Peak velocity and its time limit are as good as the velocity associated with $\mathbf{V O}_{\mathbf{2 m a x}}$ for training prescription in runners

(c) (O) (\$)
 Version 1

Authors

Francisco de Assis Manoel ${ }^{1}$, Danilo F. da Silva ${ }^{1}$, Jorge Roberto Perrout de Lima², Fabiana Andrade Machado ${ }^{1}$

Affiliations

1 Department of Physical Education, State University of Maringá, Maringá-PR, Brazil
2 Department of Physical Education, Federal University of Juiz de Fora, Juiz de Fora-MG, Brazil

Key words

training programs, effort testing, athletic performance, running
accepted after revision 18.10.2016

Bibliography

DOI http://dx.doi.org/10.1055/s-0042-119951
Published online: 2017 | Sports Medicine International Open
2017; 1: E8-E15
© Georg Thieme Verlag KG Stuttgart • New York
ISSN 2367-1890

Correspondence

Prof. Fabiana Andrade Machado
Department of Physical Education
State University of Maringá
5790 Av. Colombo
Postal code: 87020-900
Maringá-PR, Brazil
Tel.: +44/3011/4 315, Fax: +44/3011/4 470
famachado_uem@hotmail.com

Abstract

This study compared the effects of 4 weeks of training prescribed by peak velocity ($\mathrm{V}_{\text {peak }}$) or velocity associated with maximum oxygen uptake ($\mathrm{VVO}_{2 \text { max }}$) in moderately trained endurance runners. Study participants were 14 runners ($18-35$ years) randomized into 2 groups, named group $\mathrm{VO}_{2}\left(\mathrm{GVO}_{2}\right)$ and group $\mathrm{V}_{\text {peak }}(\mathrm{GVP})$. The GVO_{2} had training prescribed by $\mathrm{VVO}_{2 \text { max }}$ and its time limit ($\mathrm{t}_{\text {lim }}$), whereas the GVP had training prescribed by $\mathrm{V}_{\text {peak }}$ and its $\mathrm{t}_{\text {lim }}$. Four tests were performed on a treadmill: 2 maximum incremental for $\mathrm{V}_{\text {peak }}$ and $\mathrm{vVO}_{2 \text { max }}$ and 2 for their $\mathrm{t}_{\text {lim. }}$. Performance (10 km) was evaluated on a 400 m track. Evaluations were repeated after 4 weeks of endurance training. The results showed a significant effect of training on $\mathrm{V}_{\text {peak }}\left[G V P\left(16.7 \pm 1.2-17.6 \pm 1.5 \mathrm{~km} \cdot \mathrm{~h}^{-1}\right), \mathrm{GVO}_{2}(17.1 \pm 1.9-\right.$ $\left.\left.17.7 \pm 1.6 \mathrm{~km} \cdot \mathrm{~h}^{-1}\right)\right] ; \mathrm{VVO}_{2 \max }\left[\mathrm{GVP}\left(16.4 \pm 1.4-17.0 \pm 1.3 \mathrm{~km} \cdot \mathrm{~h}^{-1}\right), \mathrm{GVO}_{2}\right.$ $\left(17.2 \pm 1.7-17.5 \pm 1.9 \mathrm{~km} \cdot \mathrm{~h}^{-1}\right)$]; and 10 km performance [GVP $\left.(41.3 \pm 2.4-39.9 \pm 2.7 \mathrm{~min}), \mathrm{GVO}_{2}(40.1 \pm 3.4-39.2 \pm 2.9 \mathrm{~min})\right]$. The $\mathrm{V}_{\text {peak }}$ highly correlated with performance in both pre- and post-training in GVP (-0.97;-0.86) and $\mathrm{GVO}_{2}(-0.95 ;-0.94)$, as well as with $\mathrm{VVO}_{2 \max }$ in GVP (-0.82;-0.88) and $\mathrm{GVO}_{2}(-0.99 ;-0.98)$. It is concluded that training prescribed by $\mathrm{V}_{\text {peak }}$ promoted similar improvements compared to training prescribed by $\mathrm{VVO}_{2 \text { max. }}$. The use of $\mathrm{V}_{\text {peak }}$ is recommended due to its practical application and the low cost of determination.

Introduction

Success in endurance racing depends on an elaborate training prescription utilizing appropriate loads and recovery periods. Such prescriptions should be planned according to the needs of the individual athlete for achieving the highest level of adaptation possible prior to the competition [16, 22, 29]. For proper training prescription, it is necessary to use variables that control and monitor the intensity of effort and possible physiological adaptations resulting from this practice and, most importantly, that show a correlation with performance [7].

Currently, the velocity associated with the occurrence of maximum oxygen uptake ($\mathrm{VVO}_{2 \max }$) is considered a good variable to predict performance and to monitor and prescribe endurance running training [2, 9, 27]. In addition, the application of its time limit ($\mathrm{l}_{\text {lim }}$) may improve the prescription of the most adequate set duration for high-intensity interval workouts [2]. Previous studies show that training prescribed by $\mathrm{VVO}_{2 \max }$ and its respective $\mathrm{t}_{\text {lim }}$ promoted improvements in performance of 3,5 and $10 \mathrm{~km}[9,13,34]$. In addition, the
training prescribed by these variables can promote improvements in $\mathrm{VO}_{2 \text { max }}$, running speed at the lactate threshold, and parameters related to heart rate (HR) among others [$9,13,34$]. However, the $\mathrm{vVO}_{2 \text { max }}$ determination requires the use and handling of expensive and delicate equipment, as well as the interpretation of data, limiting its use to only a few research laboratories, coaches, and athletes. Moreover, the $\mathrm{VVO}_{2 \text { max }}$ refers to estimating the minimum speed required to achieve $\mathrm{VO}_{2_{\text {max }}}$, as a result of calculating $\mathrm{VVO}_{2_{\text {max }}}$ based on $\mathrm{VO}_{2 \text { max }}$ determination, whereas the peak velocity $\left(\mathrm{V}_{\text {peak }}\right)$ is the maximum speed directly measured and associated with $\mathrm{VO}_{2 \text { max }}[26]$.

Thus, $\mathrm{V}_{\text {peak }}$ is an attractive variable that has been gaining attention among researchers, trainers, and endurance runners due to its practicality and financial accessibility. Despite the fact that $\mathrm{V}_{\text {peak }}$ is associated with $\mathrm{vVO}_{2 \max }$ and is a great predictor of endurance performance in tests $3-90 \mathrm{~km}[25,26,30]$, it is necessary to test its applicability to endurance training prescription as well as the applicability of its $\mathrm{t}_{\text {lim }}$ to determine duration of high-intensity interval sets. Although the intra-individual differences between $\mathrm{V}_{\text {peak }}$ and $\mathrm{vVO}_{2 \text { max }}$
might be very small, the $t_{\text {lim }}$ differences may be large, which would meaningfully change the duration of high-intensity interval sets.

Given that, as far as it is known, $\mathrm{V}_{\text {peak }}$ based training prescription for moderate intensity continuous training and high-intensity interval training has not been tested yet, the aim of this study was to evaluate the effect of 4 weeks of training prescribed by $\mathrm{V}_{\text {peak }}, \mathrm{vVO}_{2 \text { max }}$, and their respective $\mathrm{t}_{\mathrm{lim}}$ in moderately trained endurance runners. Our hypothesis was that both training models would improve aerobic, anaerobic, and performance parameters of moderately trained runners in a similar manner. We also hypothesized that $\mathrm{V}_{\text {peak }}$ would demonstrate a higher correlation with the 10 km performance than the $\mathrm{vVO}_{2 \text { max }}$ before and after training, given that $\mathrm{V}_{\text {peak }}$ is the 'measured' speed associated with $\mathrm{VO}_{2 \text { max }}$, and $\mathrm{vVO}_{2_{\text {max }}}$ is the 'estimated' speed associated with $\mathrm{VO}_{2 \max }[11,26]$. Should this be shown, it would demonstrate that the $\mathrm{V}_{\text {peak }}$ was a more sensitive variable to the effects of training for moderately trained runners.

Methods

Participants

Fourteen moderately trained endurance runners were recruited for participation in this study and showed average speed (AS) between 14 and $16 \mathrm{~km} \cdot \mathrm{~h}^{-1}$ ($\cong 62-71 \%$ of the world record). They performed at least 5 training sessions per week. Their average training distance during the study was $40.9 \pm 4.5 \mathrm{~km} \cdot$ week $^{-1}$, which was similar to their training distance before the study. Subjects had the following characteristics: (mean \pm SD, age 29.2 ± 5.3 years, weight $71.9 \pm 11.0 \mathrm{~kg}$, height $175.1 \pm 4.3 \mathrm{~cm}$) with a minimum of 1 year of experience in competitive long distance races. Before the study, the subjects were informed about the testing and training and possible risks involved and provided written informed consent. This study was approved by the University's Human Research Ethics Committee (\#1.022.468). All research was conducted ethically according to international standards and as required by the International Journal of Sports Medicine [15].

Experimental design

Runners were randomized into 2 groups using random numbers. One group was trained by $\mathrm{V}_{\text {peak }}(G V P ; n=8)$ and the other group by $\mathrm{vVO}_{2 \text { max }}\left(\mathrm{GVO}_{2} ; \mathrm{n}=6\right)$. The experiment involved the implementation of 2 different endurance running training programs (GVP vs. GVO_{2}) using the prescribed external workload ($\% \mathrm{~V}_{\text {peak }}$ or $\% \mathrm{VVO}_{2 \text { max }}$) for 5 sessions per week over a 4 week period, for a total of 20 sessions. Before and after the training intervention, in a counterbalanced order, the subjects were evaluated using 2 incremental tests on a treadmill to measure $\mathrm{VO}_{2 \text { max }}$ and $\mathrm{V}_{\text {peak }}$ and 2 to determine their $\mathrm{t}_{\mathrm{lim}}$. Performance (10 km) was evaluated on an official running track $(400 \mathrm{~m})$. In addition, variables such as heart rate (HR), blood lactate concentration [LA], and rating of perceived exertion (RPE) were also evaluated during the tests. The tests were performed over 2 weeks, with a period of at least 48 h separating each of them.

Determination of $V_{\text {peak }}$ and its $t_{\text {lim }}$

The $\mathrm{V}_{\text {peak }}$ was assessed on a motorized treadmill (Super ATL; Inbrasport, Porto Alegre, Brazil) (with the gradient set at 1% [21]. After a 3 min warm-up walking at $8 \mathrm{~km} \cdot \mathrm{~h}^{-1}$, the protocol started with an initial velocity of $10 \mathrm{~km} \cdot \mathrm{~h}^{-1}$, followed by an increase of $1 \mathrm{~km} \cdot \mathrm{~h}^{-1}$
every 3 min until volitional exhaustion (i.e., participant was unable to continue running). If the last stage was not completed, the $\mathrm{V}_{\text {peak }}$ was calculated on the partial time remaining in the last stage using the equation proposed by Kuipers et al. [23]: $\mathrm{V}+(\mathrm{t} / 180 \times 1.0)$, where V was the last completed velocity ($\mathrm{km} \cdot \mathrm{h}^{-1}$) and t , the time (s) of the uncompleted step $(180 \mathrm{~s})$. The $\mathrm{t}_{\text {lim }}$ at $\mathrm{V}_{\text {peak }}$ was assessed after a 15 min warm-up at $60 \% \mathrm{~V}_{\text {peak }}$, when velocity was increased to $\mathrm{V}_{\text {peak }}$. The subjects were verbally encouraged to run to volitional exhaustion [4].

Determination of $\mathrm{VO}_{2_{\text {max }}}$ and its $\mathrm{t}_{\text {lim }}$

The protocol used for determining the $\mathrm{VO}_{2 \max }$ was the same as that used for the determination of $\mathrm{V}_{\text {peak }}$; additionally, exhaled gas was collected to determine the $\mathrm{VO}_{2 \text { max }}$ using a portable gas analyzer ($k 4 b^{2}$, Cosmed, Roma, Italy). The $\mathrm{VO}_{2 \text { max }}$ was regarded as the maximum value obtained during the test, measured at an average of $15-\mathrm{s}$ intervals, and when at last 2 of the following criteria were met: (1) $\mathrm{LA}_{\text {peak }} \geq 8 \mathrm{mmol} \cdot \mathrm{L}^{-1}$, (2) $\mathrm{HR}_{\text {max }} \geq 100 \%$ of endurance-trained age-predicted $\mathrm{HR}_{\text {max }}$ using the age-based "206-0.7×age" equation [37] and (3) RPE $_{\max } \geq 18$ in the $6-20$ Borg scale [6]. The $\mathrm{vVO}_{2 \max }$ was the minimal velocity at which the athlete was running when $\mathrm{VO}_{2 \text { max }}$ occurred $[2,4]$. To determine $\mathrm{t}_{\text {lim }}$ at $\mathrm{vVO}_{2 \text { max }}$, the same protocol was applied as that used for determining the $t_{\text {lim }}$ at $\mathrm{V}_{\text {peak }}$ using the values of vVO2 max as parameters.

Time trials of 10 km

Participants undertook 10 km time trials on a 400 m outdoor running track at $6: 00 \mathrm{pm}$. The trial was preceded by a self-selected pace warm-up of 10 min duration. A hydration station was set up on the track with natural water. The participants were encouraged to achieve their best performance. Split times were registered at each 400 m and the average velocity of each section was calculated.

Determination [LA], HR, and RPE

Earlobe capillary blood samples ($25 \mu \mathrm{l}$) were collected into a capillary tube at the end of the tests (time zero of recovery) and at the third, fifth, and seventh minutes of passive recovery with participants seated in a comfortable chair. From these samples, [LA] was subsequently determined by electroenzymatic methods using an automated analyzer (YSI 2300 STAT, Yellow Springs, Ohio, USA). Peak [LA] ($\mathrm{LA}_{\text {peak }}$) was defined for each participant as the highest post-exercise [LA] value. RPE was also monitored during all tests by using a 6-20 Borg scale [6], and the highest RPE value was adopted as the peak RPE (RPE $_{\text {peak }}$). HR was monitored during all tests (Polar RS800sd; Kempele, Finland) and $H R_{\text {max }}$ was defined as the highest $H R$ value recorded during the test.

Training programs

All training sessions were held on a 400 m outdoor running track, between 5:00 and 9:00 pm hours due to the availability of participants and the fact that their performance would be better in the evening [10]. The training protocol consisted of 2 types of running training: continuous moderate-intensity and high-intensity interval training (short interval and long interval). The running intensity was prescribed based on the $\mathrm{V}_{\text {peak }}$ and $\mathrm{t}_{\text {lim }}$ for the GVP group, and the $\mathrm{VVO}_{2 \text { max }}$ and $\mathrm{t}_{\text {lim }}$ for the GVO_{2} group (\triangleright Table 1).

The GVO_{2} and GVP training sessions were preceded by a 15 min warm-up consisting of 5 min of low intensity running at a self-select-

- Table 1 Continuous and interval training prescribed for GVP and GVO_{2} groups.

GVP and GVO_{2}	
Continuous training	$45^{*} \pm 2.5 \mathrm{~min}$ at $75 \pm 4 \%$ of $\mathrm{V}_{\text {peak }}$ or $\mathrm{VVO}_{2 \text { max. }}$. (weeks $1 \& 2$) $60 \pm 2.5 \mathrm{~min}$ at $75 \pm 4 \%$ of $\mathrm{V}_{\text {peak }}$ or $\mathrm{VVO}_{2 \text { max }}$. (weeks $3 \& 4$)
Short interval training	$X^{* \#}$ sets at $120 \pm 2 \%$ of $\mathrm{V}_{\text {peak }}$ or $\mathrm{vVO}_{2 \max }$ with duration 10% their respective $\mathrm{t}_{\mathrm{lim}}$ and intervals (passive) with duration 30% of $\mathrm{t}_{\text {lim }}$ at $\mathrm{V}_{\text {peak }}$ or $\mathrm{VVO}_{2 \text { max }}$.
Long interval training	$X^{* \#}$ sets at $100 \pm 2 \%$ of $\mathrm{V}_{\text {peak }}$ or $\mathrm{VVO}_{2 \max }$ with duration 60% their respective $\mathrm{t}_{\mathrm{lim}}$ and intervals (passive) with duration 60% of $\mathrm{t}_{\text {lim }}$ at $\mathrm{V}_{\text {peak }}$ or $\mathrm{VVO}_{2 \text { max }}$.
\# The number of series performed by each participant was adjusted so that the total duration of interval training session corresponded to 30 ± 2.5 min	
* The intensity and duration of training was the same for both groups with differences only in the prescription variable: the GVO_{2} had the training prescribed by $\mathrm{VVO}_{2 \max }$ and its respective $\mathrm{t}_{\mathrm{lim}}$ and GVP had training prescribed by $\mathrm{V}_{\text {peak }}$ and its respective $\mathrm{t}_{\text {lim }}$	
Training was based on studies by Buchheit et al. [9]; Esfarjani and Laursen [13]; Smith; Coombes, and Geraghty, [34]; Billat et al. [2]	

ed velocity, 5 min of stretching, and 5 min of running at 60% of $\mathrm{V}_{\text {peak }}$ or $\mathrm{VVO}_{2 \text { max }}$ [35]. After the warm-up, the main training session (continuous or interval training) was conducted, followed by a cool-down comprised of self-selected low-intensity running and stretching.

The training participants of both groups were trained 5 times per week for 4 weeks. They performed 10 sessions of continuous training and 10 of interval training. During the odd weeks, participants performed 3 sessions of continuous training and 2 sessions of interval training; and the reverse during even weeks. The training sessions of the groups were differentiated by the prescription method $\left(\mathrm{V}_{\text {peak }}\right.$ and their respective $\mathrm{t}_{\text {lim }}$ to GVP and $\mathrm{vVO}_{2 \text { max }}$ and their respective $\mathrm{t}_{\text {lim }}$ to GVO_{2}). The intensity and volume of training were maintained throughout the protocol, except for continuous training in weeks 3 and 4 when the duration was increased from 45 to 60 min for both groups.

Statistical analyses

All statistical analyses were performed using the SPSS software (v.20, SPSS Inc., Chicago, IL, USA). The variables are presented as mean \pm standard deviation (SD). Data normality was verified by the Shapiro-Wilk test. The comparison between the pre- and post-training for the 2 groups was made by mixed ANOVA for repeated measures. Correlations between aerobic and anaerobic parameters with 10 km running performance were performed using the Pearson correlation coefficient. The differences (i. e., effect size [ES]) were considered small when $\mathrm{ES} \leq 0.2$, moderate when $\mathrm{ES} \leq 0.5$ and large when $E S>0.8$. Furthermore, magnitude-based inferences were applied to estimate the chances of a true observed effect being positive, trivial or negative, considering the smallest worthwhile change per Hopkins et al. [18]. The probability of a positive/trivial/negative effect of the training programs was interpreted following the recommendations of Hopkins et al. [18]; effect: < 1% almost certainly not; 1-5\% very unlikely; 5-25 \% unlikely; 25-75 \% possibly; 75-95 \% likely; $95-99 \%$ very likely; $>99 \%$ almost certainly. When the chance of having positive or negative effects in an outcome were both above 10%, the qualitative inference result was considered as unclear.

Results

The results show $\mathrm{V}_{\text {peak }}$ improvement in both groups after the 4 week training period: GVP $=0.9[0.4-1.4] \mathrm{km} \cdot \mathrm{h}^{-1}(\mathrm{p}=0.01)$ and $\mathrm{GVO}_{2}=0.6$ $[0.2-1.0] \mathrm{km} \cdot h^{-1}(p=0.03)(\triangleright$ Table 2). A significant increase in the
total duration of the incremental test was observed in both groups: $\mathrm{GVP}=2.8[1.5-4.1] \mathrm{min}(\mathrm{p}=0.01)$ and $\mathrm{GVO}_{2}=2.2[0.4-3.9] \mathrm{min}$ ($\mathrm{p}=0.06$) $(\triangleright$ Table 2).

No significant differences were observed in either group between pre- and post-training for $\mathrm{HR}_{\text {max }}, \mathrm{RPE}_{\text {max }}, \mathrm{t}_{\text {lim }}$ at $\mathrm{V}_{\text {peak }}, \mathrm{t}_{\text {lim }}$ at $v \mathrm{VO}_{2 \text { max }}$, and $\mathrm{LA}_{\text {peak }}$.

After 4 weeks of training, we observed a significant improvement in $\mathrm{VVO}_{2 \text { max }}$ only in the GVP group: $0.6[-2.2-1.8] \mathrm{km} \cdot \mathrm{h}^{-1} ;(\mathrm{p}=0.01)$. In relation to the total duration of the test, a significant increase was observed in both groups: GVP=1.7 [0.4-3.0] min ($p=0.036$) and $\mathrm{GVO}_{2}=1.2[0.2-2.2] \mathrm{min}(\mathrm{p}=0.047)$ (\triangleright Table 3).

- Table 4 shows the values of the variables both pre- and post-training obtained in the 10 km performance. In both groups, there was a significant reduction in the time it took to run a 10 km distance after the training program (GVP (-1.4 [-2.5 to -0.3] min; $p=0.04)$ and $\left.\mathrm{GVO}_{2}(-0.9[-1.6-0.2] \mathrm{min} ; p=0.048)\right)$. Furthermore, there was a significant increase in the AS after 4 weeks of training ($0.6[0.1-1.0] \mathrm{km} \cdot \mathrm{h}^{-1}$ for GVP $(\mathrm{p}=0.04)$ and $0.4[0.1-0.6] \mathrm{km} \cdot \mathrm{h}^{-1}$ for $\left.\mathrm{GVO}_{2}(p=0.036)\right)$. The runners' AS was between 14 and $16 \mathrm{~km} \cdot \mathrm{~h}^{-1}$ ($\cong 62-71 \%$ of the world record).

The effect size for the comparison between GVP and GVO_{2} for the percentage variation after the 4 week running training period revealed a small effect for $\mathrm{V}_{\text {peak }}$ and 10 km time and a moderate effect for $\mathrm{VVO}_{2 \text { max }}$, all favorable to $\mathrm{GVP}(\triangleright$ Fig. 1).

The $\mathrm{V}_{\text {peak }}$ and $\mathrm{vVO}_{2 \text { max }}$ were significantly correlated with the 10 km performance in both pre- and post-training time in both groups (\triangleright Table 5). The $\mathrm{VO}_{2 \text { max }}$, however, did not correlate with the 10 km performance at any time (Table 5).

Discussion

The aim of the study was to evaluate the effect of 4 weeks of training prescribed by $\mathrm{V}_{\text {peak }}, \mathrm{VVO}_{2 \text { max }}$, and their respective $\mathrm{t}_{\text {lim }}$ in moderately trained endurance runners.

The main finding of the study was that the training prescribed by $\mathrm{V}_{\text {peak }}$ or by $\mathrm{VVO}_{2 \text { max }}$ promoted similar improvements for moderately trained endurance runners, which confirmed a previous hypothesis. Effect size analysis showed slightly favorable changes for GVP. A significant correlation was observed between the 10 km performance and the $\mathrm{V}_{\text {peak }}$ and $\mathrm{vVO}_{2 \text { max }}$, but our hypothesis was disproven because only in the pre-training time, the GVP showed a higher
 $(\min), H R_{\max }(\mathrm{bpm}) R P E_{\max }(\mathrm{AU}), L A_{\text {peak }}\left(\mathrm{mmol} \cdot \mathrm{L}^{-1}\right)$ and $\mathrm{t}_{\text {lim }}$ at $\mathrm{V}_{\text {peak }}(\mathrm{min})$ obtained from the experimental protocol for determining the $\mathrm{V}_{\text {peak. }}$

	GVP ($\mathrm{n}=8$)				$\mathrm{GVO}_{2}(\mathrm{n}=6)$				
Variable	Pre	Post	Dif. (90\% CI)	Inference ($\mathrm{P} / \mathrm{T} / \mathrm{N}$)	Pre	Post	Dif. (90\% CI)	Inference (P/T/N)	Group \times time interaction (P)
$\mathrm{V}_{\text {peak }}\left(\mathrm{km} \cdot \mathrm{h}^{-1}\right)$	16.7 ± 1.2	$17.6 \pm 1.5^{*}$	0.9 [0.4-1.4]	Very likely $98 / 2 / 0$	17.1 ± 1.9	17.7 ± 1.6 *	0.6 [0.2-1.0]	$\begin{aligned} & \text { Possible } \\ & 72 / 28 / 0 \end{aligned}$	0.352
Duration (min)	23.0 ± 3.7	25.8 ± 4.4 *	2.8 [1.5-4.1]	Very likely 99/1/0	24.3 ± 5.7	$26.4 \pm 4.7^{*}$	2.2 [0.4-3.9]	Likely 81/19/0	0.566
$H R_{\text {max }}$ (bpm)	189 ± 5.0	191 ± 6.0	1.6 [-0.6-3.8]	Possible 66/32/2	183 ± 10.0	184 ± 12.0	1.8 [-4.1-7.7]	Unclear 42/48/10	0.943
$\mathrm{RPE}_{\text {max }}(\mathrm{AU})$	$19.9 \pm 0,4$	19.9 ± 0.4	-0.1 [-0.6-0.3]	Unclear $20 / 23 / 57$	19.7 ± 0.5	19.8 ± 0.4	0.2 [-0.5-0.8]	Unclear 55/25/20	0.449
$\mathrm{LA}_{\text {peak }}\left(\mathrm{mmol} \cdot \mathrm{L}^{-1}\right)$	9.3 ± 0.6	10.3 ± 0.8	0,9 [-0.2-2.1]	Likely $81 / 15 / 3$	8.0 ± 0.6	9.0 ± 1.0	1.1 [-1.0-3.1]	Unclear $74 / 15 / 11$	0.914
$\mathrm{t}_{\text {lim }}(\mathrm{min})$	6.8 ± 1.6	6.7 ± 1.3	-0.1 [-0.6-0.4]	Unlikely $7 / 72 / 21$	7.7 ± 1.8	6.8 ± 2.3	-0.9 [-1.7--0.1]	Likely $1 / 14 / 85$	0.130
${ }^{*} P<0.05$ in relation to pre moment to the same group. Dif $=$ Difference; $(P / T / N)=$ Positive/Trivial/Negative									

Table 3 Mean \pm standard deviation (SD) difference ($90 \% \mathrm{Cl}$), magnitude of inference, and significance level for group \times time interaction (P) for the variables: $\mathrm{VO}_{2 \text { max }}\left(\mathrm{ml} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}\right), \mathrm{VVO}_{2 \text { max }}\left(\mathrm{km} \cdot \mathrm{h}^{-1}\right)$, total duration of incremental test $(\mathrm{min}) \mathrm{HR}_{\max }(\mathrm{bpm}) \mathrm{RPE}_{\max }(\mathrm{AU}), \mathrm{LA}_{\text {peak }}\left(\mathrm{mmol} \cdot \mathrm{L}^{-1}\right)$ and $\mathrm{t}_{\text {lim }}$ at $\mathrm{VVO}_{2 \max }(\mathrm{~min})$ obtained from the determination of the protocol $\mathrm{VVO}_{2 \max }$

	GVP ($\mathrm{n}=8$)				$\mathrm{GVO}_{2}(\mathrm{n}=6)$				
Variable	Pre	Post	Dif. (90\% CI)	Inference (P/T/N)	Pre	Post	Dif. (90\% CI)	Inference (P/T/N)	Group \times time interaction (P)
$\mathrm{VO}_{2 \text { max }}\left(\mathrm{ml} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}\right)$	50.2 ± 3.5	50.0 ± 2.3	-0.2 [-2.2-1.8]	Unclear $19 / 52 / 29$	49.0 ± 6.9	48.9 ± 6.1	-0.1 [-1.7-1.6]	Unlikely 4/90/6	0.957
$\mathrm{vVO}_{2 \text { max }}\left(\mathrm{km} \cdot \mathrm{h}^{-1}\right)$	$16.4 \pm 1,4$	17.0 ± 1.3 *	0.6 [0.3-1.0]	Likely 93/7/0	17.2 ± 1.7	17.5 ± 1.9	0.3 [-0.1-0.8]	Possible $37 / 62 / 1$	0.317
Duration (min)	21.6 ± 4.8	$23.3 \pm 4.2^{*}$	1.7 [0.4-3.0]	Likely 81/19/0	23.7 ± 5.9	24.9 ± 5.2 *	1.2 [0.2-2.2]	Possible $36 / 64 / 0$	0.601
$\mathrm{HR}_{\text {max }}$ (bpm)	193 ± 11.0	190 ± 6.0	-2.9 [-9.0-3.3]	$\begin{aligned} & \text { Possible } \\ & 7 / 37 / 54 \end{aligned}$	183 ± 8.0	182 ± 7.0	-0.8 [-4.2-2.5]	Possible $8 / 65 / 27$	0.623
$R P E_{\text {max }}(\mathrm{AU})$	18.8 ± 2.1	19.5 ± 1.1	0.8 [0.0-1.5]	$\begin{aligned} & \text { Possible } \\ & 75 / 24 / 1 \end{aligned}$	19.0 ± 1.7	19.3 ± 1.3	0.3 [-0.3-1.0]	Possible $43 / 53 / 4$	0.470
$L A_{\text {peak }}\left(\mathrm{mmol} \cdot \mathrm{L}^{-1}\right)$	9.1 ± 1.9	8.8 ± 1.3	$0.5[-0.5-1.5]$	$\begin{aligned} & \hline \text { Possible } \\ & 67 / 24 / 9 \end{aligned}$	8.4 ± 1.1	8.0 ± 2.5	-0.8 [-1.6-0.1]	$\begin{aligned} & \text { Possible } \\ & 1 / 28 / 71 \end{aligned}$	0.911
$\mathrm{t}_{\text {lim }}(\mathrm{min})$	7.5 ± 1.7	6.7 ± 1.1	-0.8 [-2.3-0.6]	Possible $8 / 21 / 72$	6.3 ± 1.4	6.1 ± 2.1	0.5 [-0.8-1.7]	Unclear 57/30/13	0.225
${ }^{*} P<0.05$ in relation to pre moment to the same group. Dif = Difference; $(\mathrm{P} / \mathrm{T} / \mathrm{N})=$ Positive/Trivial/Negative									

- Table 4 Mean \pm standard deviation (SD), difference ($90 \% \mathrm{CI}$), magnitude of inference, and significance level for $10 \mathrm{~km}\left(\mathrm{~km} \cdot \mathrm{~h}^{-1}\right) \mathrm{HR}_{\max }(\mathrm{bpm}), \mathrm{RPE}_{\max }(\mathrm{AU})$ and $\mathrm{LA}_{\text {peak }}\left(\mathrm{mmol} \cdot \mathrm{L}^{-1}\right)$, obtained from the 10 km track performance.

	GVP ($\mathrm{n}=8$)				$\mathrm{GVO}_{2}(\mathrm{n}=6)$				
Variable	Pre	Post	Dif. (90\% CI)	Inference ($\mathrm{P} / \mathrm{T} / \mathrm{N}$)	Pre	Post	Dif. (90\% CI)	Inference ($\mathrm{P} / \mathrm{T} / \mathrm{N}$)	Group \times time interaction (P)
Time (min)	41.3 ± 2.4	39.9 ± 2.7 *	-1.4 [-2.5--0.3]	Likely 1/8/91	40.1 ± 3.4	39.2 ± 2.9 *	-0.9 [-1.6-0.2]	$\begin{aligned} & \hline \text { Possible } \\ & 0 / 37 / 63 \end{aligned}$	0.517
AS 10-km	14.6 ± 0.9	$15.1 \pm 1.1^{*}$	0.6 [0.1-1.0]	Likely 92/7/1	15.1 ± 1.3	15.4 ± 1.2 *	0.4 [0.1-0.6]	Possible 60/40/0	0.478
$\mathrm{HR}_{\text {max }}$ (bpm)	179 ± 8.0	179 ± 5.0	2.9 [-1.5-7.3]	Possible 58/39/3	171 ± 10.0	173 ± 8.0	6.5 [-1.0-14.0]	Likely $86 / 11 / 3$	0.404
$\mathrm{RPE}_{\text {max }}(\mathrm{AU})$	18.8 ± 1.9	18.8 ± 1.9	-0.1 [-0.8-0.5]	Unclear 15/49/35	18 ± 2.8	17.0 ± 2.6	0.0 [-0.5-0.5]	Unclear 15/70/15	0.792
$\underline{L A}$ peak $\left(\mathrm{mmol} \cdot \mathrm{L}^{-1}\right)$	7.8 ± 2.0	7.7 ± 1.7	-0.1 [-1.7-1.5]	Unclear 27/39/34	6.7 ± 0.6	7.4 ± 0.8	0.7 [-0.2-1.6]	Likely 85/9/6	0.486

${ }^{*} P<0.05$ in relation to pre moment to the same group. Dif = Difference; $(P / T / N)=$ Positive/Trivial/Negative
correlation of the $\mathrm{V}_{\text {peak }}$ with the 10 km performance compared with the $\mathrm{VVO}_{2 \text { max }}$.

For proper training prescription, it is necessary to use variables that can control and monitor the intensity of effort and possible physiological adaptations resulting from this practice and, most importantly, show a correlation with performance [7].

In our review, we found no previous studies that had used $\mathrm{V}_{\text {peak }}$ in the prescription of individualized endurance training. The GVP showed improvement in 10 km performance after 4 weeks of training, suggesting that $\mathrm{V}_{\text {peak }}$ is an effective variable for prescribing training and is able to promote improvements in performance after a period of training. The improvements found in performance caused by the training prescribed by $\mathrm{V}_{\text {peak }}$ were similar to those described by studies that used $\mathrm{VVO}_{2 \text { max }}$ for training prescription [13,35]. As for GVO_{2}, the improvements in the 10 km performance were similar to those observed for GVP after 4 weeks of training. This improvement in performance is in line with previous studies that used the same variable for training prescription [13,35]. Esfarjani and Laursen [13] observed improvements in 3000 m performance after applying a 10 week training in 17 moderately trained runners whose training sessions were prescribed by $\mathrm{VVO}_{2 \max }$ and their respective $\mathrm{t}_{\text {lim. }}$. Similar improvements observed in the 10 km performance by both prescription variables ($\mathrm{V}_{\text {peak }}$ and $\mathrm{vVO}_{2 \text { max }}$) can be explained by the fact that both variables are highly interrelated, as well as related to endurance performance [12,25,32]. This similarity is of great interest to coaches, athletes, and researchers, because currently $\mathrm{VVO}_{2 \text { max }}$ is widely known as a variable to predict performance, monitoring, and training prescription [9, 24, 27]. However because it requires the use of expensive equipment, its use is limited to only a few research laboratories, coaches, and athletes. Thus, the $\mathrm{V}_{\text {peak }}$ is an attractive alternative variable because of its practicality and low financial cost.

Both the $\mathrm{V}_{\text {peak }}$ and $\mathrm{VVO}_{2 \max }$ groups showed improvement after the training program. This improvement is mainly associated with the prescription model used in the study for interval training sessions. The intensity of the $\mathrm{V}_{\text {peak }}$ and $\mathrm{vVO}_{2 \text { max }}$ were related to $\mathrm{VO}_{2 \text { max }}$, which is considered the ideal intensity to utilize the maximum aerobic production system energy and maintain it as long as possible [31]. Moreover, the stimuli had a duration of 60% of $\mathrm{t}_{\mathrm{lim}}$ at $\mathrm{V}_{\text {peak }}$ and $\mathrm{vVO}_{2 \text { max }}$, which is considered the time required to achieve and maintain the $\mathrm{VO}_{2 \text { max }}$, resulting in an improvement in the prescription variable $[5,31]$. No evidence was provided, however, about the existence of a limit to the improvement in prescription variables with training, or if they might be bettered by improving the performance test.

The improved $\mathrm{V}_{\text {peak }}$ demonstrates the sensitivity of this variable in that it is capable of accurately monitoring the changes caused by this type of training, which is one of the main requirements for an athletic training prescription variable [7]. Regarding $\mathrm{vVO}_{2 \text { max }}$, improvement was observed for post-training GVP, but no difference was found in the GVO_{2} after the 4 weeks of training. It is noteworthy that even without a statistical difference in $\mathrm{VVO}_{2 \text { max }}$, there was significant improvement in the total duration of the incremental test when we observe the pre- and post-training duration ($23.7 \pm 5.9 \mathrm{vs}$. $24.9 \pm 5.2 \mathrm{~min}$, respectively). The improvement in test time and the absence of improvement in $\mathrm{VVO}_{2 \text { max }}$ may be related to the methodology for its determination, which is to record the minimum intensity at which the occurrence of $\mathrm{VO}_{2 \text { max }}$ was observed [2,4]. In addition to being dependent on $\mathrm{VO}_{2 \text { max }}$, this estimation is not considered

10 km time

- Fig. 1 Effect sizes of the comparison between GVP and GVO_{2} for the variation (\%) of $\mathrm{vVO} \mathrm{Omax}\left(\mathrm{km} \cdot \mathrm{h}^{-1}\right) \mathrm{V}_{\text {peak }}\left(\mathrm{km} \cdot \mathrm{h}^{-1}\right)$ and the 10 km time after the 4 week running training period.
$>$ Table 5 Correlation between the performances of 10 km before and after 4 weeks of training with the variables: $\mathrm{V}_{\text {peak }}\left(\mathrm{km} \cdot \mathrm{h}^{-1}\right), \mathrm{VO}_{2 \max }$ $\left(\mathrm{ml} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}\right), \mathrm{vVO}_{2 \max }\left(\mathrm{~km} \cdot \mathrm{~h}^{-1}\right)$.

	GVP (n=8)		$\mathbf{G V O}_{\mathbf{2}}(\mathbf{n = 6)}$	
Variable (Pre and Post)	Performance Pre	Performance Post	Performance Pre	Performance Post
$\mathrm{V}_{\text {peak }}\left(\mathrm{km} \cdot \mathrm{h}^{-1}\right)$	-0.97^{*}	-0.86^{*}	-0.95^{*}	-0.94^{*}
$\mathrm{VO}_{2 \max }\left(\mathrm{ml} \cdot \mathrm{kg}^{-1} \mathrm{~min}^{-1}\right)$	-0.35	0.03	-0.64	-0.70
$\mathrm{VVO}_{2 \max }\left(\mathrm{~km} \cdot \mathrm{~h}^{-1}\right)$	-0.82^{*}	-0.88^{*}	-0.99^{*}	-0.98^{*}
${ }^{*} \mathrm{P}<0.05$				

the total period of the test; therefore, even with the improvement in test duration, the occurrence of $\mathrm{VO}_{2 \text { max }}$ can be observed at similar intensities between the pre- and post-training, with no change in $\mathrm{vVO}_{2 \text { max. }}$. This does not occur with the $\mathrm{V}_{\text {peak }}$ when the Kuipers et al. [23] adjustment (which takes into account the precise length of the incomplete stage) is applied. This result shows that $\mathrm{vVO}_{2 \text { max }}$ determined by this protocol is a less accurate alternative variable for monitoring training when possible adaptations are small. It also supports the use of $\mathrm{V}_{\text {peak }}$ as a variable for monitoring and training prescription because it is sensitive to small changes caused by training. This sensitivity is of great interest since the more highly trained the athletes, the smaller the improvements will be. Even detection of these small gains would warrant a new training protocol.

As for $\mathrm{t}_{\text {lim }}$ at $\mathrm{V}_{\text {peak }}$ and $\mathrm{vVO}_{2 \text { max }}$, no difference was found for these variables after the 4 week training program. This result deserves further consideration, however, because after the training program the participants have managed to remain at $\mathrm{t}_{\mathrm{lim}}$ the same amount of time while exercising at higher intensities. These results were similar to those of Billat et al. [2], who also found no difference at $\mathrm{t}_{\text {lim }}$ after a 4 week training protocol. The $t_{\text {lim }}$ seems to be a variable that does not follow the changes caused by training [24]. Despite that, the application of $\mathrm{t}_{\text {lim }}$ for prescribing interval training favors greater indi-
vidualization of the duration of each high-intensity effort, given the large variation between subjects at $\mathrm{t}_{\text {lim }}$, even if $\mathrm{V}_{\text {peak }}$ or $\mathrm{VVO}_{2_{\text {max }}}$ do not show major differences between the subjects.

No improvements were seen at $\mathrm{VO}_{2_{\text {max }}}$ in either group after the training program. Results from previous studies observed the effect of a training program on $\mathrm{VO}_{2 \text { max }}$ in trained endurance runners with similar training prescriptions to those used in our study $[2,31,35]$. Even without changes in $\mathrm{VO}_{2 \text { max }}$, these studies have in common a significant improvement in performance, demonstrating that VO2 max seems to be a less sensitive training variable, which in turn suggests that the use of other variables for monitoring adaptations may be warranted [8,20,26].

No changes were observed in variables $\mathrm{HR}_{\max } \cdot \mathrm{LA}_{\text {peak }}$, or $\mathrm{RPE}_{\text {max }}$, either in the treadmill test or in track performance. The absence of change to these variables after training was expected because they are routinely used for the identification of physiological responses generated by the effort [17]. They serve as a parameter for identifying the maximum effort during the incremental test [14]. Thus, for already moderately trained runners such as our participants, the 4 week training period is a short time to promote changes in the said variables, especially in HR .

The correlation among $\mathrm{V}_{\text {peak }}, \mathrm{vVO}_{2 \text { max }}$, and performance in the present study was also observed in previous studies [3, 26]. In the present study, the GVO_{2} presented higher correlation of the performance with $\mathrm{VVO}_{2 \text { max }}$ than with $\mathrm{V}_{\text {peak }}$. The ability to predict performance by $\mathrm{VVO}_{2_{\max }}$ is related to the fact that it is a variable that shows the interaction between $\mathrm{VO}_{2 \text { max }}$ and running economy (RE) [$3,12,26]$, which are important variables for predicting performance. However, they are not able to predict the performance as isolated variables [19], especially in individuals with similar $\mathrm{VO}_{2 \text { max }}$ and/or who have a high level of training [28]. Unlike the GVO_{2}, the GVP group showed a higher correlation between $\mathrm{V}_{\text {peak }}$ and 10 km performance in the pre-training time. Previous studies have also shown high correlations between $\mathrm{V}_{\text {peak }}$ and performance $[11,36]$. Noakes et al. [30], in a study on expert runners over long distances (20 marathoners and 23 ultra-marathoners) with different performances, found that $\mathrm{V}_{\text {peak }}$ determined on a treadmill and lactate threshold (LT) were the 2 best performance predictors from 10- to 90 km running performances, concluding that $\mathrm{V}_{\text {peak }}$ is a great predictor of performance. Even in groups presenting different correlations of each variable ($\mathrm{V}_{\text {peak }}$ and $\mathrm{vVO}_{2 \text { max }}$) with performance, it was observed that both were able to predict performance, justified by the fact the 2 variables are highly interrelated [26].

Although studies show that $\mathrm{VO}_{2 \text { max }}$ has a great capacity for performance prediction in races ranging from 3 km through ultramarathons [1,26-28], in this study no correlation was found between $\mathrm{VO}_{2 \text { max }}$ and 10 km performance in either the pre-training time or post-training time in either group. The fact that the runners present a similar $\mathrm{VO}_{2_{\text {max }}}$ may indicate that the $\mathrm{VO}_{2 \text { max }}$ is not as efficient a variable to predict the performance when individuals have similar VO2 max [12]. The results demonstrated in this study have important practical implications for teams, coaches, and athletes in obtaining information about the adaptations induced by training, especially its effects on performance, given that the $\mathrm{V}_{\text {peak }}$ is a variable of great practicality and low financial cost because it does not require expensive equipment (gas analyzer).

Based on the results of this study, it was concluded that the training prescribed by $\mathrm{V}_{\text {peak }}$ promoted improvements similar to the training prescribed by $\mathrm{VVO}_{2_{\text {max }}}$ in moderately trained endurance runners. Therefore, we recommend the additional use of $\mathrm{V}_{\text {peak }}$ associated with its time limit for endurance training prescription in recreational runners with a similar training level to that of the study participants.

Acknowledgements

This work was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES, Brazil

References

[^0][4] Billat VL, Hill DW, Pinoteau J, Petit B, Koralsztein JP. Effect of protocol on determination of velocity at $\mathrm{VO}_{2 \text { max }}$ and on its time to exhaustion. Arch Physiol Biochem 1996; 104: 313-321
[5] Billat VL, Slawinski J, Bocquet V, Demarle A, Lafitte L, Chassaing P, Koralsztein JP. Intermittent runs at the velocity associated with maximal oxygen uptake enables subjects to remain at maximal oxygen uptake for a longer time than intense but submaximal runs. Eur J Appl Physiol 2000; 81: 188-196
[6] Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc 1982; 14: 377-381
[7] Borresen J, Lambert MI. Autonomic control of heart rate during and after exercise: measurements and implications for monitoring training status. Sports Med 2008; 38: 633-646
[8] Bragada JA, Santos PJ, Maia JÁ, Colaço PJ, Lopes VP, Barbosa TM. Longitudinal study in 3000 m male runners: relationship between performance and selected physiological parameters. J Sports Sci Med 2010; 9: 439-444
[9] Buchheit M, Chivot A, Parouty J, Mercier DAL, Haddad H, Laursen PB, Ahmaidi S. Monitoring endurance running performance using cardiac parasympathetic function. Eur J Appl Physiol 2010; 108: 1153-1167
[10] Cruz R, Melo BP, Manoel FA, Castro PHC, Da Silva SF. Pacing strategy and heart rate on the influence of circadian rhythms. J Exerc Physiol Online 2013; 16: 24-31
[11] da Silva DF, Simões HG , Machado FA . $\mathrm{VVO}_{2 \text { max }}$ versus $\mathrm{V}_{\text {peak }}$, what is the best predictor of running performances in middle-aged recreational-ly-trained runners? Sci Sports 2015; 30: 85-92
[12] Davison R, Van Someren KA, Jones AM. Physiological monitoring of the Olympic athlete. J Sports Sci 2009; 27: 1433-1442
[13] Esfarjani F, Laursen PB . Manipulating high-intensity interval training: effects on $\mathrm{VO}_{2 \text { max }}$, the lactate threshold and 3000 m running performance in moderately trained males. J Sci Med Sport 2007; 10: 27-35
[14] Fernandes RJ, Billat VL, Cruz AC, Colaco PJ, Cardoso CS, Vilas-Boas JP. Does net energy cost of swimming effect time to exhaustion at the individual's maximal oxygen consumption velocity? J Sport Med Phys Fit 2006; 46: 373-380
[15] Harriss D], Atkinson G. Ethical standards in sport and exercise science research: 2016 update. Int J Sports Med 2015; 36: 1121-1124
[16] Hautala AJ, Makikallio TH, Kiviniemi A, Laukkanen RT, Nissila S, Huikuri HV, Tulppo MP. Cardiovascular autonomic function correlates with the response to aerobic training in healthy sedentary subjects. Am J Physiol Heart Circ Physiol 2003; 285: 1747-1752
[17] Hill DW, Rowell AL. Running velocity at $\mathrm{VO}_{2 \max }$ Med Sci Sport Exer 1996; 28: 114-119
[18] Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc 2009; 41: 3-13
[19] Hugget DL, Connelly DM, Overend TJ. Maximal aerobic capacity testing of older adults: a critical review. Biol Sci Med Sci 2005; 60: 57-66
[20] Jones AM, Carter H. The effect of endurance training on parameters of aerobic fitness. Sports Med 2000; 29: 373-386
[21] Jones AM, Doust JH. A 1% treadmill grade most accurately reflects the energetic cost of outdoor running. J Sport Sci 1996; 14: 321-327
[22] Kiviniemi AM, Hautala AJ, Kinnunen H, Tulppo MP. Endurance training guided individually by daily heart rate variability measurements. Eur J Appl Physiol 2007; 101: 743-751
[23] Kuipers H, Rietjens G, Verstappen F. Effects of stage duration in incremental running tests on physiological variables. Int J Sports Med 2003; 24: 486-491
[24] Laursen PB, Jenkins DJ. The scientific basis of high-intensity interval training: optimising training programmes and maximising performance in highly trained athletes. Sports Med 2002; 32: 53-73
[25] Machado FA, Kravchychyn ACP, Peserico CS, da SIlva DF, Mezzaroba PV. Incremental test design, peak 'aerobic' running speed and endurance performance in runners. J Sci Med Sport 2013; 16: 577-582
[26] Mclaughlin JE, Howley ET, Bassett JRDR, Thompson DL, Fitzhugh EC. Test of classic model for predicting endurance running performance. Med Sci Sports Exerc 2010; 42: 991-997
[27] Midgley AW, Mcnaughton LR, Jones AM. Training to enhance the physiological determinants of long-distance running performance. Sports Med 2007; 37: 857-880
[28] Morgan DW, Baldini FD, Martin PE, Kohrt WM. Ten kilometer performance and predicted velocity at $\mathrm{VO}_{2 \text { max }}$ among well-trained male runners. Med Sci Sports Exerc 1989; 21: 78-83
[29] Nakamura FY, Moreira A, Aoki MS. Monitoring of training load: Is perception subjective session effort a reliable method? Physical Education Journal of UEM 2010; 21: 1-11
[30] Noakes TD, Myburgh KH, Schall R. Peak treadmill running velocity during the $\mathrm{VO}_{2 \text { max }}$ test predicts running performance. J Sports Sci 1990; 8: 35-45
[31] Ortiz MJ, Stella S, Mello MT, Denadai BS. Effects of high intensity aerobic training on the running economy in endurance runners. R bras Ci e Mov 2003; 11: 53-56
[32] Peserico CS, Zagatto AM, Machado FA. Reliability of peak running speeds obtained from different incremental treadmill protocols. J Sports Sci 2014; 32: 993-1000
[33] Saunders PU, Cox AJ, Hopkins WG, Pyne DB. Physiological measures tracking seasonal changes in peak running speed. Int J Sports Physiol Perform 2010; 5: 230-238
[34] Smith TP, Coombes JS, Geraghty DP. Optimising high-intensity treadmill training using the running speed at maximal O_{2} uptake and the time for which this can be maintained. Eur J Appl Physiol 2003; 89: 337-343
[35] Smith TP, Mcnaughton LR, Marshall KJ. Effects of 4-wk training using Vmax/Tmax on $\mathrm{VO}_{2 \text { max }}$ and performance in athletes. Med Sci Sports Exerc 1999; 31: 892-896
[36] Stratton E, O'Brien BJ, Harvey J, Blitvich J, Mcnicol AJ, Janissen D, Paton C, Knez W. Treadmill velocity best predicts 5000-m run performance. Int J Sports Med 2009; 30: 40-45
[37] Tanaka H, Monahan KD, Seals DR. Age-predicted maximal heart rate revisited. J Am Coll Cardiol 2001; 37: 153-156

[^0]: [1] Bassett DR, Howley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc 2000; 32: 70-84
 [2] Billat V, Flechet B, Petit B, Muriaux G, Koralsztein J. Interval training at VO2max: effects on aerobic performance and overtraining markers. Med Sci Sports Exerc 1999; 31: 156-163
 [3] Billat V, Renoux JC, Pinoteau J, Petit B, Koralsztein JP. Reproducibility of running time to exhaustion at $\mathrm{VO}_{2 \max }$ in subelite runners. Med Sci Sports Exerc 1994; 26: 254-257

