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Trends
The humoral arm of innate immunity is
emerging as an important determinant
of host-elicited defence during patho-
gen invasion. Pentraxins and collectins
are two families of acute-phase pro-
teins that have demonstrated immuno-
modulatory effector function.

Pentraxin 3 (PTX3) is a ‘double-edged’
sword that has demonstrated host
protective roles during several fungal,
bacterial, and viral infections. However,
emerging evidence of pathogenic
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Innate immunity serves as the frontline defence against invading pathogens.
Despite decades of research, new insights are constantly challenging our
understanding of host-elicited immunity during microbial infections. Recently,
two families of humoral innate immune proteins, pentraxins and collectins, have
become a major focus of research in the field of innate immunity. Pentraxins and
collectins are key players in activating the humoral arm of innate immunity,
taking centre stage in immunoregulation and disease modulation. However,
increasing evidence suggests that pentraxins and collectins can also mediate
pathogenic effects during some infections. Herein, we discuss the protective
and pathogenic effects of pentraxins and collectins, as well as their therapeutic
significance.
properties of PTX3 was observed dur-
ing arthritogenic alphavirus infections.

Collectins and ficolins can interact with
PTX3 to form heterocomplexes that
may possibly affect alphavirus disease
progression.

PTX3 and collectins represent promis-
ing therapeutic targets for the treat-
ment of several pathogen infections.
However, such treatment should be
avoided in subjects with pre-exisiting
alphavirus infection.
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Pentraxins and Collectins: The Humoral Modulators of Innate Immunity
The innate immune system represents the front line of host defence against invading pathogens.
Regulation of innate responses is sustained by the bidirectional interaction between cellular and
humoral effectors of innate immunity (Figure 1). The humoral arm of innate immunity includes the
complement system, as well as pattern-recognition molecules (PRMs) and pattern-recognition
receptors (PRRs). Among the PRMs, members of the pentraxin and the collectin superfamilies
have been studied intensively in recent years.

Pentraxins belong to an evolutionarily conserved superfamily of proteins, distinguished by the
presence of a C-terminal ‘pentraxin domain’ of 200 amino acids and a conserved ‘pentraxin
signature’ of an eight amino acid-long sequence (HxCxS/TWxS, where x is any amino acid) [1].
This superfamily of proteins can be further classified into short and long pentraxins. Short
pentraxins have an architectural structure of five or ten identical protomers arranged into a
pentameric radial symmetry [2,3]. Members of the short pentraxins include C-reactive protein
(CRP) and serum amyloid P component (SAP), which are acute-phase proteins secreted mainly
by hepatocytes in response to proinflammatory cytokine interleukin (IL)-6 and other stimuli [4].
During the acute phase of infection, elevated levels of CRP and SAP lead to consequential
activation of the classical complement cascade via interaction with C1q [5], resulting in removal
of cell debris [6].

Pentraxin 3 (PTX3) was the first long pentraxin to be described in the early 1990s and is induced
by tumour necrosis factor (TNF) and IL-1 [7,8]. PTX3 has a structurally sophisticated octameric
architecture, which is composed of two disulphide-linked tetramers giving rise to the asymmetry
of the molecule [9]. Inflammation has been reported to induce PTX3 secretion from a broad
range of cell types, but predominantly by monocytes, macrophages, and myeloid dendritic cells
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Figure 1. The Two Arms of Innate Immunity: Cellular and Humoral Responses. The cellular arm of innate immunity
is composed of immune cells, such as leukocytes and phagocytes, as well as immune mediators secreted by these cells.
The humoral arm is composed of the complement cascade and pattern-recognition molecules (PRMs). Crosstalk between
the two arms of innate immunity is crucial to respond promptly to stimuli and facilitate adaptive immune response.
(DCs) [10]. Compared to the short pentraxins, our current understanding of PTX3 and its role in
the humoral arm is limited, and has therefore been the focus of intensive research to clarify its role
in a number of inflammatory and infection diseases.

Collectins are a family of collagenous Ca2+-dependent (C-type) lectins that are highly conserved
in evolution and also function as soluble PRMs. C-type lectins contain a collagen-like region
linked to a carbohydrate recognition domain (CRD), known as the carbohydrate-binding C-type
lectin domain (CTLD), which enables binding to oligosaccharide (or lipid) structures expressed
on the surface of an array of microorganisms [11]. Members of this family include the well-
characterized ‘classical collectins’ mannose-binding lectin (MBL), surfactant protein (SP)-A and
SP-D. Serum MBL is produced by the liver and is constitutively expressed in the blood at a
concentration of �200 ng/ml during normal circumstances, which can be elevated to as high as
�800 ng/ml during virus infections [12,13]. MBL plays a crucial role in the activation of the lectin
complement pathway via interactions with MBL-associated serine protease (MASP). In contrast,
SP-A and SP-D are predominantly found within the airways where they play a number of roles in
modulating inflammation and phospholipid homeostasis [14]. Recently, a growing number of
‘novel collectins’ have been identified, which include collectin (CL) liver 1 (CL-L1) [15], CL kidney
1 (CL-K1) [16], and CL placenta 1 (CL-P1) [17], as well as the bovine-specific collectins
conglutinin [18], CL-43 [19], and CL-46 [20]. As discussed below, recognition by collectins
can lead to elimination of microorganisms by a range of mechanisms, including aggregation,
opsonization, activation of phagocytosis, inhibition of microbial growth, or complement activa-
tion. In addition to microbial recognition, collectins have also been implicated in modulating
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inflammatory and allergic responses, aspects of adaptive immunity, and clearance of apoptotic
cells [21]. In this review we focus on innate immune proteins – pentraxins, particularly PTX3, and
collectins, discussing their role in modulating host immune responses during pathogen invasion.

Pentraxin 3: An Acute-Phase Immunoregulator of Pathogen-Associated
Inflammation
Long pentraxin PTX3 recognizes select microorganisms, including fungi, bacteria, and viruses,
and activates a number of antimicrobial effector mechanisms [4,22]. In addition, PTX3 plays an
immunoregulatory role during inflammation through interactions with P-selectin, thereby modu-
lating neutrophil recruitment as well as complement activation [4,22,23]. The basal expression of
PTX3 detected in the blood of healthy individual is approximately 2 ng/ml, which rapidly increase
to a range of 200 to 800 ng/ml upon stimulation by proinflammatory cytokines during pathogen
invasion [3,24]. The protective role of PTX3 during microbial infection has been long established;
however, more recent studies suggest that PTX3 might also contribute to immunopathology
during certain infections.

Protective Role of PTX3 in Pathogen Defence
Fungi PTX3 binds to Aspergillus fumigatus conidia, and PTX3-deficient mice show increased
susceptibility to invasive aspergillosis associated with an inappropriate immune response
skewed towards a Th2 response [25]. Treatment with recombinant PTX3 had therapeutic
activity either alone or when combined with antifungal agents [4,22,25–28]. PTX3 is stored
in neutrophil granules and is rapidly released upon cell stimulation [29]. In addition, the molecule
was found in neutrophil extracellular traps (NETs), and PTX3 can opsonize A. fumigatus conidia
inside these structures [29]. PTX3-deficient neutrophils were less effective in recognizing and
eliminating A. fumigatus conidia, and opsonization of spores by PTX3 could reverse this
phenotype [25,29,30]. Interestingly, neutrophil-associated-PTX3 promoted the in vivo control
of A. fumigatus infection [29]. Molecular mechanisms involved in this activity have been recently
highlighted [30]. Briefly, the binding of PTX3-opsonized conidia to FcgRII, which has been shown
to be a receptor for pentraxins [31], induces an inside-out activation of CD11b and a subsequent
phagocytosis of C3b-opsonized conidia [30]. In addition, PTX3 can interact with ficolin-2 and
MBL on the pathogen surface, and the formation of the heterocomplexes PTX3/ficolin-2 and
PTX3/MBL can promote the deposition of complement, as observed on the surface of A.
fumigatus and Candida albicans, respectively [32,33].

The expression of PTX3 in macrophages was induced by zymosan [34]. In turn, PTX3 interacted
with zymosan particles as well as with the yeast form of Paracoccidioides brasiliensis [34]. In the
presence of PTX3, individual particles of zymosan were aggregated, leading to phagocytosis of a
high number of particles by macrophages through a dectin-1-dependent mechanism [34].

In humans, single-nucleotide polymorphisms (SNPs) within the PTX3 gene were associated with
enhanced susceptibility to infections [35]. PTX3 transcript stability might be altered by these
genetic variants, and three genetic polymorphisms were associated with different PTX3 plasma
levels [36,37]. Accordingly, PTX3 polymorphisms were reported to reduce the intracellular stock
of PTX3 in neutrophils, leading to impaired phagocytosis and clearance of A. fumigatus [37].
Interestingly, PTX3 polymorphisms were recently associated with susceptibility to A. fumigatus
infection in two cohorts of patients undergoing bone marrow transplantation [37]. The associa-
tion between genetic polymorphisms and susceptibility to mold infections was recently inde-
pendently confirmed in 1101 patients of the Swiss Organ Transplantation Cohort [38] and in a
small cohort of lung transplantation patients [39].

Bacteria PTX3 interacts with selected bacteria, including Pseudomonas aeruginosa, Neisseria
meningitidis, Klebsiella pneumoniae, and uropathogenic Escherichia coli (UPEC) [22,25,40–42].
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PTX3 displayed opsonic activity for P. aeruginosa and UPEC, facilitating their recognition and
ingestion by phagocytes [22,42]. Moreover, PTX3 had therapeutic activity in a model of chronic
P. aeruginosa lung infection, reducing the bacterial load and controlling the inflammatory
response [42]. In addition, PTX3, given orally to neonate mice, rapidly diffused into tissues
and had therapeutic activity against P. aeruginosa lung infection [43].

Recently, PTX3 was identified as the first humoral PRM involved in defence against urinary-tract
infections [35]. PTX3 was rapidly induced in uroepithelial cells in response to UPEC and amplified
the phagocytosis and phagosome maturation in neutrophils [35]. Therefore, elimination of
bacteria was defective in Ptx3�/� mice and was associated with an exacerbated inflammatory
response [35]. PTX3 also recognized outer membrane vesicles (OMV) from N. meningitidis and
three selected meningococcal molecules (GNA0667, GNA1030, and GNA2091). Interestingly,
PTX3-deficient animals displayed a defective antibody response to OMV [40]. Injection of PTX3
reversed this phenotype, and PTX3 has a protective effect in infant rats infected with N.
meningitidis [40].

Genetic studies in humans support the relevance of the data obtained in animal models. Indeed,
PTX3 SNPs have been associated with increased susceptibility to pulmonary tuberculosis, acute
pyelonephritis, cystitis, and P. aeruginosa infections [35,44,45].

Viruses A protective role for PTX3 in defence against selected viruses has been proposed [35].
PTX3-deficient animals showed increased susceptibility to cytomegalovirus (CMV) and specific
strains of influenza virus [46,47]. Mechanistically, PTX3 had the capacity to bind to human and
murine CMV (MCMV), inhibiting the entry of virus into DCs and inducing interferon regulatory
factor 3 (IRF3) activation [46]. Administration of PTX3 in BALB/c mice, known for their suscepti-
bility to CMV infection, had therapeutic efficacy against primary infection and reactivation and
protected MCMV-infected mice from invasive pulmonary aspergillosis [46].

PTX3 recognized also specific strains of H3N2 subtype influenza A viruses (IAV, H3N2) via an
interaction between the glycosidic moiety of PTX3 and the haemagglutinin glycoprotein found on
the surface of viruses [47]. In turn, this interaction led to a number of antiviral activities, including
inhibition of viral haemagglutination and neuraminidase activities, as well as neutralization of virus
infectivity [47]. As a consequence, PTX3-deficient animals had increased susceptibility to H3N2
infection, and administration of PTX3 had therapeutic activity [47]. In contrast, PTX3 did not display
any protective effect during infection with both seasonal and pandemic H1N1 IAV and other H3N2
strains, likely due to a loss of interaction between the viral haemagglutinin and PTX3 [48,49].

PTX3 has also been implicated in defence against coronavirus murine hepatitis virus strain 1
(MHV-1) [50]. As observed for CMV and some strains of H3N2, PTX3 bound to MHV-1 and
reduced infectivity in vitro [50]. In a model of intranasal infection with MHV-1, higher disease
severity was observed in PTX3-deficient animals compared to wild-type mice, and administra-
tion of PTX3 had protective activity [50].

The Emerging Concept of PTX3 Pathogenicity
PTX3 is a multifunctional humoral innate protein which has been associated with diverse
immunoregulatory functions. Despite the bulk evidence demonstrating a protective role for
PTX3 during microbial invasion, recent studies using murine models of inflammatory diseases
have suggested its potential to promote immunopathology. The first evidence suggestive of
PTX3 pathogenicity was reported in 2006, using a lethal animal model of K. pneumoniae
infection [51]. Infection of PTX3 transgenic mice overexpressing PTX3 with a high inoculum
of K. pneumoniae resulted in accelerated lethality and this correlated with reduced infiltration of
neutrophils into the lung tissues and enhanced bacterial dissemination in blood during acute
802 Trends in Microbiology, December 2015, Vol. 23, No. 12



infection. Ironically, when infection was performed using low pulmonary inocula, the overt
expression of PTX3 conferred a protective effect, enabling robust expression of proinflammatory
cytokines, an influx of neutrophils to lungs, and enhanced phagocytosis of bacteria [51]. This
study clearly demonstrated the double-edged sword characteristics of PTX3 in shaping disease
outcome during an infection.

Further evidence supportive of the pathogenic role of PTX3 was recently reported in a study
conducted on arthritogenic alphaviruses – chikungunya virus (CHIKV) and Ross River virus (RRV)
[12]. The study conducted by Foo et al. characterized overt expression of PTX3 during the acute
phase of alphavirus infection in patients and animal models. Further characterization of the
alphavirus mouse models identified neutrophils and inflammatory monocytes as the cellular
reservoirs of rapid PTX3 production during the acute phase of infection. The presence of PTX3
promoted early viral entry and replication events through binding interactions with alphavirus,
modulating the kinetic profiles of proinflammatory cytokines, and cellular infiltration in response
to alphavirus infection, which consequentially shaped the progression of alphaviral disease
(Figure 2). This study characterized PTX3 as a pivotal immunomodulatory protein associated
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with the pathogenic characteristics of alphavirus infection. Additionally, this study also demon-
strated how the supposedly beneficial PTX3 could be hijacked and exploited by viruses to
promote viral replication in the host [12].

In summary, the multifunctional characteristics of PTX3 can give rise to protective or pathogenic
effects in response to different pathogen-induced inflammation. In a context of sterile inflammation,
such as in tissue injury mediated by ischaemia and reperfusion, PTX3 can be protective (e.g.,
kidney) or deleterious (e.g., intestine), depending on the tissue [52,53]. PTX3 is endowed with a
strong immunomodulatory role which can have a diverse impact on downstream innate immune
responses, strongly suggestive of its therapeutic potential. However, taking into account the
pathogenicity of PTX3 exhibited during alphavirus infections, study cohorts from future clinical trials
involving PTX3 administration should be carefully assessed to avoid the inclusion of alphavirus-
infected individuals as test subjects, which may result in deleterious clinical effects. To date, our
understanding of PTX3 represents only the tip of an iceberg. More functional studies are warranted
to further characterize the mechanism(s) underlying the immunomodulatory role of PTX3, which will
enhance its utility in the development of novel therapeutics using recombinant or modified PTX3, as
well as agonists and antagonists to modulate its secretion.

Collectins/Ficolins and Their Role in Pathogen Defence
Collectins have the unique ability to oligomerize into trimeric to hexameric structures that can
activate the complement cascade [54]. MBL binds to a wide range of Gram-positive and Gram-
negative bacteria, viruses, fungi, and protozoa, and MBL binding can activate complement via
MASPs, which cleave C2 and C4 to form a C3 convertase leading to enhanced microbial
clearance via opsonization and complement-mediated lysis (reviewed in [55]). However, MBL
can mediate complement-independent effects, including inhibition of bacterial adhesion [56],
opsonization to enhance bacterial internalization [57–59], blocking virus attachment and infec-
tion [60–62], and aggregation and opsonization to promote virus uptake via phagocytes [63].

Collectins: MBL
In humans, MBL is encoded by a single gene whereas in rodents two homologous proteins exist,
MBL-A and MBL-C, and MBL-null mice lacking both proteins show increased susceptibility to a
range of microbes, including Staphylococcus aureus [64], P. aeruginosa [65], herpes simplex
virus (HSV)-2, [66], IAV [67], and the intracellular protozoan Trypanasoma cruzi [68].

While MBL is generally associated with protective host defence, emerging literature suggests a
fine balance between the beneficial and detrimental outcomes associated with MBL-mediated
recognition, particularly in the context of viral infections. For example, the MBL pathway of
complement activation was also shown to play a critical role in the pathogenesis of alphaviral-
induced inflammatory disease in mice infected with RRV, and MBL levels in serum and synovial
fluids correlated with severity of disease in humans diagnosed with RRV [13]. MBL-deficient
mice were more susceptible to infection with highly glycosylated MBL-sensitive strains of IAV
[67], whereas infection with MBL-resistant strains was associated with reduced disease and
airway inflammation [50], arguing that MBL may represent a risk factor during certain IAV
infections. Of interest, MBL-mediated recognition resulted in enhanced infection of human cells
by Ebola, Hendra, Nipah, and West Nile viruses by macropinocytosis in low-complement
conditions [69]. MBL-mediated enhancement of HIV-1 infection of the brain occurs via alterna-
tive mechanisms, whereby gp120 shed by HIV-1 can be internalized via CXCR4 on neuronal
cells, then bound and trafficked by intracellular MBL where it has been proposed to induce
gp120-mediated neuronal apoptosis [70,71].

Due to its promising therapeutic potential, several preclinical studies have evaluated the
antimicrobial effect of MBL therapy. To evaluate the potential of MBL therapy in the context
804 Trends in Microbiology, December 2015, Vol. 23, No. 12



of Ebola virus infection, a lethal murine model of Ebola infection was utilized. High doses of
MBL given to Ebola-challenged mice increased the survival rate by 40%, and mice exhibited
protective immunity when rechallenged with Ebola virus [72]. The concentration of MBL in
human serum varies greatly and is affected by mutations in the promoter and coding regions
of the human MBL gene [73]. MBL deficiency is associated with susceptibility to various
infections, although MBL-deficient individuals are generally healthy [74]. The concentration
of plasma MBL in humans ranges widely between 5 to 10 000 ng/ml, resulting from
polymorphisms in the MBL gene [75]. MBL-deficiency has been commonly observed in
humans, with approximately 25% of the Caucasians having low levels (<500 ng/ml) of MBL,
which are likely to be inadequate for protection against invading pathogens [76]. Indeed,
MBL-null mice are susceptible to S. aureus infection, which resulted in 100% mortality 48 h
postinfection [64].

Collectins: SP-A and SP-D
In contrast to MBL, SP-A and SP-D are synthesized by alveolar type II and Clara cells and
constitutively expressed in the airways [77–79], and levels increase further during infection and/
or inflammation of the airways [80,81]. Moreover, both SP-A and SP-D have been detected at
extrapulmonary sites, including the gastrointestinal tract and kidney [82]. In addition to their role
in innate host defence, SP-A and SP-D play a number of important physiological roles related to
airway homeostasis [83]. In vitro studies indicate that SP-A and SP-D bind to a range of Gram-
positive and Gram-negative bacteria and contribute to bacterial clearance by a number of
mechanisms, including opsonization to increase phagocytosis by alveolar macrophages [84,85]
and neutrophils [63] as well as direct antimicrobial effects against Gram-negative bacteria
[86,87]. Mice deficient in SP-A or SP-D, or with combined deficiency in both, have been used
to demonstrate important protective roles for both pulmonary collectins against a range of
different bacteria [88] and to show that the functions of SP-A and SP-D are not completely
redundant during bacterial infections [89].

Both SP-A and SP-D have been reported to bind viruses, including IAV, respiratory syncytial
virus (RSV), and HSV, and recognition is generally associated with virus aggregation and/or
neutralization of virus infectivity. Of interest, SP-D and SP-A (and other collectins) potentiate virus
uptake and virus-induced respiratory burst responses by neutrophils [90], and SP-A was
reported to enhance phagocytosis of HSV-1 by alveolar macrophages [91]. Studies in SP-
A�/� and SP-D�/� mice indicate that both can play protective roles during IAV infection;
however, the relative importance of each is determined by strain-specific factors, such as
the degree of virus glycosylation [80,81,92].

While a number of reports indicate that interactions between MBL and particular pathogens
may be deleterious for the host, to date there is little evidence to implicate pulmonary collectins
in disease exacerbation. While the ability of SP-A and SP-D to promote phagocytosis of
extracellular bacteria by macrophages contributes to effective host defence, one could spec-
ulate that uptake of intracellular pathogens into their intracellular niche has the potential to
exacerbate disease severity. Both SP-A and SP-D bind and agglutinate Mycobacterium
tuberculosis, and SP-A enhances phagocytosis via upregulation of functional mannose recep-
tor at the cell surface [93], whereas SP-D inhibits phagocytosis by macrophages [94]. However,
SP-A�/�, SP-D�/�, or SP-A/D�/� mice displayed no major defects in uptake or control of M.
tuberculosis in a low-dose, aerosol challenge model of tuberculosis, indicating that either or
both pulmonary collectins are dispensable in the mouse model [95]. Both SP-A and SP-D also
bind to Legionella pneumophila and suppress, rather than promote, intracellular growth in
macrophages [96]. Of interest, HIV replication does occur in the lung, particularly during
advanced disease [97], and SP-A has been reported to promote transfer of HIV-1 from
dendritic cells to T cells [98].
Trends in Microbiology, December 2015, Vol. 23, No. 12 805



Ficolins
Ficolins are structurally similar to MBL in that they possess a collagen-like domain, while a
fibrinogen-like domain replaces the CRD of the collectins. Ficolins bind to acetylated compounds,
including acetylated sugars found on the surface of some microbes [99]. Protective roles of MBL
and ficolins have been reported during several microbial infections (Figure 3). In humans, there
are three different forms of ficolin (H-, L-, and M-ficolin), which resemble MBL in overall structure,
Ca2+-dependent binding to pathogens, and ability to activate complement independently of
antibody (reviewed in [100]). In general terms, it is well established that ficolins bind a range of
Gram-negative bacteria (e.g., Salmonella enterica serovar Typhimurium and P. aeruginosa) and
Gram-positive bacteria (e.g., S. aureus and Aerococcus viridans) where they can serve as
opsonins to increase phagocytosis and/or activate the lectin pathway of complement (reviewed
in [101]). Recently, L-ficolin was shown to promote conidial uptake and killing of A. fumigatus by
macrophages and neutrophils [102]. In the context of viral infections, L- and H-ficolins bind to IAV
glycoproteins to inhibit virus infection in vitro and in vivo [103–105]. Binding of L-ficolin to viral
N-glycans expressed by hepatitis C virus (HCV) and HIV was reported to trigger activation of the
lectin pathway complement [101,106], and L-ficolin can neutralize HCV infectivity [107,108].

Impact of the Crosstalk between PTX3 and Collectins/Ficolins on Infectious
Disease
Apart from interacting with microbial moieties, PTX3 has also demonstrated binding potential to
several components of the complement cascade, including C1q of the classical pathway [109],
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Factor H of alternative pathway [110], as well as ficolins and MBL of the lectin pathway
[32,33,111,112].

Ficolin–PTX3 Complex Formation Promotes Complement Activation
Ficolins have been reported to recognize and bind several microbial moieties. Previously,
L-ficolin has been shown to bind both A. fumigatus and PTX3. Interestingly, the binding affinity
between L-ficolin and A. fumigatus was enhanced in the presence of PTX3, which promoted
complement C4 deposition on the surface of A. fumigatus. Further characterization identified
that a T236 M amino acid substitution on the fibrinogen-like domain of L-ficolin can lead to
reduced binding capacity to PTX3 and A. fumigatus [32].

Other members of the ficolin family, such as M-ficolin, can also complex with PTX3 on apoptotic
or necrotic cells, but not with A. fumigatus. The binding sites that enable the heterocomplex
formation between M-ficolin and PTX3 were located on the structurally unique N-terminal
domain of PTX3 and fibrinogen-like domain of M-ficolin, which is dependent on its sialic
acid-binding ability [111,112]. The complex formation subsequently promoted phagocytosis
of apoptotic cells and suppressed the production of IL-8 in human monocyte-derived macro-
phages, preventing excessive inflammatory responses and neutrophil recruitment [111]. These
studies demonstrated the importance of crosstalk between ficolins and PTX3 in amplifying the
innate immune responses through activation of the lectin complement pathway.
Alphavirus
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Figure 4. Proposed Heterocomplex Formation between Pentraxin 3 (PTX3) and Mannose-Binding Lectin
(MBL) during Alphavirus Infection. During an alphavirus infection, immune cells such as inflammatory monocytes and
neutrophils are rapidly recruited to the site of infection. These activated immune cells express high levels of proinflammatory
cytokines during alphavirus infection which promote tissue damage, as well as overt expression of humoral MBL and PTX3.
MBL can, in turn, bind to alphavirus to form the MBL–alphavirus heterocomplexes, or it can bind to PTX3 to form MBL–
PTX3-alphavirus heterocomplexes. These heterocomplexes can then activate the complement cascade, resulting in
arthritis and myositis.
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Outstanding Questions
What are the putative receptors for
pentraxin 3 (PTX3) expression on the
cell surface? Do these receptors inter-
fere with pathogen entry processes?

What are the exact structural features
of PTX3, and how do these features
interact with a pathogen to render a
neutralized or enhanced pathogen
infection?

Does PTX3–MBL complex formation
exacerbate alphavirus infections?
What Is the Effect(s) of MBL–PTX3 Complex Formation during Microbial Infections?
A recent structural study using MBL demonstrated binding to, and formation of, heterocom-
plexes with PTX3, giving rise to the cross-activation of complement pathways [33]. The presence
of the MBL–PTX3 heterocomplex facilitated C1q recruitment and complement C3 and C4
deposition on C. albicans, promoting opsonophagocytosis by polymorphonuclear leukocytes
[33].

The formation of MBL–PTX3 heterocomplexes and subsequent activation of lectin pathways
have been largely associated with beneficial effects for the host. However, emerging evidence
regarding the pathogenicity of MBL and PTX3 suggests a potentially pathogenic role for MBL–
PTX3 heterocomplexes during alphavirus infections. Recent studies identified the N-terminus as
a functional domain of PTX3 which modulates pathogenicity during alphavirus infection [12]. In a
separate study, MBL was shown to induce deposition of complement component C3 on
inflamed tissues, resulting in alphavirus-induced arthritis during acute RRV infection [13].
Therefore, based on the functional roles identified for PTX3, MBL, and MBL–PTX3 hetero-
complexes, one can speculate that PTX3 and MBL are likely to complex during alphavirus
infection and act in synergy to modulate viral replication and innate immunity. The presence of
MBL–PTX3 complexes may trigger excessive activation of the lectin pathway, which, in turn,
could give rise to extensive tissue destruction and exacerbated disease outcome during
alphavirus infections (Figure 4). Future investigations are essential to dissect the immunological
roles of MBL–PTX3 complexes, and these humoral innate immune complexes may be effective
therapeutic targets in the defence against alphavirus infection (see Outstanding Questions).

Concluding Remarks
Components from the cellular and humoral arms of the innate immune system must remain in a
delicate balance to ensure effective detection and response to invading pathogens. The
multifunctional roles of humoral pentraxins and collectins add to the complexity of eliciting
appropriate innate immune responses. Despite intensive research efforts, our understanding
of how the innate immune system detects and responds to different pathogens to shape, limit,
or exacerbate disease severity is still limited. This review has discussed two families of humoral
innate immune proteins which can mediate potential antimicrobial and immunoregulatory
activities but, if dysregulated or activated inappropriately, can also act as potent inducers of
immunopathology. Currently, further studies are required to clarify the functional and physio-
logical roles of heterocomplexes formed between pentraxins and collectins or ficolins.
Heterocomplex formation is dependent on sialylated moeities which are expressed on the
N-terminal domain of PTX3 and CRD of collectins. Hence, computational and structural
studies investigating those particular glycosylation sites (as well as the nature of the glycans
expressed) on pentraxins and collectins will provide new insights into our current understand-
ing regarding heterocomplex formation. Identification of key glycosylation sites that affect the
functional role of these proteins may serve as the first step towards the development of new
therapeutic strategies for intervention with a broad spectrum of microbial infections in the near
future.
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