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Jiaqi Li,1,2 Lejian Liao,1,2,4,* Meihuizi Jia,1,2 Zhendong Chen,1,2 and Xin Liu3,4,5,*

SUMMARY

Magnetic resonance imaging (MRI), ultrasound (US), and contrast-enhanced ultrasound (CEUS) can pro-
vide different image data about uterus, which have been used in the preoperative assessment of endome-
trial cancer. In practice, not all the patients have complete multi-modality medical images due to the high
cost or long examination period. Most of the existing methods need to perform data cleansing or discard
samples with missing modalities, which will influence the performance of the model. In this work, we
propose an incomplete multi-modality images data fusion method based on latent relation shared to
overcome this limitation. The shared space contains the common latent feature representation andmodal-
ity-specific latent feature representation from the complete and incomplete multi-modality data, which
jointly exploits both consistent and complementary information among multiple images. The experi-
mental results show that our method outperforms the current representative approaches in terms of
classification accuracy, sensitivity, specificity, and area under curve (AUC). Furthermore, our method per-
forms well under varying imaging missing rates.

INTRODUCTION

Endometrial cancer is the most commonmalignancy of the inner lining of the uterus and the fifth most common cancer in women, with 90000

deaths per year worldwide.1,2 There are FIGO staging classification for endometrial cancer, and the treatment of patients varies with different

clinical stages.3 Preoperative assessment of myometrial/cervical invasion and lymph node metastases can help to define resulting surgical

management. Magnetic resonance imaging (MRI) and transvaginal ultrasound are considered as the common imaging techniques for pre-

operative assessment of endometrial cancer. MRI has high diagnostic accuracy due to its excellent soft tissue contrast resolution.4,5 However,

MRI is not the first choice due to its high price and long queuing time. Ultrasound (US) is the primary screeningmethod for endometrial cancer

because of its low cost and reasonably sensitive and specific. Moreover, when the endometrial thickness is less than 5 mm, ultrasound is an

effective first test with a high negative predictive value.6

Combining multimodal data can gain more information about the disease, and diagnose the disease more accurately.7–9 For instance,

multi-modality fusion learning architecture GroupFusionNet (GFN) method is used to diagnose theoptic neuropathy.10 COVID-19 patient

severity prediction is carried out through the cohesive multi-modality feature learning and fusion method.11 Multi-level multi-modality

(PET and CT) fusion radiomics method12 have been used for the prediction of non-small cell lung carcinoma. Due to the high cost of

some medical image examinations or the long queue time for examinations, etc., not all patients have complete multi-modality data.13,14

Therefore, algorithms that require completemodal data are difficult to implement in the field ofmedical images. Themissingmodalities often

contain a large amount of useful information, and missing some modal data in the limited data of a particular disease may lead to modelo-

verfitting. Ren15 proposed a cross-site prognosis prediction framework for nasopharyngeal carcinoma from incomplete multi-modal data.

Zhang16 proposed a scalable swin transformer network using a single encoder to extract latent feature maps from incomplete modalities.

So, not only dowe need tomine data for potential relationships in existingmodalities, but we should alsomake joint complements formissing

parts. It is difficult to train some features appearing in only one or certain components of medical images, especially when the number of

training data are limited,17 it becomes very important to make full use of the existing medical image information.

In clinical work, doctors diagnose diseases by observing and analyzing the existing medical images of patients. It’s a hard work, and takes

years for an experienced doctor to read thousands ofmedical images to acquire a certain ability to diagnose diseases. At the same time, there

may be slight subjective differences in the diagnosis of the same medical image by different doctors.17
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To address these challenges, we propose a model that can use incompletemulti-modality medical data, which needs to explore potential

relationships between existing modal data, as shown in Figure 1. Specifically, first we map the original modal view into a latent space in order

to get different attribute information and reduce the noise of data and the dimensionality of features. Second, latent relation is obtained uti-

lizing samples with incomplete multi-modality images. Finally, mapping all data (complete and incomplete multi-modality) into a potentially

unique space. This method shares weights with the potential space, so that it will be able to fill in the information of incomplete modalities.

Specifically, input is the incompletemulti-modality medical images, and the output (real label) is endometrial carcinoma stage of that patient.

The comparison of our framework with clinical diagnostic method and other methods is shown in Figure 2.

The contributions of this study can be summarized as follows.

(1) A latent relation shared framework formedical images is proposed. It can find the common latent space ofmulti-viewdata andperform

missing data inference simultaneously to achieve better diagnostic performance.

(2) An incompletemulti-modality approach is proposed, which utilizes image data from all availablemodalities without introducing extra-

neous noise parameters, thereby significantly improving prediction performance.

(3) An incomplete multi-modality approach that incorporates MRI, ultrasound and contrast-enhanced ultrasound (CEUS) images is the

first attempt at modeling in endometrial cancer detection to the best of our knowledge.

(4) A number of experiments were conducted to evaluate the effectiveness of the proposed method. The proposed model outperforms

the current state-of-the-art models on the Tiantan Hospital Endometrial Cancer (TTHEC) task and is suitable for a wider range of dis-

ease diagnostic applications.

RESULTS

In this section, we first introduce the experimental settings, including experiment tasks and evaluation strategies. Subsequently, we describe

the preprocessing pipeline used in this work. Finally, the performance of different combinations of modalities and incomplete data with

different missing rate are showed.

Endometrial carcinoma is divided into four stages according to the International Federation of Gynecology and Obstetrics (FIGO).3

Compared to stage I and II, stage III and IV are easier to identify on imaging as they are characterized by invading into lower vagina, sidewall,

ureters, adjacent, and distant organs. It is more meaningful to distinguish between stage I and II. At the same time, stage IA and IB are sub-

classes of stage I, and the discrimination of stage IA and IB lesions is also a difficulty in clinical diagnosis. Therefore, this study focus on dif-

ferentiation of endometrial cancer at stage IA, stage IB and stage II based on incomplete multi-modality medical images, hoping to play an

auxiliary role in clinical diagnosis.

Figure 1. Our proposed latent relation shared frame-work for incomplete multi-modality medical images
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Experimental setup

Weapply ourmethod tomulti-classification tasks; (1) three-class classification task for normal control (NC) subjects, stage I patients, and stage

II patients, (2) four-class classification task for NC subjects, stage IA patients, stage IB patients, and stage II patients, and (3) two-class clas-

sification task for stage IA patients and stage IB patients.

To enable a fair comparison, horizontal flipping, vertical flipping, cropping, contrast-modified, and random noise augmentation methods

are applied equally to all methods.

Based on the size of the image data, we set up 10-fold cross validation strategy to evaluate all comparison methods. Furthermore, we

repeat the experiment for 30 times, and calculate the average value of the results to avoid possible bias. The accuracy (ACC), sensitive

(SEN), specificity (SPE), and area under curve (AUC) are used as standard metrics to evaluate the performance of our model.

Related work

Canonical correlation analysis (CCA) is a common dimensionality reduction algorithm,18 the data are mapped from high dimension to low

dimension, and the dispersion of data are ensured as large as possible.19,20 We extract various features from the image, and each feature

can form a linear space. In order to analyze the correlation between these spaces, CCA can be used for analysis.21 KCCA algorithm improves

CCA algorithm by introducing the concept of ‘‘kernel trick’’,22 realizing the solution of nonlinear problems in the original space and increasing

the dimension of the original vector space, and increasing the flexibility.23,24 The advantages of DCCA over KCCA are that inner product and

parameterization methods are not required: the training time varies with the data size, and there is no need to reference the training data

when calculating representations where no instances have been seen.25,26

Multi-view feature learning requires consensus principle and complementary principle.27,28 There is paired information between different

views of multi-view data. For a multi-view sample, multiple views describe the same object, so there is consistency in multi-view data. The

consistency principle is to maximize the consistency of multiple disparate multi-view.29 In the task of multi-view data, each view should be

able to complete a specific knowledge discovery task, and different views usually contain complementary information.30–32 From an informa-

tion perspective, in addition to some information shared with other views in each view, there is also some information which is unique to this

Figure 2. Advantages of our framework
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view. The existence of complementarity is also the reason whymulti-view are superior to single-views. In the early stage of the development of

this technology, people often focused on unsupervised dimensionality reduction22 of multiple views, which showed advantages in clustering

and recognition tasks. Recently, probabilistic multi-view graph embedding33 has been used for multi-view feature learning with many-to-

many associations, which is generalizes various existing multi-view methods. Then, the asymmetric merit of LINEX loss34 is used to improve

view-consistency and generalization capability.

Incomplete multi-view feature learning. Recently, a number of incomplete multi-view learning methods35–40 have been proposed to

improve experimental performance. Liu41 proposed a self-supervised multi-view graph completion algorithm to infer the associated missing

entries for incompletemulti-view clustering. An imputation-free deep incompletemulti-view clusteringmethodwas proposed, which used an

adaptive feature projection to obtain deeper semantic understanding.42 Xia43 proposed a kernelized graph-based incomplete multi-view

clustering algorithm to overcome the absence of some instances. Incorporating with the constraint of intrinsic geometric structure is pro-

posed to couple incomplete multi-view samples.44 Data imputation and self-representation learning45 are jointly conducted to solve the

problem of partial data missing.

Taking advantage of the latent relation shared method, we expect to develop an incomplete multi-modality medical images fusion

method to supplement the missing information in the mapping space.

Comparison with baseline methods

We compare our method with several baseline methods, including KCCA, DCCA, MDcR, Least_iMSF, Logi_iMSF, and iMVWL. CCA, multi-

view feature learning, incomplete multi-view feature learning are selected as the baseline methods. KCCA46 and DCCA47 are chosen as the

representative methods for CCA. The methods of multi-view feature learning are MDcR.48 iMSF (Least_iMSF R and Logi_iMSF L)49 and

iMVWL50 are applied to incomplete multi-view feature learning.

Canonical Correlation Analysis: KCCAmaps low-dimensional data to high-dimensional feature space (kernel function space) and performs

correlation analysis through kernel function; DCCA is a way of learning complex nonlinear transformations of two views of data whose result-

ing representations are highly linearly correlated. Multi-view feature learning: MDcR employs Hilbert-Schmidt Independence Criterion to

explicitly enforce the dependence across different images. Incomplete multi-view feature learning: iMSF divides the samples into multiple

views and constructs a specific classifier for each view. The difference between Least_iMSF and Logi_iMSF is the loss function, which is least

squared loss and logical loss in order. iMVWL learns a shared subspace from incomplete views with weak labels, local label correlations, and a

predictor in this subspace, simultaneously.

The results of the comparison are shown in Table 1. From the table, we can observe that, in NC vs. stage I vs. stage II, NC vs. stage IA vs.

stage IB vs. stage II and stage IA vs. stage IB classification, ‘‘OURS’’ generally outperforms the other methods in terms of ACC, SEN, SPE, and

AUC, which implies that more feature learned by our proposedmethod can help improve the classification performance. Second, the results

reported for multi-classification tasks (NC vs. stage I vs. stage II, NC vs. stage IA vs. stage IB vs. stage II) are lower than the performance on the

binary classification task (stage IA vs. stage IB). The most likely reason is that multi-classification tasks are more challenging than binary clas-

sification tasks in medical image analysis. There are some similarities in the morphology of the different stages. Besides, using all available

data methods (‘‘Ours’’, ‘‘Least_iMSF’’, ‘‘Logi_iMSF’’, and ‘‘iMVWL’’) is better than using complete multi-modality data methods (‘‘KCCA’’,

‘‘DCCA’’, ‘‘MDcR’’). The results of OURS (complete multi-modality data) are superior or equal to that of Least_iMSF and Logi_iMSF, but infe-

rior to iMVWL. Our model has certain advantages in data feature extraction, but the discarded data will affect the performance of the model.

In addition, the incomplete image information contains useful medical diagnostic data, which can be used to improve the performance of the

model.

Study on different combinations of modalities

This part mainly studies the latent features of different modalities and the correlations between them. We compare the performance of our

method for different combinations of modalities on different classification tasks in Table 2. As can be seen from the Table 2, our model using

MRI outperforms themodels usingother two kindofmodalities (US, CEUS), and comparedwith the data of the other twomodalities, the discrim-

ination ability of US data in patients with endometrial cancer may be poor. Similarly, MRI+CEUS performances better thanMRI+US. This implies

thatMRI couldbecomparativelymoreeffectivebiomarkers indistinguishingendometrial cancer statusdiagnosiscomparedtoUSandCEUSdata.

However,MRI,US, andCEUSstill contain their specific information, andwecanobserve that the ‘‘MRI+US+CEUS’’modal outperformsother com-

binations for the NC vs. stage I vs. stage II, NC vs. stage IA vs. stage IB vs. stage II, and stage IA vs. stage IB classification tasks.

Study on incomplete data with different missing rates

MRI, US, and CEUS data are not available for all patients in the diagnosis of endometrial disease. In order to further verify the effectiveness of

the proposed method in dealing with different missing modality, partial data of MRI, US, or CEUS were randomly discarded, with 10%, 20%,

and 30% of each data discarded, respectively. The performance is showed in Table 3.

As themissing rate increases from 10% to 30%, it was found that the accuracy of all tasks decreases as themiss rate increased, although the

rate of decline was different for different methods. As shown in Table 3, our proposed method outperforms almost all the other methods

under different missing rates.

Overall, the resolution of endometrial cancer stage IA vs. stage IB is higher than that of NC vs. stage I vs. stage II and NC vs. stage IA

vs. stage IB vs. stage II tasks at different missing rates. As NC and stage I are similar in imaging morphology, so the performance of the
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model will be affected. At the same time, the multi-detection problem of NC vs. stage IA vs. stage IB vs. stage II reduces the efficiency

of the model. At the same missing rate, MRI has the greatest impact on the model, followed by CEUS and US. It shows that in the pro-

cess of model building, the MRI maps the most effective information to latent space among the three kind of modal medical images.

Discarding partial data in any medical image will lead to a decrease in the performance of the model, indicating that all three medical

images map useful information to the latent space, and the information is complementary. This part of the content is confirmed by the

Table 1. Classification performance of all compared methods

Tasks Method ACC(%) SEN(%) SPE(%) AUC

NC vs. stage I vs. stage II KCCA 55.2 G 0.85 51.3 G 1.85 64.3 G 0.97 0.577 G 0.011

DCCA 57.1 G 0.73 52.7 G 2.31 65.1 G 0.85 0.590 G 0.024

MDcR 61.1 G 0.62 59.2 G 2.12 68.5 G 0.82 0.673 G 0.009

Least_iMSF 72.5 G 0.92 60.1 G 2.89 88.3 G 0.88 0.719 G 0.009

Logi_iMSF 72.0 G 0.86 59.8 G 2.94 88.1 G 0.76 0.702 G 0.010

iMVWL 79.8 G 0.65 76.8 G 2.77 87.5 G 0.89 0.813 G 0.006

OURS(complete

multi-modality data)

73.1 G 0.77 60.0 G 2.55 88.1 G 0.83 0.710 G 0.008

OURS 80.1 G 0.81 79.6 G 2.67 89.2 G 0.76 0.823 G 0.008

NC vs. stage IA vs. stage

IB vs. stage II

KCCA 51.7 G 0.81 48.8 G 1.93 63.1 G 1.02 0.523 G 0.015

DCCA 53.3 G 0.79 50.1 G 2.75 63.2 G 0.93 0.541 G 0.030

MDcR 55.9 G 0.68 51.0 G 2.33 62.5 G 0.95 0.582 G 0.018

Least_iMSF 68.1 G 0.87 54.8 G 2.95 86.8 G 0.98 0.680 G 0.018

Logi_iMSF 67.3 G 0.95 54.9 G 2.99 86.2 G 0.95 0.669 G 0.017

iMVWL 76.9 G 0.52 75.3 G 2.89 85.3 G 1.03 0.785 G 0.023

OURS(complete

multi-modality data)

68.1 G 0.72 59.8 G 2.81 86.6 G 0.92 0.706 G 0.010

OURS 78.2 G 0.79 75.3 G 2.82 87.1 G 0.85 0.791 G 0.009

stage IA vs. stage IB KCCA 63.5 G 0.88 59.8 G 1.62 75.6 G 0.93 0.661 G 0.007

DCCA 64.1 G 0.76 61.2 G 2.42 76.1 G 0.81 0.670 G 0.018

MDcR 68.3 G 0.61 65.3 G 2.25 77.0 G 0.82 0.741 G 0.008

Least_iMSF 72.8 G 0.91 60.5 G 2.75 89.1 G 0.85 0.722 G 0.006

Logi_iMSF 71.5 G 0.95 60.1 G 2.91 89.0 G 0.72 0.719 G 0.007

iMVWL 82.5 G 0.63 79.2 G 2.85 88.9 G 0.69 0.828 G 0.007

OURS(complete

multi-modality data)

75.2 G 0.70 78.3 G 2.52 89.2 G 0.81 0.753 G 0.008

OURS 84.1 G 0.72 82.9 G 2.73 90.1 G 0.76 0.877 G 0.006

Results are shown as mean G standard deviation.

Table 2. Classification results of different modality combinations for three classification tasks

Modalities

NC vs. stage I vs. stage II

NC vs. stage IA vs. stage IB vs.

stage II stage IA vs. stage IB

ACC(%) AUC ACC(%) AUC ACC(%) AUC

MRI 72.1 G 1.02 0.818 G 0.004 69.5 G 1.49 0.798 G 0.009 75.8 G 0.98 0.862 G 0.009

US 70.1 G 1.96 0.805 G 0.006 63.3 G 2.21 0.812 G 0.010 74.7 G 1.95 0.812 G 0.012

CEUS 71.3 G 1.83 0.815 G 0.013 67.7 G 1.99 0.799 G 0.007 74.8 G 1.90 0.829 G 0.006

MRI+US 78.5 G 1.10 0.818 G 0.006 77.2 G 1.32 0.803 G 0.008 83.1 G 1.01 0.862 G 0.008

MRI+CEUS 78.9 G 0.93 0.817 G 0.010 77.5 G 1.02 0.790 G 0.006 83.5 G 0.89 0.870 G 0.006

MRI+US+CEUS 80.1 G 0.81 0.823 G 0.008 78.2 G 0.79 0.791 G 0.009 84.1 G 0.72 0.877 G 0.006

Results are shown as mean G standard deviation.
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Table 3. Classification performance of all compared methods under different missing rates

Method Missing rate

NC vs. stage I vs. stage II

NC vs. stage IA vs. stage IB

vs. stage II stage IA vs. stage IB

ACC(%) AUC ACC(%) AUC ACC(%) AUC

(a) Missing MRI

Least_iMSF 10% 69.8 G 1.03 0.720 G 0.010 66.0 G 1.58 0.685 G 0.013 70.9 G 1.12 0.725 G 0.007

20% 69.1 G 1.09 0.716 G 0.013 64.9 G 1.89 0.702 G 0.020 69.3 G 1.33 0.730 G 0.015

30% 67.3 G 1.52 0.680 G 0.007 64.1 G 2.10 0.694 G 0.019 67.5 G 1.57 0.700 G 0.008

Logi_iMSF 10% 70.1 G 0.96 0.710 G 0.009 65.8 G 1.21 0.628 G 0.032 70.2 G 1.18 0.683 G 0.013

20% 69.1 G 1.22 0.712 G 0.023 64.5 G 1.98 0.620 G 0.028 68.4 G 1.72 0.681 G 0.011

30% 67.5 G 1.49 0.701 G 0.017 62.0 G 2.35 0.600 G 0.019 67.3 G 1.85 0.675 G 0.007

iMVWL 10% 77.8 G 0.72 0.812 G 0.011 73.5 G 0.80 0.778 G 0.012 80.5 G 0.79 0.825 G 0.019

20% 76.5 G 0.92 0.810 G 0.009 71.5 G 1.21 0.790 G 0.015 78.2 G 0.93 0.811 G 0.022

30% 75.2 G 1.13 0.799 G 0.015 69.3 G 1.62 0.761 G 0.009 75.8 G 1.21 0.781 G 0.013

OURS 10% 78.1 G 0.92 0.825 G 0.007 74.5 G 1.12 0.781 G 0.013 82.0 G 0.90 0.879 G 0.008

20% 77.3 G 1.12 0.813 G 0.009 72.3 G 1.18 0.796 G 0.016 79.8 G 1.02 0.816 G 0.006

30% 75.9 G 1.18 0.799 G 0.005 71.5 G 1.39 0.775 G 0.017 78.0 G 1.20 0.800 G 0.018

(b) Missing US

Least_iMSF 10% 71.6 G 0.82 0.716 G 0.011 67.5 G 1.20 0.673 G 0.015 72.2 G 0.91 0.716 G 0.006

20% 71.0 G 0.97 0.715 G 0.015 66.7 G 1.25 0.663 G 0.017 71.5 G 1.19 0.700 G 0.019

30% 70.1 G 1.01 0.680 G 0.009 66.1 G 1.55 0.669 G 0.016 70.5 G 1.24 0.698 G 0.008

Logi_iMSF 10% 71.7 G 0.85 0.701 G 0.007 67.1 G 1.28 0.645 G 0.013 71.2 G 0.82 0.710 G 0.019

20% 70.9 G 1.07 0.700 G 0.026 66.4 G 1.35 0.638 G 0.015 70.9 G 1.00 0.689 G 0.017

30% 70.2 G 1.09 0.675 G 0.016 66.1 G 1.68 0.635 G 0.009 70.6 G 1.01 0.679 G 0.012

iMVWL 10% 79.3 G 0.65 0.812 G 0.015 76.0 G 0.76 0.782 G 0.010 81.6 G 0.70 0.820 G 0.011

20% 78.5 G 0.83 0.809 G 0.019 74.8 G 0.96 0.778 G 0.011 80.7 G 0.78 0.815 G 0.008

30% 77.6 G 0.97 0.779 G 0.017 74.1 G 1.32 0.769 G 0.012 79.8 G 0.96 0.789 G 0.016

OURS 10% 79.5 G 0.85 0.820 G 0.013 77.3 G 0.89 0.785 G 0.010 82.9 G 0.86 0.870 G 0.009

20% 78.9 G 0.88 0.816 G 0.015 76.1 G 1.02 0.773 G 0.009 81.7 G 0.96 0.846 G 0.005

30% 78.0 G 0.98 0.814 G 0.005 75.3 G 1.10 0.773 G 0.017 80.3 G 1.02 0.828 G 0.008

(c) Missing CEUS

Least_iMSF 10% 71.0 G 0.85 0.715 G 0.015 67.3 G 1.33 0.665 G 0.011 71.2 G 1.03 0.710 G 0.013

20% 70.1 G 1.01 0.708 G 0.013 66.0 G 1.49 0.659 G 0.008 70.3 G 1.33 0679 G 0.010

30% 68.9 G 1.25 0.682 G 0.019 64.5 G 1.92 0.635 G 0.015 68.9 G 1.45 0.672 G 0.018

Logi_iMSF 10% 71.0 G 0.95 0.698 G 0.009 66.0 G 1.25 0.654 G 0.013 70.4 G 1.09 0.700 G 0.015

20% 69.9 G 1.10 0.689 G 0.011 65.1 G 1.33 0.630 G 0.012 68.9 G 1.35 0.685 G 0.008

30% 69.0 G 1.35 0.663 G 0.012 62.9 G 1.91 0.619 G 0.010 68.0 G 1.32 0.671 G 0.012

iMVWL 10% 79.3 G 0.70 0.802 G 0.011 74.2 G 0.76 0.779 G 0.012 81.1 G 0.69 0.823 G 0.015

20% 78.2 G 0.90 0.793 G 0.015 71.9 G 0.92 0.770 G 0.013 78.5 G 0.75 0.813 G 0.012

30% 77.3 G 0.92 0.776 G 0.013 69.9 G 0.99 0.751 G 0.007 76.6 G 1.01 0.785 G 0.007

OURS 10% 79.3 G 0.86 0.816 G 0.009 75.3 G 1.03 0.783 G 0.011 82.3 G 0.90 0.869 G 0.009

20% 78.5 G 0.95 0.810 G 0.006 72.5 G 1.32 0.768 G 0.009 80.1 G 1.17 0.833 G 0.013

30% 77.8 G 0.99 0.801 G 0.011 72.0 G 1.40 0.770 G 0.015 78.3 G 1.32 0.810 G 0.015

Results are shown as mean G standard deviation.
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conclusion of different combinations of modalities, indicating that the conclusion is still applicable under the conditions of different

missing rates.

As can be seen from Table 3, our model has certain advantages under the conditions of three different images missing. Comparing stage

IA vs. stage IB and NC vs. stage IA vs. stage IB vs. stage II, our model has a certain decline in the performance of two-class and four-class

detection, but it still has advantages compared to other models. The possible reason may be that limited patient data are used as much

as possible in model training. Although the accuracy of the model decreases with the increase of missing rate, our model still achieves a

high level of accuracy in three different classification tasks despite the missing rate reached 30%.

Ablation study and parameters analysis

In order to investigate the effect of parameters and demonstrate the effectiveness of the Laplacian regularization term for our approach for

endometrial cancer diagnosis with incompletemulti-modality medical images, we analyzed the five employed hyperparameters a, b, g, k and

p, respectively, and conducted model simplification tests.

Firstly, the effect of trade-off parameters, dimension of the latent subspace and neighbor number on themodel are studied, the results are

shown in Figure 3. ACC-1, ACC-2, and ACC-3 represent the accuracy of tasks NC vs. stage I vs. stage II, NC vs. stage IA vs. stage IB vs. stage II,

and stage IA vs. stage IB, respectively. AUC-1, AUC-2, and AUC-3 represent the under curve of tasks NC vs. stage I vs. stage II, NC vs. stage IA

vs. stage IB vs. stage II, and stage IA vs. stage IB, respectively. a, b, and g are the trade-off parameters of our model. In optimization problems,

trade-off parameters are used to balance different objectives. We set the parameters a, b, and g to 10^-1, 10^-1, and 10^-2, respectively.

Subspace dimension k contains important latent subspace information, which we set to 1000. P is the neighbor number. From the perfor-

mance in Figure 3, we set p to 20.

Secondly, to verify the effectiveness of the Laplacian regularization term, we conducted the ablation study between ‘‘OURS-L’’ and ‘‘OURS’’

to remove the Laplacian regularization process from themodel. Table 4 shows the comparative results of the four metrics. It can be found that

when the Laplacian regularization process is removed, the performance of themodel decreases significantly. And someof the results are even

worse than the method using complete multi-modality data. Experimental results show that Laplacian regularization helps to maintain

smoothness of data in learning and accelerate the model’s understanding and representation learning of graph structure. At the same

time, it can reduce overfitting and improve generalization.

Figure 3. Performance of each parameter
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DISCUSSION

In this paper, we propose a framework to identify benign and early-stage endometrial cancer. To this end, we propose a latent relation shared

representation learningmethod for incompletemulti-modalitymedical images fusion. The idea is tomapall completemodal samples and incom-

pletemodal samples into thepotentialmappingspace,anduse thismethodto ‘‘share’’ information, so thatpotential connections canbeexplored.

Moreover, the proposed method makes full use of clinical incomplete multi-modality images data to assist clinical diagnosis and staging.

Our framework achieves accuracy of 80.1%, 78.2%, and 84.1% on target class of NC vs. stage I vs. stage II, NC vs. stage IA vs. stage IB vs.

stage II and stage IA vs. stage IB, which outperforms all six baseline methods. Meanwhile, we find ‘‘MRI+US+CEUS’’ modal performs best

among all combinations. Furthermore, the performance of our method is also excellent under different imaging missing rates. In the most

difficult classification task NC vs. stage IA vs. stage IB vs. stage II, even when the missing rate is 30%, the accuracy of our model on missing

MRI, missing US, and missing CEUS can reach 0.715, 0.753, and 0.720, respectively.

Limitations of the study

However, there are some weak points of our methods. Only information related to endometrial cancer was annotated in the dataset, but no

other diseases were considered. In the future work, we hope to design a fusion method that considers the correlation between endometrial

Figure 4. Dataset Augmentation

Table 4. Results of OURS-L and OURS on the three tasks

Tasks Metrics OURS-L OURS

NC vs. stage I vs. stage II ACC(%) 58.3 G 0.89 80.1 G 0.81

SEN(%) 53.6 G 2.53 79.6 G 2.67

SPE(%) 69.3 G 0.92 89.2 G 0.76

AUC 0.617 G 0.018 0.823 G 0.008

NC vs. stage IA vs. stage IB vs. stage II ACC(%) 51.2 G 0.75 78.2 G 0.79

SEN(%) 52.6 G 2.77 75.3 G 2.82

SPE(%) 65.2 G 1.02 87.1 G 0.85

AUC 0.545 G 0.014 0.791 G 0.009

stage IA vs. stage IB ACC(%) 67.7 G 0.42 84.1 G 0.72

SEN(%) 68.1 G 2.13 82.9 G 2.73

SPE(%) 80.3 G 0.91 90.1 G 0.76

AUC 0.723 G 0.013 0.877 G 0.006

Results are shown as mean G standard deviation.
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cancer and other diseases to further improve the performance of endometrial cancer classification. Moreover, we also plan to fuse medical

image data with medical text data to improve the accuracy of multi-classification problems in the case of incomplete multi-modality.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Xin Liu (xin3929@

163.com).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� Requests for imaging data used in this work should be directed to lead contact. The availability of imaging data will be available upon

the specific request, institutional policies, and the project requirements of No.TTHEC-KYSQ 202212401. The accession numbers are

also listed in the key resources table.
� The codes are available on a public repository (https://github.com/jq-gogogo/Latent_Relation_Shared_Learning).

� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

The study was conducted in accordance with the Declaration of Helsinki. This study was approved by the Institutional Review Board of Beijing

Tiantan Hospital (KYSQ 202212401) and the patient consent was waived.

The experiment involved 117 female(mean age: 55.3 years) native Chinese speakers participants from anonymous patients diagnosedwith

endometrial cancer through pathology. A total of 93 patients underwent hysterectomywith bilateral salpingo-oophorectomy pelvic and para-

aortic lymphadenectomy. An additional 24 patients underwent hysterectomy with bilateral salpingo-oophorectomy and sentinel lymph node

biopsy. Postoperatively, 79 patients were diagnosedwith stage I endometrial cancer, of which 43were classified as stage IA and 36 as stage IB.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Research Data Deposit Beijing Tiantan Hospital Available upon request following the

completion of a suitable confidentiality

agreement. (No.TTHEC-KYSQ 202212401)

Software and algorithms

Python (version 3.7.0) Python software https://www.python.org/

CUDA Version 9.2 https://developer.nvidia.com/cuda-92-

download-archive

Matplotlib Version 3.3.1 https://matplotlib.org/3.3.1/

Prediction models This study https://github.com/jq-gogogo/Latent_

Relation_Shared_Learning

KCCA Akaho et al.46 https://github.com/lorenzoriano/PyKCCA

DCCA Andrew et al.47 https://github.com/Michaelvll/DeepCCA

MDcR Zhang et al.48 http://cic.tju.edu.cn/faculty/zhangchangqing/

code.html

Least_iMSF Yuan et al.49 https://github.com/jiayuzhou/MALSAR/tree/

master/MALSAR/functions/iMSF

Logi_iMSF Yuan et al.49 https://github.com/jiayuzhou/MALSAR/tree/

master/MALSAR/functions/iMSF

iMVWL Tan et al.50 http://mlda.swu.edu.cn/codes.php?

name=iMVWL
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Additionally, 38 patients were diagnosedwith stage II endometrial cancer. All patient information in the database was de-identified, ensuring

no subjective impact on the experimental results and excluding any sensitive patient information.

METHOD DETAILS

Main stages of this article can be summarized as follows. (i) we preprocess the patients images by horizontal flipping, vertical flipping, rotating

90, cropping and contrast-modified augmentation methods to increase the diversity of medical images data (see section dataset augmen-

tation); (ii) We propose a deep multi-view fusion network that use MRI images, ultrasound (US) images and contrast-enhanced ultrasound

(CEUS) images to identify benign and early-stage endometrial cancer that are difficult to distinguish (see section mapping for multi-modality

representation learning); (iii) Optimizing the model so that incomplete multi-modality medical images data can be used for model construc-

tion(see section incomplete multi-modality representation learning); (iv) The effectiveness and efficiency of the incomplete multi-modality

model are optimized(see section optimization).

Dataset Augmentation

In this work, we collect 117 endometrial cancer samples from anonymous patients diagnosed by pathological, including deep myometrial

invasion (DMI) and shallow myometrial invasion (SMI). The size of dataset is shown in Table 5.The groundtruth of this study is lesion

confirmation on hospital pathological examination results. We also collect 1228 samples of normal uterine. Each sample consists of threemo-

dalities: MRI, ultrasound (US) and contrast-enhanced ultrasound (CEUS) (not all the samples have complete multi-modality data). Our image

dataset (TTEC) comes from Beijing Tiantan Hospital, Capital Medical University, and adhered to the principles of the Declaration of Helsinki.

Due to the limited number of samples in the experimental dataset, the model will be overfitted. To ensure the performance of deep

learning, data augmentation is applied to increase the medical image diversity. Therefore, horizontal flipping, vertical flipping, cropping,

contrast-modified and randomnoisemethods are used to increase the diversity of medical image data, illustrated in Figure 4. After the above

processing, the number of images reached 3158.

Mapping for multi-modality representation learning

For image feature extraction, in the framework of latent relation shared representation learning, the latent discriminating feature represen-

tation is first learned frommulti-modal data in Equation 1, and the transformation fromoriginal-to-shared is carried out. In addition, we use the

graph Laplacian matrix in Equation 2 and Equation 3 to solve the problem of preserving both global structure features and multi-modality

local geometric structure features. We further project multi-label classifier into label-dependent feature space to obtain a comprehensive

latent subspace and fully mine consensus feature from each multi-modality data, as detailed in Equation 4.

Let X1, X2, ., Xm denotes the original feature matrices derived from multi-modality dataset and Xv = ½xv1 ; xv2 ; .; xvn�˛Rd3n as vth view

matrix with d dimensions as well as n samples, m indicate the dataset with m views. Y˛ f0; 1gq3n denotes the corresponding label matrix,

where q the number of labels. Hence, yi = ½y1i; y1i ; .; yki� indicate the label vector of the i-th sample. yji = 0 and yji = 1 indicates whether

the i-th sample belongs to j-th class.

Since the multi-modality data contains redundant feature information, we assume that there exists latent shared matrices. Therefore, the

discriminative low-rank latent subspace model with multi-modality method is given as

min
V;fUvg

Xm
v = 1

kXv � UvVk2F s:t: U R 0; s:t: U R 0 (Equation 1)

where V˛Rk3n is represented latent feature in these spaces, Uv ˛Rd3n is the so-called basis matrix corresponding to the vth view. k denotes

the dimension of the latent subspace. k$kF denotes the Frobenius norm.

Although Equation 1 can excavate the consensus information of multi-modality data, it only has the global structure. To overcome this

shortcoming, we use prior learned label-dependent feature space to retain the local geometric structure information. At the same time, theo-

retically the local geometric structure should also exhibit similar characteristics in the latent subspace V. Therefore, we adopted graph Lap-

lacian matrix to improve information validity of multi-modality local geometric structure:

1

2

Xn
i = 1

Xn
j = 1

��vi � vj
��2
2
sij = trðVðA � SÞVuÞ = trðVLVuÞ (Equation 2)

where vi and vj are the feature representation of the i-th and j-th sample in the latent subspace V, respectively. sij denotes the similarity be-

tween sample i label and sample j label, Equation 3 is detailed.u denotes the transpose operator. A is a diagonal matrix and aii =
Pn

j = 1 sij,

and S is the affinity graph. So, L = A � S denotes the graph laplacianmatrix, whichmake the retained local feature informationmore accurate

and not to be too drastic with each iteration.

sij =

8><
>: exp

 
�kyi � yjk2

2
s2

!

0;otherwise

; yi ˛ N p

�
yj
�
or yj ˛N pðyiÞ (Equation 3)
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whereNpðyjÞ denotes the p-nearest neighbors of instance yi, s denotes the regularization parameter. Nearest neighbor graph on the label Y

is used to construct the local geometric structure.

The function of Equation 2 embedded into Equation 1 is to incorporate prior label information into subspace learning, thereby obtaining

the required label-dependent feature space. In order to achieve the goal of disease classification, our multi-label classifier is introduced to

map the learned label-dependent feature space to label space. This could be present as:

min
V;fUvg;W

Xm
v = 1

kXv � UvVk2F + akWV � Yk2F + btrðVLVuÞ + gkWk2F (Equation 4)

where a, b, g are trade-off parameters that is used to balance the reconstruction error.W˛Rq3k is represented the prediction learningmodel.

The goal is to give enough weight to informative features and as little weight as possible to less informative features. In Equation 4, with the

help of the graph laplacian matrix, we can obtain a comprehensive latent subspace to fully mine the consensus information from each multi-

modality data.

So far, the method in Equation 4 can only be applied to fully modal data, i.e., each patient has theMRI, US and CEUS. Patients with incom-

plete data will be discarded.

Incomplete multi-modality representation learning

Equation 4 can only be applied to the completemulti-modality image data, so incompletemulti-modality data will be discarded. In fact, there

are many useful information in incomplete data. Furthermore, medical image data are often very limited, and if these data are discarded

directly, the performance of the model will be affected. We refined on Equation 4 to make use of these incomplete multi-modality patient

image data.

Let Xv = ½Xvc;Xvc �˛Rd3ðnc+ncoÞ denotes the original feature matrices of vth modality data, where nc +nco is the total number of patients(nc

represents the number of patients with complete multi-modality data, and nco represents the number of patients with o-th modality data).

Certain special cases need to be taken into consideration. For example, if samples with only twomodalities are taken, it would be transformed

into complete multi-modality problems, in which case Equation 4 can be applied accordingly. Similar, Yv = ½Yvc;Yvc � and Uv = ½Uvc;Uvc �. Us-
ing the notations above, we summarized as follows:

Min
V;fUvg;W

Xm
v = 1

k½Xvc;Xvc � � ½Uvc;Uvc �Vk2F + akWV � ½Yvc;Yvc �k2F + btrðVLVuÞ + gkWk2F (Equation 5)

In this way, we can use as much limited patient data as possible to participate the model training. In addition, no other noise parameters

are introduced in this method, and we don’t have to discard incomplete patient data, which discarding limited patient data are more likely

lead to overfitting.

Optimization

To address the optimization problem of Equation 5, which is not jointly convex with respect to V, W, Uv coupled together. We take an alter-

native optimizer approach to optimize the variables to obtain a local minimum.

Updating V: Fix W and Uv , then update V:

min
V

Xm
v = 1

k½Xvc;Xvc � � ½Uvc;Uvc �Vk2F + akWV � ½Yvc; Yvc �k2F + btrðVLVuÞ (Equation 6)

Taking derivative of V and making it to 0, Xm
v = 1

2½Uvc;Uvc �u½Uvc;Uvc � + 2aVuV

!
V + VbðL + LuÞ =

Xm
v = 1

½Uvc;Uvc �u½Xvc;Xvc � + 2aVu½Yvc;Yvc � (Equation 7)

Define A, B, and C as fellows,

8>>>><
>>>>:

A =
Xm
v = 1

2½Uvc;Uvc �u½Uvc;Uvc �+ 2aVuV

B = VbðL+ LuÞ
C =

Xm
v = 1

½Uvc;Uvc �u½Xvc;Xvc �+ 2aVu½Yvc; Yvc �

(Equation 8)

Then the Equation 7 can be to a Sylvester equation problem, which can be easily solved.

AV + VB = C (Equation 9)
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Updating W: Fix V and Uv , the optimization problem becomes,

min
w

akWV � ½Yvc; Yvc �k2F +gkWk2F (Equation 10)

Then, W is updated as W = YVu

VVu+
g

a
I

, I˛Rk3k is an identity matrix.

Updating Uv : Fix V and W, the optimization problem becomes,

min
fUvg

k½Xvc;Xvc � � ½Uvc;Uvc �Vk2F (Equation 11)

Taking derivative of Uv and making it to 0,

Uv = ½Xvc;Xvc �VuðVVu + hIÞ (Equation 12)

where h denotes a small regularization parameter.

After updating the V, W and Uv , we can get the optimal solution. Algorithm 1 presents the optimization part.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed using custom python scripts. Details of all statistical analyses can be found above in the relevant subsec-

tions of themethod details section. Continuous variables are given in the form ofmeansG standard deviations while categorical variables are

presented as numbers (%).

Algorithm 1. Optimization

Require: m views fX1;X2;.;Xm;Yg, Xv ˛Rd3n, Y˛Rq3n

Ensure: Multi-label classifier W.

1: randomly initialize V, W and Uv , the nearest neighbor number p = 20

Repeat:

2: updating V by Equation 9

3: updating W by Equation 10

4: updating Uv by Equation 12

Until:

5: reach the maximum iteration or converged.

End for:

6: Multi-label classifier W.

ll
OPEN ACCESS

14 iScience 27, 110509, August 16, 2024

iScience
Article


	ISCI110509_proof_v27i8.pdf
	Latent relation shared learning for endometrial cancer diagnosis with incomplete multi-modality medical images
	Introduction
	Results
	Experimental setup
	Related work
	Comparison with baseline methods
	Study on different combinations of modalities
	Study on incomplete data with different missing rates
	Ablation study and parameters analysis

	Discussion
	Limitations of the study

	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and study participant details
	Method details
	Dataset Augmentation
	Mapping for multi-modality representation learning
	Incomplete multi-modality representation learning
	Optimization

	Quantification and statistical analysis




