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Abstract: Chronic rhinosinusitis (CRS) is a heterogeneous chronic inflammatory condition of the
paranasal sinuses and nasal passage. It is characterized as inflammation of the sinonasal passage,
presenting with two or more symptoms (nasal blockage, secretions, facial pain and headaches) for more
than 12 weeks consecutively. The disease is phenotypically differentiated based on the presence of
nasal polyps; CRS with nasal polyps (CRSwNP) and CRS without nasal polyps (CRSsNP). Traditionally,
CRSwNP has been associated with a type 2 inflammatory profile, while CRSsNP has been associated
with a type 1 inflammatory profile. Extensive work in characterizing the inflammatory profiles of CRS
patients has challenged this dichotomy, with great variation both between and within populations
described. Recent efforts of endotyping CRS based on underlying pathophysiology have further
highlighted the heterogeneity of the disease, revealing mixed inflammatory profiles coordinated
by a number of inflammatory cell types. This review will highlight the current understanding of
inflammation in CRS, and discuss the importance and impact of refining this understanding in the
development of appropriate treatment options for CRS sufferers.
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1. An Introduction to Chronic Rhinosinusitis

Chronic rhinosinusitis (CRS) is a heterogeneous chronic inflammatory condition of the paranasal
sinuses and nasal passage. It is considered one of the most prevalent chronic diseases worldwide,
conservatively affecting around 8.5% of the Australian population and placing significant direct and
indirect healthcare costs on economies globally [1,2]. CRS is characterized by the presence of at least two
of nasal blockages and secretions, facial pain, and headaches for more than 12 weeks [3]. Endoscopic or
CT interpretation of the state of sinus disease is used as a diagnostic tool and allows the disease to be
phenotypically differentiated into two classes; CRS with nasal polyps (CRSwNP) and CRS without nasal
polyps (CRSsNP) [4].

Current treatment protocol includes saline nasal irrigation, antibiotics, and topical and oral
corticosteroids. Where pharmacological intervention is insufficient, endoscopic sinus surgery is performed,
with the aim of widening the openings of the sinuses, removing inflammatory tissue, reducing inflammatory
load, and in CRSwNP, removing nasal polyps [5]. Despite these guidelines, around 30% of CRS patients
experience difficulties managing symptoms [3].
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2. The Role of the Immune System in the Upper Airways

2.1. CRS—A Microbiome in Dysbiosis?

Until recently, healthy human sinuses were considered sterile environments, with CRS developing
in response to bacterial infection [3]. A burgeoning focus on the human microbiome, the microorganisms
that exist in and on human tissue, has led to a paradigm shift when considering what constitutes
“healthy” sinuses. It is now understood that healthy sinuses are comprised of a varied and diverse
local bacterial population acting in symbiosis, including low levels of bacteria that have typically been
classified as pathogenic [6,7]. A number of studies have aimed to characterize the microbiome of the
sinuses in both healthy and CRS patient cohorts. While the sinus microbiome of healthy and CRS
affected populations appear heterogeneous and unique to the individual, decreased bacterial diversity,
and a noticeable shift in the proportion of respective taxa has been identified in CRS patients [8–10].
Commensal taxa that have often been reported as depleted in CRS patients include Bacteroidetes spp.,
Prevotella spp., Lactobacillus spp., Peptoniphilus spp., Propionibacterium acnes, Acinetobacter johnsonii and
Corynebacterium confusum. Taxa found to be enriched include Pseudomonas spp., Corynebacterium spp.,
Streptococcus spp., Staphylococcus aureus (S. aureus), Propionibacterium acnes and Haemophilus influenzae
(H. influenza) [6–13]. Differences in microbiome within the CRS population are also important to
consider, with nasal polyps providing niche microenvironments for bacterial colonization. Notably,
CRSwNP is associated with increased S. aureus presence, in comparison to CRSsNP [10,14–16].

Increased richness of ‘pathogenic’ bacteria and a loss of protective bacterial strains may be a
driving feature of the local immune response seen in CRS. Interestingly, bacterial species, such as
S. aureus, have been suggested to play a protective role in the sinus microbiome under normal conditions;
however, in a state of dybsiosis, they are associated with an increased local immune response and
disease severity [17]. Thus, loss of a balanced and diverse sinus microbiome seems to be a significant
player in CRS; however, whether this dysbiosis is a causative or propagative mechanism remains a
point of debate. A state of dysbiosis may lend itself to induction of an inflammatory response, while
inflammation itself can create an environment conducive of shifts in the local bacterial population.
A more in-depth understanding of host-microbiome interactions, including investigation into the
effects of microbial metabolites on host immunity [18], may allow for increased understanding of the
CRS inflammatory response.

2.2. The Role of the Mucociliary System

The airways are lined with anti-microbial mucus comprised of mucins produced by goblet cells
and submucosal glands [19]. A number of microorganisms can be bound by mucins, trapping them in
this mucus layer. Coordinated and directional beating of cilia allows the mucus (and the matter it has
‘caught’) to be ‘swept’ from the sinonasal cavity to the oropharynx for clearance, in a process known as
mucociliary clearance (MCC) [20,21]. Several pathogenic bacterial taxa are known to produce products
that impair ciliary action, reducing capacity for MCC, and increasing bacterial capacity for colonization.
H. influenzae, S. aureus and Pseudomonas aeruginosa (P. aeruginosa) are commonly enriched in CRS and
are known to produce products that interfere with ciliary action [22–24]. Furthermore, a build-up of
mucus may induce local hypoxia, leading to mucostasis and production of reactive oxygen species,
inducing further inflammation in CRS [25].

2.3. Innate Immunity and Epithelial Immunity

The upper-airways have a number of protective mechanisms against pathogens and irritants,
which are seemingly overcome in CRS. The upper respiratory tract is lined by epithelial cells which
utilize tight junctions and adherens junctions to protect underlying immune-reactive tissue from
pathogens and irritants [26]. Commensal bacterial species have been associated with reinforcement of
epithelial tight junctions and adherens junctions, and production of anti-inflammatory cytokines [11].
A loss or reduction in richness of these commensal species may lead to a reduction in epithelial
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integrity in CRS patients. Some bacterial species associated with CRS have been shown to directly
impact tight junction proteins, reducing epithelial integrity, and allowing increased pathogen detection
by local immune mediators [27,28]. Interferon gamma (IFN-γ) and interleukin 4 (IL-4) have been
shown to influence epithelial integrity in CRS by interfering with expression of epithelial tight junction
proteins [29]. Release of these immune mediators leads to a reduction in epithelial integrity, allowing for
increased immune stimulation of sub-epithelial layers, thus creating an inflammatory cycle congruent
with the exaggerated response seen in CRS.

2.4. Recognition of Non-Self

Where the protective processes of the upper respiratory system fail, or are compromised, microbes
persist, and respiratory epithelial cells produce cytokines and chemokines that recruit immune cells
and activate inflammatory pathways [25]. Pathogens or foreign substances can also be recognized by
toll-like receptors (TLRs) via structures known as pathogen-associated molecular patterns (PAMPS).
PAMPS can be a number of different structures including DNA, RNA, chemical products or physical
structures that are foreign to the local immune system. Binding of PAMPs to the ligand-binding domain
of TLRs leads to downstream signal transduction that stimulates the production of inflammatory
cytokines and chemokines. These factors promote antigen presentation, induction of co-stimulatory
molecules of dendritic cells, and recruitment of immune cells [30].

3. CRS—A Chronic Inflammatory Disease

3.1. The Role of T-Effector Cells

A number of T effector cells play an important role in modulating the immune response of the
upper airways, with T helper 1 (Th1), T helper 2 (Th2), T helper 17 (Th17), T helper 22 (Th22) and
T regulatory (Treg) cells predominating in CRS [31]. Th1 cells mature in response to an IFN-γ and
IL-12 environment, and produce IFN-γ and IL-2 as part of a type 1 inflammatory response. Th2 cells
maturation is induced in an IL-4 environment, and the subsequent type 2 inflammatory response is
characterized by the production of inflammatory cytokines IL-4, IL-5 and IL-13 [32]. A type 3 response
is mediated by Th17 cells, which mature in response to Transforming Growth Factor β (TGF-β) and
IL-6. This response is characterized by the production of IL-17 and IL-22. Th22 cells mature in response
to an IL-6 environment, and produce IL-22 [33]. Treg maturation is stimulated by TGF-β and IL-2, and
leads to production of TGF-β [34].

3.2. The Geographical Conundrum

Until recently, CRSwNP was thought to be characterized by type 2 inflammation, while CRSsNP
was thought to be characterized by type 1 inflammation. Studies profiling inflammatory mediators in
CRS patients have found significant differences in inflammatory cytokine expression, initially between
geographical centers, and now within classical CRS phenotypes. CRSwNP is strongly skewed towards
a type 2 response in American and European patient cohorts; however, this relationship is not mimicked
in Asian populations. Rather, Asian CRSwNP populations, with the majority of the data coming
out of China, tend towards neutrophilic inflammation. Similarly, type 1 inflammation, measured by
IFN-γ expression, used to define CRSsNP. IFN-γ has been reported to be elevated in Belgian, Chinese
and Korean CRSsNP populations [4,35–37], while studies in Japan, China and America reported no
significant elevation of this marker [38]. Tan et al. [39] reported no significant difference in IFN-γ levels
in a controlled study comparing only ethmoid tissue of healthy, CRSsNP and CRSwNP patients, unlike
previous work in their lab [40] and other published data [35,36] which compared IFN-γ levels between
healthy, CRSsNP and CRSwNP patient cohorts, each with different tissue sample sites. While Chinese
cohort studies have varied reports of IFN-γ elevation, a strong neutrophilic dominance, regardless of
phenotype, has been highlighted in Chinese patients [31,37,39,41].
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3.3. Type 2 Inflammation Is Well Characterized

In CRS, the type 2 inflammatory response is fairly well characterized (Figure 1). Recognition of
foreign matter stimulates nasal epithelial cells to secrete thymic stromal lymphopoietin (TSLP), IL-25
and IL-33 [42]. TSLP, IL25 and IL-33 stimulate secretion of IL-4, IL-5 and IL-13 from epithelial and
mucosal mast cells [20,43,44]. TSLP and IL-33 can further induce type 2 cytokine production in innate
lymphoid cells (ILC2s) [45]. TSLP has been suggested to stimulate myeloid dendritic cells (mDCs) by
binding to the TSLPR on the mDC membrane [44,46]. Once activated, mDCs are able to present antigen
and co-stimulatory signals to induce CD4+ T cell differentiation. Mast cell and ILC2 production of
IL-4 directs the differentiation of CD4+ T cells toward Th2 production [44]. Th2 cells produce type 2
cytokines as the hallmark feature of the type 2 inflammatory response. Thus, a strong IL-4 environment
is created, promoting further Th2 expansion.

IL-5 plays a major role in eosinophil infiltration, leading to production of eosinophilic extracellular
traps, inflammatory products, and toxic proteins [47]. IL-4 and IL-13 have been associated with increased
production of the genes MUC5AC and MUC5B, which encode for the production of mucins [48], and
pendrin, an epithelial anion transporter, which results in increased mucus production [49]. Increased
mucus production can amplify local inflammation by inducing hypoxia [50], as well as being a
significant contributor to CRS symptomology.

Th2 cells present antigen and co-stimulatory signals to B cells aiding in antibody production, while
IL-4 produced by Th2 cells, mDCs and ILC2s induces antibody isotype switching to Immunoglobulin
E (IgE) [34]. S. aureus, a commonly up-regulated bacteria in CRS (predominantly CRSwNP), has been
shown to bind TLR-2 leading to an increase in type 2 cytokine production [51]. Further, production
of S. aureus enterotoxin (SE) amplifies the type 2 response, acting as a super antigen, and leading to
SE-IgE production [16].

3.4. Non-Type 2 Inflammation—A New Concept

Non-type 2 inflammation in CRS displays a mix of mainly type 1 and type 3 inflammation, often
associated with significant neutrophil infiltration (Figure 2). Pathogen invasion of nasal epithelia leads
to release of IL-6, IL-8, Tumor Necrosis Factor α (TNFα), and various chemokines by nasal epithelia.
PAMP/TLR interactions have been shown to simulate IFN-γ and IL-8 production [30]. These innate
immune responses recruit immune cells to the sinuses, and sway the subsequent immune response.

Both PAMP/TLR interactions and nasal epithelial cells secrete IL-8, which recruits neutrophils to
the area [35]. Neutrophils release a variety of products, including inflammatory cytokines IL-1β, IL-6
and IL-8, and myeloperoxidase (MPO), an enzyme released by neutrophil granulocytes [52]. IFN-γ,
secreted by epithelial cells in response to pathogen recognition, directs CD4+ T cell differentiation
toward Th1 maturation [30]. Th1 cells mediate the type 1 inflammatory response through production
of IFN-γ and IL-2. Epithelial secretion of IL-6 directs CD4+ T cell differentiation towards Th17 and
Th22 production. Th17 cells go on to secrete IL-17 and IL-22, while Th22 cells secrete IL-22 alone [33].
IL-22 is known to stimulate production of antimicrobial peptides and mucin 1 in an inflammatory
environment [53]. In response to different markers, increased mucus production is seen in type 2
and non-type 2 inflammation; however, induction of hypoxic microenvironments can perpetuate
inflammatory processes in both responses [50].



Medicina 2019, 55, 95 5 of 13

Figure 1. Potential mechanism of type 2 inflammation in CRS patients. S. aureus, Staphylococcus aureus;
IL-, Interleukin; TSLP, Thymic Stromal Lymphopoietin; TSLPR, TSLP Receptor; Th2, T helper 2 cell;
ILC2, Innate-like cell 2; IgE, Immunoglobulin E; SE, S. aureus enterotoxin; mDC, Myeloid Dendritic cell.

Up-regulation of Tregs has been noted in CRSsNP in comparison to healthy patients, and a
down-regulation of Tregs in CRSwNP [36]. Further, Tregs are typically up-regulated in a type 1
environment, with Th1-produced IL-2 vital in Treg maturation [54]. Tregs play a vital role in immune
regulation, down-regulating Th1 and Th2 function, and producing the anti-inflammatory cytokine
IL-10 [54]. Tregs produce TGF-β, a member of the transforming growth factor cytokine superfamily, which
has been suggested to play a key role in tissue remodeling in CRSsNP [55]. TGF-β is involved in induction
and proliferation of fibroblasts, and the upregulation of extra cellular matrix synthesis [56], contributing
to remodeling of airway epithelia that can cause symptomatic burden in CRSsNP sufferers [55]. TGF-β
promotes differentiation of CD4+ T cells toward Th17 and Treg maturation [36,57]. The importance of
the role of Tregs in CRS is still in question, given its capacity to reduce inflammation by IL-10 production,
but also to contribute to airway remodeling and fibrosis as a result of TGF–β production.

The already complex heterogeneous disease state of CRS is further complicated by presence of
allergic and fungal rhinitis, cystic fibrosis and, the most commonly reported co-morbidity, asthma.
Each of these disease states harbors their own unique immune response, and thus contribute to
increasingly specific immunological profiles in patients, making distinct characterization of CRS
pathophysiology difficult.
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Figure 2. Potential mechanisms of non-type 2 inflammation in CRS patients. TLR, Toll-like
Receptor; PAMP, Pathogen Associated Molecule; IFN-γ, Interferon gamma; IL-, Interleukin; MPO,
Myeloperoxidase; TNFα, Tumor Necrosis Factor alpha; Th1, T helper 1 cell; Th17 T helper 17 cell; Th22,
T helper 22 cell; Treg, regulatory T cell; TGF-β Transforming Growth Factor.

4. The Emergence of Endotyping

In recent years, there has been a strong focus on the characterization of the immune response
in CRS patients, known as endotyping. This approach to disease classification is paving the way
for unique treatment options that are based on underlying pathophysiology, rather than traditional
phenotypic classification. It has been instrumental in pushing past the traditional CRSwNP/Type 2 and
CRSsNP/Type 1 dichotomy, and has highlighted the inflammatory heterogeneity of the disease.

4.1. Endotyping by Inflammatory Markers

Endotyping performed by Tomassen et al. [58], based on biomarker cluster analysis of inflammatory
markers, highlighted a broad distinction between type 2 and non-type 2 CRS cytokine profiles. A total
of 10 unique clusters were identified from the study, with six clusters displaying markers typical of
type 2 inflammation, and four clusters displaying non-Type 2 associated markers, with IL-5 levels the
key determinant of this distinction. Three clusters with high IL-5 levels were identified, two of which
were positive for SE-IgE. Further, three sub-types of the non-type 2, or IL-5 negative, endotype were
delineated as follows:

1. Neutrophilic inflammation characterized by pro-inflammatory cytokines IL-1β, IL-6, IL-8
and Myeloperoxidase

2. Th17- or Th22- driven inflammation characterized by IL-17, IL-22
3. Th1-driven inflammation characterized by IFN-γ
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4.2. Endotyping by Clinical Features

Bachert et al. [59,60] considered the findings of Tomassen et al. [58] and highlighted the clinical
relevance of comorbidities, and clinical features to the endotyping process. They classified CRS into
three endotypes: Non-type 2 inflammation, correlating with the CRSsNP phenotype, low asthma
risk, and low recurrence risk; moderate type 2, containing a mix of CRSsNP and CRSwNP, moderate
asthma, and recurrence risk; and severe type 2, correlating with the CRSwNP phenotype and high risk
of asthma, and disease recurrence. Consideration of co-morbidities provides a useful tool for disease
conceptualization, given shared inflammatory mechanisms between co-morbidities and CRS, and the
potential immunomodulation of CRS by other inflammatory processes [61].

One of the largest CRS endotyping efforts to date was performed in a Chinese population by Liao et
al., who performed cluster analysis on 246 patients, based on 28 clinical variables, and 39 mucosal and
molecular variables [62]. Basic endotyping of inflammatory markers was furthered in this study by the
inclusion of co-morbidities, and classification of cases based on responsiveness to treatment. The inclusion
of these variables in cluster analysis allows stratification of disease severity and pathophysiology, and is
a useful tool for future endotyping efforts. Previous work by this group includes profiling inflammation
in a Chinese CRS patient cohort, which highlighted geographical differences in cytokine expression,
particularly in comparison to American and European cohorts [35–39,41,55,63,64]. A total of seven
clusters were identified, including a unique cluster characterized by high levels of anti-inflammatory
cytokine IL-10, and a lack of cases that were difficult to treat.

Soler et al. published two papers outlining CRS endotyping based on cluster analysis of clinical
makers alone [65,66]. Classical biomarker-based endotyping aims to identify patient inflammatory
clusters in order to allow for more targeted treatment selections. The aim of the work by Soler et al. is
similarly geared toward treatment selection and response. Cluster analysis based on SNOT-22 score,
age and productivity loss identified five patient clusters, three of which responded better to surgical
intervention compared to pharmacological intervention. While these findings are interesting, clinical
translation of these findings on their own seems unlikely. Despite this, the relevance of clinical markers
to endotyping should not be understated, and disease severity and impact on quality of life should
be considered.

4.3. Endotyping by Microbial Composition

Association of inflammatory endotypes with microbial composition has also been attempted, with
Cope et al. identifying four clusters based on microbial composition, and linking these clusters to
inflammatory markers observed within the cluster [67]. Recently published work by Hoggard et al.
aimed to delineate inflammatory endotypes, and their associations with microbial compositions in
CRS patients [68]. Cluster analysis of inflammatory markers, immune cells, polyp status, and asthma
co-morbidity revealed eight distinct clusters, while associations with various microbial changes were
identified. The analyses performed in this study not only further challenged the traditional Th1 vs. Th2
dichotomy, but also suggested that a number of key inflammatory markers thought to “characterize”
inflammatory endotypes (IL-5, neutrophils, eosinophils) are not necessarily altered in all patients.
While the general endotypes delineated reflected those of Tomassen et al. [58], distinction between
endotypes on the basis of the type-2 cytokine IL-5 were not made in this study. The results thus
suggested a semantic change from “characterizing” or “defining” inflammatory markers, to markers
which have “increased incidence” in certain endotypes.

4.4. Endotyping by Nasal Secretions

Turner et al. [69] performed the first cluster analysis based on nasal secretions rather than nasal
biopsy, highlighting the opportunity for non-invasive endotyping of patients. Analysis of nasal
secretions/mucus is not only non-invasive, cheap and easily accessible, but allows for standardization
of sample collection which could aid larger multi-center endotyping efforts, which would ultimately
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allow for effective characterization of CRS endotypes. A fault highlighted by the study team was
that all patients in the study cohort had previously undergone endoscopic nasal surgery; however,
this limitation is applicable to all endotyping efforts to date. The sampling method used, however,
allows for this limitation to be overcome.

4.5. Endotyping-Still Under Development

Further, the diversity in endotyping approaches taken by different research groups makes
meaningful comparison difficult. There has been significant variability in sampling sites, markers
analyzed, analysis methods and statistical methods used. Each factor introduces an additional layer of
variability, making it exceptionally difficult to compare endotyping efforts, and to form a genuine idea
of CRS pathophysiology as a whole. Ultimately, clinically relevant endotypes cannot be distinguished
without significant data. A controlled, uniform multi-site study of CRS pathophysiology would allow
for comparable data to be collected, creating a large dataset to accurately cluster patient profiles into
meaningful groups.

5. Treatment

Endotyping of patients allows for the selection of treatments specific to individual disease state,
rather than blanket treatment approaches which may have no positive impact. Bachert et al. highlighted
the possibility of endotype driven care in CRS patients, with clinical trials of monoclonal antibodies
(mAbs) targeting type 2 inflammatory processes in CRSwNP patients well underway [60]. mAbs
targeting type 2 inflammatory profiles predominate biologic therapy, proving more effective than
corticosteroid therapy when used appropriately [60]. Omalizumab is an anti-Ig-E mAb which binds
IgE, blocking the IgE inflammatory cascade, and has been shown to be reduce nasal polyp score and
symptoms in patients with nasal polyps with asthma [70]. Mepolizumab is an anti-IL-5 mAb that
binds IL-5, preventing it binding to its receptor. It has been shown to significantly reduce nasal polyp
score, and the need for surgical intervention [71,72]. Benralizumab is an anti-IL-5 mAb which binds
to the alpha chain of the IL-5 receptor, preventing IL-5 binding and reducing eosinophilia as a result.
It is currently undergoing a phase II clinical trial in eosinophilic rhinosinusitis [60]. Dupilumab is
an anti-IL-4/IL-13 mAb, which binds the alpha chain of the Interleukin 4 receptor alpha (IL-4Ra),
preventing binding of both IL-4 and IL-13. Dupilumab has been shown to improve nasal polyp burden
in CRSwNP patients [73].

Comparatively, treatment options for non-type 2 inflammation are lacking. While this cohort
is more responsive to macrolide therapy, resistance to antibiotic treatment is becoming increasingly
common. Reduced response to corticosteroid treatment is also observed in these patients, and thus there
is a distinct need for effective treatments targeting mediators of non-type 2/neutrophilic inflammation.
There are currently anti-IL-17 biologics approved for psoriasis treatment, which could be repurposed
in appropriate CRS individuals [74], while anti-IL-1 mAbs could also be a potential treatment option
for patients with neutrophilic inflammation [75,76].

Current phenotype-based treatment options for CRS leave 30% of patients with unresolved
symptoms [3], highlighting the need for targeted options for those unresponsive to standard therapy.
There is a promising future for personalized medicine where underlying pathophysiology is determined,
and treatment is recommended on the basis of individual inflammatory profiles. Rapid diagnostic tests
for sinonasal inflammation could thus be an invaluable tool in the future of endotype-based treatment
in CRs patients. Nasal absorption devices, for example, could allow for quick, non-invasive sampling
of nasal secretions, which could then undergo inflammatory biomarker analysis. Results of such tests
could then be used to determine appropriate treatment options for CRS patients.

6. Conclusions

The inflammatory state of CRS is highly heterogeneous, with mixed profiles of type 1, 2 and 3
inflammation seen within classical CRSsNP and CRSwNP phenotypes. Endotyping of CRS disease



Medicina 2019, 55, 95 9 of 13

state is emerging as a useful tool in identifying key inflammatory profiles amongst CRS patients,
and provides a unique opportunity for targeted treatment options. A shift in approach to CRS from
phenotype to endotype is needed if the burden of CRS on the individual, and on healthcare systems
globally, is to be addressed. Diagnostic tools to identify patient inflammatory profiles in a clinical
setting would allow for precise and targeted treatment options. Identification of patient inflammatory
profiles would allow for selection of targeted therapies, with biological therapies currently being
assessed for CRS patients. In order to optimize patient outcomes, further work is needed to understand
the inflammatory mechanisms at play in CRS and a global shift in the approach to patient diagnosis
away from blanket phenotype distinctions must be taken.
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