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Resident memory T  cells (TRM) are a recently identified subset of long-lived memory 
T cells that are characterized in terms of their unique surface phenotype combined with 
a non-recirculating pattern of localization to non-lymphoid, peripheral tissues. TRM have 
quickly become a key area of focus in understanding immune responses to microbial 
infection in so-called “barrier” tissues, and appear to be particularly critical for protection 
against repeat exposure at the same site. More recently, tumor-infiltrating T cells with 
canonical TRM features are being identified in human cancers, in particular cancers of 
epithelial origin, and their presence is broadly found to be associated with favorable long-
term prognosis. Moreover, recent studies have shown that these “resident memory-like” 
tumor-infiltrating lymphocytes (referred to herein as TILRM) are uniquely activated in mel-
anoma patients undergoing PD-1 directed checkpoint blockade therapy. Accordingly, 
there is much interest at present regarding the biology of these cells and their precise 
role in anti-cancer immunity. Herein, we review the current state of the literature regarding 
TILRM with a specific emphasis on their specificity, origins, and relationship to conventional 
pathogen-specific TRM and speculate upon the way(s) in which they might contribute to 
improved prognosis for cancer patients. We discuss the growing body of evidence that 
suggests TILRM may represent a population of bona-fide tumor-reactive T cells and the 
attractive possibility of leveraging this cell population for future immunotherapy.
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BRieF inTRODUCTiOn TO ReSiDenT MeMORY T CeLLS (TRM) 
AnD THe TRM-DeFininG SURFACe MARKeR CD103

In recent years, there has been growing recognition of the importance of a peripheral, non-
recirculating component of the immune system known as TRM [for review see Ref. (1–3)]. TRM have 
historically been defined by their peripheral tissue localization and lack of circulatory activity. More 
recently, there is increasing understanding of the unique surface phenotype(s) of TRM and how 
the specific molecules that comprise this phenotype contribute to their (non-)circulatory nature. 
Although this phenotype can vary somewhat between tissues, disease states, and CD4 versus CD8 
subsets, most TRM in skin, lung, and GI tract typically express CD69, a molecule widely considered 
to be an indicator of recent activation, but which is also involved in downregulation of the receptor 
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for sphingosine 1 phosphate (S1P1), thereby inhibiting the ability 
of TRM to traffic out from peripheral tissue in response to S1P1 
gradients (4). Likewise, TRM frequently lack surface expression of 
CCR7, preventing them from trafficking in response to gradients 
of CCL19 and CCL21 (5). In addition, surface expression of 
CD103 (the αE component of the αE/β7 integrin molecule) (6, 7)  
is now widely considered to be a canonical marker of TRM, 
and although TRM populations can be comprised of variable 
proportions of both CD4 and CD8 cells, CD103 appears to be 
uniquely overexpressed by CD8 TRM (8). CD103 expression is also 
biologically relevant to the non-recirculating phenotype of TRM, 
as the ligand for αE(CD103)/β7 integrin is E-cadherin expressed 
on epithelial cells (9). Although chemokines are thought to be 
the initial mediator of T  cell recruitment into peripheral sites 
of inflammation, adhesive interactions between αE(CD103)/β7 
and E-cadherin is thought to be responsible for the long-term 
“retention” of antigen-specific TRM at relevant sites (10, 11). 
This phenomenon is particularly well studied in the context of 
mucosal tissue infection, where the long-term retention of TRM 
at the site of an initial infection is thought to provide durable 
and rapid protection against repeat attack by the same organ-
ism. Indeed, once TRM populations are established, they can be 
retained at the original site of infection for months or even years, 
even in the complete absence of relevant antigen (12–14). This 
TRM phenomenon can also be exploited by vaccination strategies 
that involve delivery of vaccine to the relevant mucosal tissue 
(15). Indeed, the historical field of “mucosal” immunity and the 
newer field of “TRM-mediated” immunity are rapidly merging in 
terms of the memory T cell components.

In addition to mediating adhesion and TRM formation, both 
αE(CD103)/β7 and E-cadherin are also capable of intracellular 
signaling. For example, the intracellular domain of E-cadherin 
interacts with β-catenin which in turn interacts with the actin 
cytoskeleton, affecting cell shape and motility (16). Likewise, 
cross-linking of surface-expressed αE(CD103)/β7 impacts the 
shape and motility of lymphocytes (17), enhances T cell prolifera-
tion and induces lysis of target cells (18). Thus through the com-
bination of “inside-out” and “outside-in” signals, αE(CD103)/β7 
has the potential to profoundly impact TRM effector function, in 
addition to augmenting peripheral memory formation.

MeCHAniSM OF CD103 UPReGULATiOn 
On TRM
TGF-β has long been known to play a key role in the regulation 
of αE(CD103)/β7 surface expression on T lymphocytes (19, 20). 
Although TGF-β is often considered solely as an immunosup-
pressive factor, it is, in reality, a highly pleiotropic cytokine 
that is expressed in a multitude of (primarily peripheral) tissue 
types and has biological activities that are context specific (21). 
Interestingly, although TGF-β is required for upregulation of 
αE(CD103)/β7 surface expression, TGF-β exposure alone is not 
sufficient (18, 22). Rather, it is the combination of TGF-β plus 
concurrent signaling through the TCR that results in dramatic 
and rapid αE(CD103)/β7 expression. Indeed, the combination 
of these two signals makes perfect sense biologically as it would 
allow for large numbers of lymphocytes (with diverse specifici-
ties) to transiently traffic through TGF-β-rich sites of peripheral 

infection, but result in the αE(CD103)/β7-mediated retention of 
only those T  cells with relevant specificity. This model of TRM 
formation is supported by the finding that in CD103 knockout 
mice, numbers of TRM are substantially reduced (10). Likewise, 
dysregulation of the SMAD signaling pathway downstream of 
the TGF-β-receptor results in reduced numbers of TRM (23).

Although TGF-β-mediated upregulation of CD103 clearly 
plays an important role in the establishment of TRM, it is certainly 
not the only mechanism. For example, it has also been reported 
that the formation of TRM populations can be enhanced through 
signaling via the homeostatic cytokine, interleukin-15 (IL-15) 
(24, 25). However, dependency upon IL-15 for TRM formation 
varies from tissue to tissue (26), implying that the requirement 
for IL-15 is not absolute and may be more complex than that of 
TGF-β. Moreover, as described above, CD4+ TRM populations, 
in general, express much lower levels of CD103 than do CD8+ 
TRM, thus they must maintain residency in a CD103-independent 
manner (27, 28).

TRM in THe CAnCeR SeTTinG

In recent years, there has been growing appreciation that TRM 
biology/immunology is not unique to the infectious disease 
setting. Indeed, it has long been speculated that TRM play a key 
role in both allograft rejection and autoimmunity. For example, 
αE(CD103)/β7 is expressed on the majority of tissue-infiltrating 
CD8+ T cells during transplant rejection (20, 29, 30) and graft 
versus host disease (22). In CD103-deficient mice, T cells are not 
able to infiltrate allogeneic islet cell transplants and allografts 
persist for long periods in vivo (30, 31) often surrounded by a 
characteristic “halo” of CD103-deficient CD8 T  cells. In the 
autoimmune disease setting, islet infiltrating cells in both human 
diabetic patients (32, 33) and mouse models of autoimmune 
diabetes (34) are enriched for αE(CD103)/β7-expressing TRM. 
Presumably, in each of these settings TRM are derived via the same 
TGF-β plus concurrent TCR signaling mechanism described 
above for infectious diseases.

αE(CD103)/β7-expressing tumor-infiltrating T cells (TIL) are 
also now turning up, with increasing regularity, in various cancer 
settings, particularly in cancers of epithelial origin. This should 
really not be surprising considering the relationship between 
TGF-β and αE(CD103)/β7 and the frequent expression of TGF-β 
in cancers of various types. TGF-β overexpression in cancer has 
been broadly considered as an immunosuppressive mechanism of 
tumor escape from immunological pressure (21, 35). However, an 
alternate hypothesis could be that TGF-β production by tumors 
is not so much an acquired trait as it is an amplification of the 
TGF-β that is expressed as part of the “normal” biology of epithe-
lial tissues. Regardless of the mechanism, when tumor-reactive 
T cells enter these TGF-β-rich environments and then become 
activated through the TCR, there is full reason to assume they 
would upregulate αE(CD103)/β7 on the cell surface, in the same 
manner that conventional TRM do.

However, as described above, CD103 expression is only one 
part the larger phenotypic profile that defines TRM. Whether 
CD103-expressing TIL are phenotypically identical to conven-
tional pathogen-specific TRM, or whether they are simply closely 
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TABLe 1 | Summary of studies examining CD103+ TILRM as a prognostic indicator in solid cancers.

Tumor histology Summary Reference

Bladder A large proportion of TIL in the urothelium co-express CD8+ CD103+. Carcinoma stromal tissue was highly enriched 
for CD8+ CD103+ TIL but not associated with increased E-cadherin expression

Cresswell et al. (50)

Colorectal Microsatellite instable tumors show increased infiltration of CD8+ CD103+ TIL compared to microsatellite stable 
tumors

Quinn et al. (47)

Colon CD103 expression is enhanced by antigen recognition and TGF-β signaling. T cell activation in the presence  
of TGF-β induces CD103 expression

Ling et al. (49)

Ovarian CD103+ TIL were found to be abundant across all major ovarian cancer subtypes but highly enriched in high-grade 
serous cancer (HGSC), and their presence correlates with improved survival

Webb et al. (55)

Lung CD103+ TIL correlate with improved early stage patient survival in non-small cell lung cancer (NSCLC) and 
intraepithelial TIL density. CD103+ TIL show enhanced effector function against autologous tumor

Djenidi et al. (39)

Ovarian CD103 demarcates intraepithelial CD8+ TIL which co-express PD-1 and appear quiescent in the tumor 
microenvironment

Webb et al. (41)

Breast High abundance of CD103+ TIL in ER negative (basal-like subtype) tumors within intraepithelial regions correlates 
with good prognosis

Wang et al. (40)

Melanoma Interlesional TIL populations show an enriched gene signature indicative of a resident memory phenotype which is 
responsive to immune checkpoint blockade

Boddupalli et al. (48)

Endometrial Abundance of CD8+ CD103+ TIL in endometrial tumor epithelium is a strong prognostic indicator in endometrial 
adenocarcnoma

Workel et al. (42)

Ovarian CD103+ TIL collected from HGSC co-express PD-1 and CD27. TIL activated in the presence of HGSC upregulate 
CD103

Komdeur et al. (43)

NSCLC and head and 
neck squamous cell 
cancer

Cytotoxic T lymphocytes have an enriched resident memory gene signature. CD8+ CD103+ TIL co-express 
checkpoint receptors such as PD-1 and CTLA-4. Higher density of resident memory T cells (TRM)-like TIL are 
associated with improved patient outcome

Ganesan et al. (46)

Cervical CD103 gene expression is associated with effector T cell function. Abundance of intraepithelial CD8+ CD103+ TIL 
correlates with improved patient survival

Komdeur et al. (44)

Pancreatic Increased ratio of CD8+ CD103+ TIL to CD8+ CD103− TIL correlates with improved patient survival Lohneis et al. (51)

Melanoma Presence of CD8+ CD69+ CD103+ TIL correlates with improved patient survival in melanoma. CD103+ TIL show high 
levels of expression of the inhibitory markers PD-1 and LAG-3

Edwards et al. (45)

Lung Single-cell RNA sequencing of lung TIL showed distinct pre-exhausted and exhausted TIL phenotypes. Tumor 
resident T cells expressed high levels of CD69 and CD103 overall

Guo et al. (52)

Breast Single-cell RNA sequencing of breast TIL revealed high TIL abundance was characterized by a TRM-like phenotype 
and associated with improved patient survival in triple negative breast cancer

Savas et al. (53)
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related cousins is an issue that remains to be determined. For 
example, the phenotypic features that are known to be shared 
among conventional TRM populations, regardless of their 
specificity and/or tissue location, are reported to be driven by 
the TRM master transcriptional regulators Blimp-1 and Hobit 
(36). However, the expression of Blimp-1 and Hobit in tumor-
infiltrating TRM is yet to be reported. By contrast, the transcription 
factor Runx3, which influences the downregulation of mRNA 
transcripts associated with cellular migration (S1pr1, Klf2, 
and Ccr7) appears to be expressed in both conventional and 
tumor-infiltrating TRM (37). Moreover, conventional pathogen- 
specific TRM are thought to be retained in peripheral tissue after 
resolution of infection, acting as a vanguard against future re-
exposure. In this context, a large proportion of conventional 
TRM are likely persisting in peripheral tissue in an antigen-free 
manner, until such time as they become re-challenged through 
re-exposure. By contrast, tumor-infiltrating TRM (assuming they 
are tumor-specific) are resident within active tumor tissue and 
would thus be continuously exposed to antigen, which would 
likely result in a phenotype distinct from conventional “resting” 

TRM. For these reasons and because the precise relationship 
between conventional TRM and tumor-infiltrating TRM is yet to be 
well-defined in the literature, in our laboratory we have adopted 
the term “TILRM” (resident memory-like TIL) to delineate these 
CD103-expressing tumor resident cells from conventional 
pathogen-specific TRM.

Until recently, broader investigation into the global nature of 
TILRM infiltration in human tumors was severely hampered by 
the lack of an anti-human CD103 antibody that was suitable for 
IHC of formalin-fixed tissues. This situation changed in 2013 
when a new antibody was, ironically, developed for diagnosis 
of hairy cell leukemia (38), a setting where CD103 is ectopically 
overexpressed. Since the introduction of this reagent, TILRM have 
now been reported to be present in at least eight different tumor 
settings including lung, breast, ovarian, endometrial, cervical, 
melanoma, colorectal, pancreatic, and bladder cancer (39–53) 
(see Table  1). In the majority of these reports, CD103 is used 
as a marker to delineate “intraepithelial” TIL, and more impor-
tantly, the presence of CD103+ TIL is associated with favorable 
prognosis.
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TiLRM CeLLS in THe GYneCOLOGiC 
CAnCeR SeTTinG

Our group first noted the presence of TILRM cells in the ovarian 
cancer (OvCa) setting during a flow cytometry-based survey of 
immune cells present in OvCa patient ascites (54). Interestingly, 
some but not all, ascites specimens contained CD103-expressing 
T cells, specifically within the CD8 subset and sometimes com-
prising as much as 80% of the cells in that compartment. The 
presence of these cells in a fluid-based tissue (ascites) initially 
seemed inconsistent with them being a TRM population as TRM 
are normally restricted to solid tissues. However, the ascites 
compartment in ovarian patients can contain large numbers of 
free-floating tumor cells plus abundant amounts of TGF-β. Thus 
it should not be surprising that tumor-specific T  cells present 
in this fluid compartment could adopt a TRM phenotype more 
typical of solid tissues. We have also found that these cells have a 
unique phenotype that includes upregulation of HLA-DR, Ki67, 
and PD-1, but a lack of CD69, CD137, or intracellular cytokines 
suggesting that they have been recently activated, but are not 
actively “engaging” with targets at the time of analysis. Although 
the cells were PD-1 positive (41), they lacked other markers of 
exhaustion and were capable of robust cytokine production after 
stimulation with PMA/ionomycin, ex vivo, suggesting that they 
were not terminally exhausted. These initial findings regarding 
CD103-expressing TILRM in OvCa were limited to flow cytometric 
analysis of small numbers of ascites specimens. However, once an 
IHC-suitable antibody was available, we followed up by analyz-
ing larger cohorts of patients using tissue microarray technology 
and showed that CD103-expressing TILRM cells were also present 
in the solid tumors of some, but not all, OvCa patients (55). 
Moreover, we also demonstrated that infiltration of tumors by 
TILRM correlated strongly with a favorable 5-year disease-specific 
survival advantage in high-grade serous cancer (HGSC), the most 
lethal of OvCas (55, 56). This finding has now been replicated in 
three additional cohorts of OvCa patients (43, 57, 58) as well as 
in endometrial (42) and cervical cancers (44). Clearly, TILRM cells 
are playing an important role in the gynecologic tumor setting, as 
they are in other epithelial tumor settings.

eviDenCe in SUPPORT OF TiLRM CeLLS 
BeinG “TUMOR-SPeCiFiC”

Based upon their significant prognostic benefit and unique sur-
face phenotype, we and others speculate that TILRM in OvCa as 
well as other cancers are highly likely to be tumor-specific (56). 
Unfortunately, at present there is a paucity of well-characterized 
tumor antigens in the HGSC setting to directly test this hypothesis. 
Nonetheless, our group has previously characterized the cellular 
immune response to the cancer/testis tumor antigen (NY-ESO-1) 
in a small cohort of HGSC patients (59) by IFN-γ ELISPOT. The 
specificity of one such patient was mapped to a well-known 
HLA-A2-restricted epitope (NY-ESO-1157–165) for which MHC 
tetramer reagents are available. Combining tetramer staining 
with CD103 staining revealed that NY-ESO-1-specific CD8+ 
cells in this tumor sample were indeed CD103+ (54), confirming 
that tumor-specific cells fell within the TILRM compartment in  

this patient. However, the NY-ESO-1-specific cells in this sample 
comprised only a tiny proportion of the entire TILRM population, 
which had otherwise unknown specificity.

Similar results regarding tumor specificity of TILRM have been 
obtained in other cancer settings. One of the first studies to dem-
onstrate tumor specificity of TILRM was in the non-small cell lung 
cancer setting wherein the authors found that CD8+CD103+ TIL 
selectively upregulated CD107a and granzyme B in the presence 
of autologous tumor cells and also specifically lysed autologous 
tumor cells when co-cultured in the presence of an anti-PD-1 
blocking antibody (39). More recently, TILRM populations have 
been identified in the melanoma setting and have been shown to 
contain cells that stain with melan A-specific tetramers (45), again 
confirming the presence of tumor-specific T cells in the TILRM 
subset. Likewise, TILRM have been demonstrated to play a role 
in anti-tumor immunity in various murine tumor models. For 
example, using a murine model of melanoma it was reported that 
CD103 was required for establishment of gp100-specific TILRM 
populations at the tumor site (60). Interestingly, in this model 
gp100-specific TILRM cells even remained at the site after tumor 
resolution and provided long-term immunity against rechallenge, 
but also caused permanent vitiligo in the dermis. On a somewhat 
related note CD103+ TRM have also recently been reported to be 
abundant in human vitiligo specimens (61).

Despite the abundance of evidence supporting the likely tumor 
specificity of TILRM, one should also consider the alternate hypoth-
esis, that because many of these epithelial tumor types originate 
from a tissue that could be directly or indirectly considered a 
mucosal barrier tissue, the TILRM populations could actually be 
conventional pathogen-specific TRM “bystander” populations that 
have been amplified during tumor outgrowth. Indeed, this possi-
bility has been raised in a very recent study designed to characterize 
the phenotypes of authentic tumor-specific TIL versus bystander 
virus-specific TIL present in human colorectal and lung tumors 
(62). Interestingly, in this study both the tumor-specific and 
bystander T cells were found to express features of TRM, including 
CD103, whereas CD39 was found to be a more reliable marker 
for distinguishing between the two. Although this study does not 
contradict earlier findings demonstrating CD103 expression by 
tumor-reactive TIL, if correct, it suggests that TILRM populations 
may actually be more heterogeneous than previously thought. 
Indeed this might be particularly relevant in the gynecologic cancer 
setting as HSV-2 reactive T cells with a typical TRM phenotype have 
been reported to be present in the cervical tissue of women with 
known HSV-2 infection (63) and the numbers of typical TRM in the 
fallopian tube are reported to increase with age (64). Perhaps these 
pathogen-specific TILRM populations in previously healthy gyneco-
logic barrier tissues simply “come along for the ride” once the 
tissue becomes cancerous, and perhaps even co-exist with nascent 
tumor-specific TILRM populations. Clearly, it remains a challenge to 
the field to more precisely define the specificity of TILRM.

THe “PARADOX” OF THe PROGnOSTiC 
eFFeCT OF TiLRM

As described above, the significant prognostic benefit conferred 
by TILRM in HGSC and other cancers implies that they are likely 
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to be tumor-specific or at least encompass tumor-specific popula-
tions. However, at the same time, this interpretation is somewhat 
paradoxical as these cells are present in tumor specimens that have 
been obtained from patients who have required clinical interven-
tion (in the form of surgical de-bulking in the case of HGSC). This 
scenario suggests that if TILRM are indeed tumor-specific, they 
have ultimately lost the ability to control growth of the primary 
tumor. In recent years, it has become readily apparent that this 
paradox can be explained, at least in part, by various mechanisms 
of immune suppression and/or immune exhaustion. Indeed, the 
tumor microenvironment in OvCa, much like other cancers, has 
long been considered to be highly immunosuppressive due to the 
presence of soluble immune-inhibitory factors including IL-10, 

TGF-β, IDO, and PGE-2 (65). Likewise, the master immune-
inhibitory switch molecule CTLA-4 has also been shown to be 
upregulated in the OvCa setting (66). In addition, inhibitory cells 
such as CD4+ Foxp3+ regulatory T cells (67), immunosuppres-
sive B7-H4+ tumor-associated macrophages (68), and myeloid-
derived suppressor cells (69) have all been reported to be present 
in OvCa. More recently, the PD-1 immune checkpoint pathway 
has also been found to play a potential role in OvCa (70), as it has 
in many other cancer settings.

As mentioned above, our group has recently made the obser-
vation that the CD103+ TILRM in HGSC tumors (and ascites) are 
almost universally positive for PD-1 surface expression (41). By 
contrast, PD-1 surface expression does not seem to be a universal 

FiGURe 1 | Proposed model of TILRM formation. (A) Precursor resident memory T cells (TRM) populations are composed of previously activated CXCR3+ T cells 
which are attracted to the chemokines CXCL9/10 in the inflamed tumor environment. Within the epithelial tumor tissue, cells encounter TGF-β which promotes 
CD103 expression. In response to TCR engagement cells may express increased CD69 which in turn disrupts S1PR1 expression leading to a breakdown in the 
chemoattractant signal from S1P concentrations in the blood. TILRM cells bind to their target tumor cells with increased strength due to CD103 binding to its ligand 
E-cadherin, thus promoting their residency in the epithelial tissue. Similarly, precursor TRM may traffic to the inflamed ascites environment and interact with epithelial 
tumor cells leading to TILRM formation. Finally, bystander precursor TRM populations may traffic to the inflamed tumor and/or ascites environment and develop TRM-like 
characteristics but with irrelevant antigen specificity. (B) Throughout cancer progression, the tumor microenvironment becomes increasingly inhospitable with 
increased tumor burden. Tumor cells upregulate immunosuppressive checkpoint receptors to avoid immune eradication. Following T cell activation and prolonged 
antigen stimulation T cells upregulate a variety of immune checkpoints which act to suppress anti-tumor immunity. TILRM may be inhibited due to the high expression 
of such checkpoint receptors and thus are likely candidates to respond to immune checkpoint blockade therapy.
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tissue types (71, 72). This finding would suggest that unlike con-
ventional TRM, intra-tumoral TILRM may have become partially 
(or permanently) exhausted likely due to chronic stimulation 
with tumor antigen over a period of weeks to months. Indeed, 
we speculate that although CD103 expression may initially be 
beneficial to TILRM function by promoting retention within the 
tumor, CD103 may actually be detrimental in the longer term by 
causing T cells to become “trapped” within the tumor, thereby 
exacerbating the phenomenon of chronic Ag stimulation (see 
Figure 1). This scenario is supported by a recent finding in mela-
noma, wherein CD103+ TILRM selectively and specifically became 
activated and started expanding in patients who were undergoing 
anti-PD-1 immunotherapy (45). This finding suggests that TILRM 
may be critical players in dictating responsiveness to checkpoint 
blockade therapy, a topic which is currently undergoing intense 
scrutiny. Thus, more fully understanding the biology of TILRM 
becomes paramount in that context.

COnCLUSiOn AnD FUTURe 
PeRSPeCTiveS

Resident memory T  cells have rapidly gained a reputation as 
sentinels of peripheral immunity, primed to prevent infection 
via re-exposure to a previously encountered pathogen. However, 
the biology of TRM is now spilling over into the field of oncol-
ogy where TRM are being detected in an increasing number of 

tumor settings. Whether all the functions and characteristics 
of conventional TRM directly translate into the unique, dynamic 
and often hostile microenvironment of tumors has yet to be fully 
elucidated. Furthermore, what role TILRM play in preventing 
disease recurrence after standard treatments such as radiation 
and chemotherapy is essentially unknown territory. Clearly much 
remains to be learned about these cells. What is certain is the 
prognostic benefit that comes along with the presence of TILRM, 
implying that at best, they play a direct role in anti-tumor immu-
nity, or at minimum, they are a surrogate indicator of a separate 
phenomenon that leads to favorable outcomes for patients with 
TILRM positive tumors. Future studies should explore the potential 
utility of these cells in cancer immunotherapy strategies, including 
checkpoint blockade, cancer vaccination, and cellular therapies. 
Of particular interest would be understanding methodologies to 
convert immunologically “cold” tumors to “warm” ones by coax-
ing the formation and putative anti-tumor activity of TILRM. One 
can even imagine that the TILRM phenomenon could be applied to 
the rapid growing field of chimeric antigen receptor (CAR) T cell 
technology as it transitions into the solid tumor setting, by facili-
tating the retention of CAR T cells in solid tumor targets. Clearly, 
we are still in the early days of understanding TILRM biology, but 
the potential implications for immuno-oncology are significant.
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