertension, coronary artery disease, and heart valve disease

(Jia et al., 2018; Dillmann, 2019). CELF1, also known as CUG-BP,

is a highly conserved RNA binding protein that regulates

alternative splicing, polyadenylation, mRNA stability, and

translation of target transcripts. Previous studies showed that

CELF1 is up-regulating in the hearts of T1DMmice, but diabetes-

induced AS alterations are consistent with CELF1 depletion or

decreased CELF1 splicing activity (Blech-Hermoni et al., 2016;

Belanger et al., 2018). Interestingly, RBFox2, an RNA-binding

protein belonging to the RBFOX family, that is involved in AS

regulation in heart diseases, shows the same trend as CELF1

(Gazzara et al., 2017; Verma et al., 2022). RBFox2 regulates

cardiac function-related genes associated with diabetic

cardiomyopathy. Though levels of RBFox2 protein are

increased in the heart of diabetics, RBFox2 AS activity is low.

This is due to the production of a dominant negative isoform of

RBFox2 that blocks RBFox2-mediated AS, thereby damaging

cardiomyocytes. Dominant negative RBFox2 expression is

exclusive to diabetes and appears in its early stages, therefore

it might be served as a potential target for treating diabetic

cardiomyopathy (Nutter et al., 2016). Recently, research showed

a spliced variant of RNA-binding protein PTBP1 is expressed

aberrantly in T1DM mouse hearts compared with normal
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newborn mouse hearts. This PTBP1 spliced variant induced by

diabetes has a lower inhibitory splicing activity. Furthermore,

PTBP1 and RBFox2 regulate AS of some of their targets

antagonistically (Belanger et al., 2019). Besides, another study

indicated that CUG-BP (also known as CELF1)/RBFox2 can be

phosphorylated and up-regulated by activating PKC signaling in

diabetic heart, which in turn alters the AS of gene and contribute to

diabetic cardiomyopathy pathogenesis (Verma et al., 2013). In

addition, RBFox2 may regulate the AS of genes associated with

cGMP-PKG-Ca2+ signaling pathway and lead to cardiomyopathy

and heart failure (Wan et al., 2020). Lin28, an RNA-binding

protein that comes in two forms: Lin28a and Lin28b, is

essential for glucose metabolism (Zhu et al., 2011). Lin28a

levels were significantly reduced in the diabetic mice hearts.

Over-expression of Lin28a protects against diabetic

cardiomyopathy through improving left ventricular ejection

fraction (LVEF), promoting autophagy, and decreasing

apoptosis, which is regulated by inhibiting activation of PKA/

ROCK2 pathway (Sun et al., 2016). Moreover, Lin28a′s protective
effects, induced by activation of autophagy, were dependent on

Mst1 inhibition in diabetic mouse cardiomyocytes (You et al.,

2020). Another RBP Quaking 5 (QKI) level was deficient in

diabetic ob/ob mice myocardium. QKI-5 overexpression

undermines the stability of FoxO1 mRNA thus inhibiting

FoxO1 overactivation, which diminishes nitrosative stress and

endoplasmic reticulum stress in ob/ob myocardium (Guo et al.,

2014).

4.4 Diabetic cardiovascular disease

Vascular endothelial cell (EC) dysfunction is largely

acknowledged as a major contribution to the pathophysiology

of cardiovascular disease in people with diabetes. RBP QKI is a

member of the signal transduction and activation of RNA

(STAR) family, and it is linked to diabetic cardiomyopathy

and atherosclerosis (Yang et al., 2018). Quaking 5 (QKI-5),

Quaking 6 (QKI-6) and Quaking 7 (QKI-7) are three primary

QKI transcript isoforms that have been reported to have

important roles in the vascular system. For example, QKI-5

and QKI-6 have been demonstrated to play a key role in

cardiovascular health regulation and maintenance through

FIGURE 1
Mechanism of posttranscriptional regulation controlled by RBPs in diabetes. Schematic diagrams summarize the various roles of RBPs played in
diabetes pathology and diabetic complications. RBPs have the ability to determine RNA’s fate through pre-mRNA splicing, translational control,
polyadenylation, RNA stability, RNA localization, RNA export, and miRNA-mediated processing.
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their involvement in a variety of processes such as EC and

vascular smooth muscle cell differentiation, apoptosis, and

neovascularization (Caines et al., 2019). Recently studies have

implicated that QKI-7 expression in diabetic EC is elevated, and

QKI-7 can bind to its downstream targets to promote their

mRNA degradation. Furthermore, two RBPs CUG-BP and

hnRNPM are involved in the regulation of QKI-7. It has been

shown that these two RBPs are acting as a vital upstream factor of

QKI-7 and regulating the transcription network in diabetes. An

imbalance of CUG-BP/hnRNPM regulation causes up-regulation

of QKI-7, which increases their target mRNA degradation and

finally leads to diabetic endothelial dysfunction (Yang et al.,

2020). Lin28 is an RBP involved in kidney and cardiac

complications of diabetes (Park et al., 2014). Lin28 levels

decreased in the hearts of T1DM mice (Sun et al., 2016; You

et al., 2020). Emerging evidence has shown that Lin28 can

prevent endothelial oxidative stress in response to high

glucose by stabilizing OGG1 mRNA (Tao et al., 2021).

In addition to endothelial cell dysfunction, diabetic vascular

disease can further alter capillary density to affect coronary flow

velocity reserve (CFVR), which in turn develops into coronary

microvascular disease (CMD) (Si et al., 2021). Previous research

showed that HuR overexpression promotes angiogenesis via

stabilizing VEGF-A mRNA and modifying endothelial cell

angiogenic activity (Chang et al., 2013). In addition, diabetes

attenuates the expression of Cx40, a gap junction channel

protein, in cardiac ECs and impairs coronary microvascular

function via downregulating the level of RNA-binding protein

HuR. Overexpression of CX40 increased the density of capillary

and ameliorated CFVR in diabetic mice (Si et al., 2021).

4.5 Diabetic retinopathy

Diabetic retinopathy (DR) is a common complication of DM,

which remains a leading cause of vision damage or loss among

FIGURE 2
Overview of RBPs involved in diabetes and its related systematic complications. RNA-binding proteins implicated in the two decisive links in the
progression of diabetes and its related systematic complications are summarized. The arrows in the diagram point to either protective effects or the
opposite.
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working-age adults worldwide. Neovascularization plays an

indispensable role in DR (Wang and Lo, 2018; Kang and

Yang, 2020). DR involves early changes in the retina,

characterized by vascular endothelial growth factor (VEGF)

signal enhancement in various dysfunctions. It has been

proven that inhibiting VEGF-mediated pathological

angiogenesis enhances vision in DR patients (Stitt et al.,

2013). Under the diabetic condition, the RNA-binding protein

HuR is upregulated and binds to VEGF mRNA to regulate its

stability, thereby enhancing its protein expression which leads to

an abnormal increase in VEGF in the retina of diabetic rats

(Amadio et al., 2010; Amadio et al., 2012). Besides, increased

HuR and VEGF were suppressed by HuR silencing via

intravitreal injection of small interfering RNA (siRNA)

nanoparticles, which protect rat retinal tissue from damage

caused by DM (Amadio et al., 2016). Furthermore, recent

studies have shown that the expression of VEGF-A164 is

time-specific (Bucolo et al., 2021). And VP12/14 and VP12/

11, two derivatives containing indole structures, can regulate

HuR expression and reduce the levels of VEGF and TNF-α
release by human retinal endothelial cells (HRECs) exposed to

high glucose (HG) conditions (Platania et al., 2020). HuR may

represent a new target to inhibit the increased expression of

VEGF, thus improving diabetic retinal vascular hyperplasia and

inflammation. RNA-binding protein hnRNPA2B1 was

confirmed to be a downstream target of Transthyretin (TTR)

in human retinal microvascular endothelial cells (HRMECs).

TTR can interact with hnRNPA2B1 to form a TTR-

hnRNPA2B1 complex, which plays a critical role in TTR’s

anti-angiogenesis function in hyperglycemia via the STAT4/

TABLE 1 The regulatory mechanism of RNA-Binding proteins and the outcomes of their dysregulation in diabetic complications.

RBPs Diabetic
complications

Post-transcriptional mechanisms involved
in diabetic complications

Outcomes associated with RBPs dysregulation in
diabetic complications

ZBP1 Diabetic neuropathy mRNA location Reduce injured axon regeneration

HuD Diabetic neuropathy mRNA location/stability Promote nerve regeneration

Lin28b Diabetic nephropathy MiRNA biogenesis Promote mesangial extracellular matrix proteins accumulation
by inhibiting let-7 miRNA biogenesis

Diabetic retinopathy mRNA translation Suppress angiogenesis in hRECs and hRMECs

IMP2 Diabetic nephropathy RNA translation Promote mesangial cell migration by regulating the translation of
LAMB2

hnRNPs Diabetic nephropathy RNA translation Over-expression in RPTCs can attenuate systemic hypertension
and kidney hypertrophy

hnRNPA2B1 Diabetic retinopathy MiRNA activity inhibition repress neovascularization in DR

HuR Diabetic nephropathy mRNA translation Mesangial cell fibrotic injury and kidney damage

Diabetic cardiovascular
disease

mRNA stability Modify endothelial cell angiogenic activity

Diabetic retinopathy Post-transcriptional modifications Improve the expression level of VEGF and cause diabetic retinal
vascular hyperplasia and inflammation

TTP Diabetic nephropathy mRNA degradation The imbalance between TTP and HuR promotes podocyte injury
and inflammation in DKD

CELF1
(CUG-BP)

Diabetic cardiomyopathy Alternative splicing Low splicing activity and activate PKC signaling in diabetic hearts

RBfox2 Diabetic cardiomyopathy Alternative splicing Low splicing Activity; lead to the development of
cardiomyopathy and heart failure

PTBP1 Diabetic cardiomyopathy Alternative splicing Low inhibitory splicing Activity; PTBP1 and RBfox2 regulate
splicing antagonistically

Lin28a Diabetic cardiomyopathy RNA translation Over-expression can promote LVEF, autophagy and decrease
apoptosis

QKI5 Diabetic cardiomyopathy mRNA stability Over-expression can diminish nitrosative stress and endoplasmic
reticulum

QKI7 Diabetic cardiovascular
disease

mRNA degradation Diabetic endothelial Dysfunction

Lin28 Diabetic cardiovascular
disease

mRNA stability Prevent endothelial from oxidative stress by stabilizing
OGG1 mRNA

ZFR Diabetic retinopathy Post-translational modifications aggravate proliferation and migration induced by high glucose in
HRMECs

eLF4E Diabetic retinopathy mRNA translation Chronic retinal inflammation
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miR-223e3p/FBXW7 signaling pathway (Gu et al., 2021). The

expression level of RBP ZFR is meaningfully elevated both

in vitro and in vivo in HRMECs in response to high glucose.

Furthermore, ZFR can also enhance proliferation and migration

in HRMECs. Besides, ZFR expression stimulated by high glucose

can be attenuated by suppressing O-GlcNAcylation activity

(Xing et al., 2019). The stable expression of RBP Lin-28

homolog b (lin28b) can promote VEGF expression (Wu et al.,

2013; Weiße et al., 2020). It has been revealed that miR-152 can

specifically target lin28b 3′UTR. Under high glucose conditions,

miR-152 expression was significantly repressed, whereas lin28b

expression was meaningfully augmented. Overexpression of

lin28b increased the angiogenesis and the protein levels of

proangiogenesis factors while inhibiting the function of miR-

152 overexpression in both hRECs and hRMECs (Fu and Ou,

2020).

Furthermore, retinal neurodegeneration also occurs in the

etiology of DR, which is mainly characterized by apoptosis and

glial changes (Simo et al., 2018). Glia cells are considered as the

interface between the vasculature and neurons (Hammes, 2018).

mRNACap-binding protein eIF4E can recognize the structure of the

5′-m7GTP cap of mRNA and assemble it into eIF4F complexes,

which can recruit ribosomes onto mRNA to perform translational

functions. The recruitment of ribosomes, which can occur via a cap-

dependent or cap-independentmechanism, limits the rate ofmRNA

translation. The interaction between 4E-BP1 and eIF4E promotes

the dissociation of eIF4E from eIF4F complexes, which inhibits cap-

dependent and promotes cap-independent translation (Schrufer

et al., 2010; Dennis et al., 2015; Miller et al., 2016). In Muller

cells and retina of diabetic rats, high glucose conditions increase

REDD1 levels and enhance the binding of 4E-BP1 to eIF4E. This

reduces the overall rate of protein synthesis and cap-dependent

mRNA translation accompanied by upregulated cap-independent

VEGF mRNA translation, which is thought to be a key mechanism

in the development of DR (Dennis et al., 2015). In addition, retinal

protein O-GlcNAcylation promotes cap-independent Cd40 mRNA

translation through a 4E-BP1 dependent mechanism under a

diabetic condition in Muller glia cells. Elevated expression of the

CD40 protein in Muller glial cells leads to chronic retinal

inflammation correlates with DR (Dierschke et al., 2020).

5 Conclusion and prospects

Emerging evidence indicates that dysregulation of RBPs is

linked to a variety of disorders and affects almost every stage of

the disease progression. There is a lot of literature on RBPs and

their implicates in diabetes, but it is fragmented and lacks

systematic reviews. With a high incidence of diabetes and

severe chronic complications of multiple systems, a thorough

understanding of the post-transcriptional regulatory role of RBPs

in diabetes and its complications is critical to the development of

novel RNA-based therapies. Here, for the first time, we categorize

and summarize some common and relatively mature RBPs

according to different systemic complications (Figure 2)

(Table 1). We hope that both new therapeutic developers and

researchers working on RBPs in the diabetes field can find some

convenient and useful information from this review.

In this review, we focus on the molecular mechanisms of

RBPs and mRNA interactions, which have an either positive or

negative impact on diabetes. The functional interactions between

RBPs and non-coding RNAs, including microRNAs and circular

RNAs, are another essential aspect that is briefly explored in this

study. We have spent a lot of sections discussing that

dysregulation of RBP leads to abnormal function of its

interacting nucleic acids or proteins in diabetes. However,

RBP’s own activity is profoundly controlled by post-

translational modifications (PTMs), Which is also an

important mechanism that determines the occurrence and

development of diseases (Lovci et al., 2016). PTMs generally

refers to enzymatic reactions that occur after protein synthesis.

PTMs follow a variety of signaling transductions that induce

proteins to form covalent bonds with new functional chemical

groups such as phosphate, methyl, acetyl, and ubiquitin (Deribe

et al., 2010). PTMs can significantly alter the activity and

properties of RBPs, resulting in changes in regulating protein

activity, stability, localization, turnover and degradation

(Velázquez-Cruz et al., 2021). Phosphorylation is the most

common and widely explored among various types of PTMs.

For example, several specific phosphorylations of hnRNPK by

specific kinases can alter hnRNPK protein subcellular

localization, stability, or affinity for binding targets (Xu et al.,

2019). PTMs can also alter the Subcellular localization of HuR,

and most phosphorylation of HuR occurs in its hinged region

(Grammatikakis et al., 2017). In addition, the nuclear import of

serine/arginine-rich (SR) protein family requires

phosphorylation by the SR protein kinases 1 and 2 (SRPK1/2)

(Long et al., 2019). These post-translational modifications also

play an important role in diabetes. O-linked

N-acetylglucosamine (O-GlcNAc) glycosylation is involved in

the pathogenesis of diabetes and its related complications by

O-linked addition of GlcNAc (O-GlcNAcylation) to Ser/Thr

residues of proteins (Issad et al., 2010; Zhu and Hart, 2021).

There are multiple studies reported that O-GlcN acylation

enhancement of retinal proteins in rodent models of type

1 and type 2 diabetes (Mellor et al., 2015; Peterson and Hart,

2016; Masaki et al., 2020). The cap-binding protein eIF4E is more

readily sequestered in the mice with DR, due to the repressor of

mRNA translation 4E-BP1 being O-GlcNAcylated (Dierschke

et al., 2019). O-GlcNAc signaling activation also increases the

level of RBP ZFR under high glucose condition, which aggravates

proliferation and migration induced in HRMECs (Xing et al.,

2019). It is not difficult to grasp that PTM as a major element

governs the properties and function of RBPs with highly dynamic

and largely reversible. We do not describe in detail the regulation

of PTMs to RBPs and the complex signaling pathways it
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orchestrates. However, a thorough understanding of the

molecular underpinnings of disease-associated PTMs

dysregulation on RBPs is necessary for fully comprehending

the pathophysiological process of diseases.

In summary, we expect to fully understand the dynamic

RBPs-mediated regulatory network in diabetes. Correcting gene

expression abnormalities in diabetic patients by targeting the

interaction between RBPs and their target RNAs could be an

effective approach. RNA-based therapies are primarily designed

drugs to imitate or antagonize specific RNA processes by

mimicking the action of protective RBPs or inhibiting the

action of pathogenic RBPs. Many candidate strategies are

being applied to target RBPs for therapeutics in pre-clinical or

clinical trials, such as small-molecule inhibitors, therapeutic

small peptides, anti-sense oligonucleotides (ASOs), and siRNA

(Chi et al., 2017; Mohibi et al., 2019). Besides, circular RNAs are

also considered as a potential strategy that can be designed to

bind RBDs of RBPs and compete with target RNAs (Mohibi et al.,

2019). However, how to improve the target specificity is also a

tough problem that needs to be overcome. Although many issues

and connections of RBPs remains to be explored and solved,

existing knowledge and growing evidence show that we have an

opportunity to enter a new era in the therapies of diabetes and its

related complications.
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