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AbsTrACT
background Parkinson’s disease (PD) is a 
neurodegenerative disorder with complex genetic 
architecture. Besides rare mutations in high- risk genes 
related to monogenic familial forms of PD, multiple 
variants associated with sporadic PD were discovered via 
association studies.
Methods We studied the whole- exome sequencing 
data of 340 PD cases and 146 ethnically matched 
controls from the Parkinson’s Progression Markers 
initiative (PPMi) and performed burden analysis for 
different rare variant classes. Disease prediction models 
were built based on clinical, non- clinical and genetic 
features, including both common and rare variants, and 
two machine learning methods.
results We observed a significant exome- wide 
burden of singleton loss- of- function variants (corrected 
p=0.037). Overall, no exome- wide burden of rare amino 
acid changing variants was detected. Finally, we built a 
disease prediction model combining singleton loss- 
of- function variants, a polygenic risk score based on 
common variants, and family history of PD as features 
and reached an area under the curve of 0.703 (95% ci 
0.698 to 0.708). By incorporating a rare variant feature, 
our model increased the performance of the state- of- 
the- art classification model for the PPMi dataset, which 
reached an area under the curve of 0.639 based on 
common variants alone.
Conclusion The main finding of this study is to 
highlight the contribution of singleton loss- of- function 
variants to the complex genetics of PD and that disease 
risk prediction models combining singleton and common 
variants can improve models built solely on common 
variants.

INTroduCTIoN
Parkinson’s disease (PD) is a neurodegenerative 
disorder that is linked to several genetic and envi-
ronmental factors. Several risk variants and genes 
were identified by genetic studies and predictive 
disease risk models were built based on identified 
associations with common variants.1 2 Large- scale 
meta- analyses have identified several genes that are 
associated with PD.3–5 As common variants alone 
cannot explain the entire heritability of complex 
diseases, other causes such as DNA methylation 
levels,6 rare, ultra- rare or singleton variants could 
contribute to the genetic risk,7 8 for example, 
singleton variants have been studied earlier in the 
context of schizophrenia.9–11

In order to identify the disease associated genes, 
an array of burden tests12 13 have been developed to 

aggregate the signals from rare or common variants. 
Even after aggregating variants at the level of genes, 
there is still a limited power to attain genome- wide 
statistical significance and still larger sample sizes 
to uncover novel disease associations are required. 
To increase statistical power, variants can be aggre-
gated at a higher level instead, such as gene- sets 
and pathways, or for different variant types. For 
instance, it has been previously shown that in 
schizophrenia, there is an excess of genome- wide 
ultra- rare variants9 in cases versus controls and also 
in specific genes.14 In line with this observation, in 
sudden unexpected death in epilepsy,15 there is a 
genome- wide excess of rare disruptive variants. In 
this study, we investigated whole- exome sequencing 
(WES) data available from the Parkinson’s Progres-
sion Markers Initiative (PPMI) consortium16 and 
performed exome- wide burden analysis by aggre-
gating rare and singleton variants.

Previous studies have built predictive genetic 
risk models based on the genetic data from PPMI 
to differentiate PD cases from healthy controls17–19 
and to subclassify PD phenotypes.17 The PPMI WES 
data have been so far employed as a replication 
dataset to show a significant burden in a group of 
54 lysosomal genes in PD18 and to test the burden 
of rare loss- of- function (LoF) variants in 27 candi-
date genes.7 Further, it was used to describe the 
frequency of LoF variants in TRAP1.20 However, an 
unbiased exome- wide study based on the PPMI data 
to test the burden of rare variants in PD was still 
missing.21 A previous study showed the potential 
role of rare variants in PD by conducting burden 
analyses.22 In our study, we performed burden anal-
yses at exome- wide level and show an increased 
burden of singleton LoF variants in cases versus 
controls. Our findings implicate the role of LoF 
variants at a genome- wide level and highlight the 
heterogeneous nature of PD. On the basis of poly-
genic risk score (PRS), rare singleton LoF variant 
counts and the family history of PD, we trained 
seven PD risk prediction models by combining rare 
and common variant associations.

MeThods
subjects
The PPMI study is an effort to identify biomarkers 
of PD progression17 in sporadic cases. Detailed 
information about this initiative and the data can be 
found on their website (http://www. ppmi- info. org).

WES was performed on whole- blood extracted 
DNA samples collected according to the PPMI 
Research Biomarkers Laboratory Manual using 
Illumina Nextera Rapid Capture Expanded Exome 
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Kit that targets 201 121 exons, untranslated regions and 
miRNAs, and covers 95.3% of RefSeq exome from the human 
NCBI37/hg19 reference genome. Exome- enriched libraries were 
sequenced on the Illumina HiSeq 2500 sequencing platform 
using 2×100 bp paired- end read cycles. Briefly, the variants 
were called following the Genome Analysis Toolkit (GATK)23 
best practices.

Whole- genome sequencing (WGS) data for all individuals 
were downloaded in VCF format from the PPMI webpage. As 
described in the PPMI documentation, WGS was performed by 
Macrogen on whole- blood extracted DNA samples. Samples 
were prepared according to the Illumina TruSeq PCR Free DNA 
sample Preparation Guide. The libraries were sequenced using 
Illumina HiSeq X Ten Sequencer. Paired- end read sequences 
were initially aligned to the GRCh37- hs37d5 genome using the 
GATK pipeline (V.3.5).23 Haplotype caller in the GATK pipe-
line was used to call variants including single- nucleotide variants 
(SNVs) and small In/Dels and to generate genome VCFs. Low- 
quality SNPs, In/Dels and high depth variants were then filtered 
using SelectVariants and VariantFiltration modules of the GATK 
pipeline and made available in VCF format.

In addition, all individuals were genotyped with the NeuroX 
chip.1 The initial PPMI exome dataset comprised 404 PD and 
183 healthy controls, which were further quality filtered and 
stratified as described below.

sample quality control
Number of alternate alleles, number of heterozygotes, Ti:Tv 
ratio, number of singletons and call rate served as data quality 
parameters. They were calculated by the PLINK/SEQ (https// 
atgu. mgh. harvard. edu/ plinkseq) i- stats command. Any sample 
with >3 SD from the mean in any of the aforementioned metrics 
was excluded from the analysis. To ensure that the call rate 
difference is minimal between cases and controls, we performed 
a Wilcoxon rank- sum test. To perform population stratification 
on the WES samples, we selected the variants that were common 
between HapMap (V.3.3)23 and the filtered PPMI dataset. The 
variants were further filtered to be (1) only bi- allelic SNVs, (2) 
with a call rate >98% and (3) not in LD.

The filtered variants were finally checked for cryptic related-
ness and deviations from reported sex. Population stratification 
was performed via EIGENSTRAT.24 Cryptic relatedness check 
was performed via PLINK25 and KING.26 We checked up to 
third- degree relatedness and one sample of the identified related 
pairs for the final analyses were randomly chosen for further 
analysis. We merged our data with the 1000 genomes data and 
performed population stratification employing EIGENSTRAT 
with default parameters. Except for a few outliers, all samples 
clustered with the European samples in the 1000 genomes data 
(online supplementary figure 1). In order to determine the 
outlier from the EIGENSTRAT analysis, a sigma value of 3 was 
applied as a cut- off (which excludes all the samples with >3 SD 
based on the first 10 principal components (PCs)). In addition, 
we excluded the samples >3 SD based on the first and second 
PCs from the EIGENSTRAT analysis.

Variant quality control
The PPMI variants were prefiltered for high- quality variants 
according to the variant quality score recalibration approach as 
part of GATK best practices by the authors of the original study. 
In order to be more stringent, we applied additional filters: (1) 
for SNVs: variants were filtered for QD <2.0, FS >60.0, MQ 
<40.0, MQRankSum <−12.5, ReadPosRankSum <−8.0, DP 

<10.0, GQ_MEAN <20.0, VQSLOD <0, ABHet >0.75 or 
<0.25, and Hardy- Weinberg Phred scale p value of >20. (2) For 
insertions and deletions: parameters for variant filtration were 
QD <2.0, FS >200.0, ReadPosRankSum <−20.0, DP <10.0 
and GQ_MEAN <20.0. Filtering based on individual geno-
type quality and read depth was performed by converting the 
variant genotypes with a read depth of <10 and GQ of <20 to 
missing. Finally, only variants with a call rate of >0.9 were kept 
for further analyses. Quality control statistics are given in online 
supplementary table 1.

Variant annotation
Multiallelic variants were decomposed with variant tests27 
and left normalised by bcftools.28 Variants were annotated by 
ANNOVAR29 version 2016 June 17 using the RefSeq gene anno-
tation, the dbNSFP V.3.030 prediction and conservation scores 
as well as genome- wide CADD31 scores. Exonic and splice site 
variants were selected according to RefSeq annotations. Rare 
variants were defined as variants with minor allele frequency 
<0.005 in the European population of any of the four popula-
tion databases: 1000 genomes,32 ExAC (release 0.3, Non- Finnish 
Europeans (NFE))33 and the Exome Variant Server (http:// evs. 
gs. washington. edu/ EVS). Singleton variants were defined as the 
variants present in only one sample in the entire PPMI dataset 
(allele count equals 1). In order to check the allele frequency 
distribution of singleton LoF variants in the common popula-
tion, we plotted their allele frequencies in population databases 
(online supplementary figures 12–17). The distributions show 
that all LoF singletons in the PPMI dataset are also ultra- rare 
variants in the common population supporting the singleton 
status within the PPMI dataset. This is similar to a previous study 
performed in schizophrenia.10 We divided the rare and singleton 
exonic and splicing variants into four different variant classes (in 
total eight different classes): (1) LoF variants defined as prema-
ture stop codon, stop loss, splice site variants (within 2 nt of 
RefGene defined splice sites) and frameshift insertions/deletions; 
(2) missense variants (NONSYN) excluding exonic missense 
overlapping splice sites; (3) CADD20 includes missense variants 
with a CADD phred score ≥20; (4) synonymous variants (SYN) 
that are not overlapping with splice sites as a control variant set, 
as they are assumed to be functionally neutral.

Validation of singleton variants using WGs data
To validate the singleton variant calls from the original WES 
dataset with a second independent experimental method, we 
used the WGS data available from the PPMI website. The WGS 
data were downloaded in VCF format. All singleton variants 
identified in the WES data were checked for consistent calls in 
the WGS data.

burden analyses of rare and singleton variants
We checked whether rare and singleton variant classes were 
over- represented in PD cases versus controls. We generated an 
individual burden score for each sample by counting the number 
of variants in each variant class. We compared the individual 
burden score of cases and controls by two different approaches: 
First, for each variant class, we constructed a generalised linear 
model by correcting for total number of qualifying variants 
called in that sample using gender and the first 10 eigenvectors 
from the EIGENSTRAT analysis as covariates, and calculated a 
p value (pglm). Since coverage or sample size bias can lead to an 
increased number of rare or singleton variants, we performed 
additionally a permutation analysis generating 10 000 sample 
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Figure 1 Ors for rare and singleton variants for different variant classes. 
each dot represents the Or generated by the generalised linear model 
(glm) given with their 95% cis (as horizontal lines, for loss of function only 
the left part of the interval). The values on top of each point represent the 
corrected p value from the glm model (pglm) and the empirical p value (pemp) 
from the Wilcoxon rank- sum test, separated by ‘/’. if both the corrected p 
values were below 0.05, they are highlighted in red with an ‘*’ on top.

Figure 2 Ors for singleton loss- of- function (loF) variants for different 
variant types. each dot represents the Or generated by the generalised 
linear model (glm) given with their 95% cis (as horizontal lines, for loF 
only the left part of the interval). The values on top of each point represents 
the corrected p value from the glm model (pglm) and the empirical p 
value (pemp) from the Wilcoxon rank- sum test, separated by ‘/’. if both the 
corrected p values were below 0.05, they are highlighted in red with an ‘*’ 
on top.

label permutations. For each permutation, we computed the 
two- sided Wilcoxon rank- sum test34 35 to calculate a permutation 
p value. Then, the permutation p values were compared with 
the original p value to generate an empirical p value (pemp) by 
using the formula: (r+1)/(n+1) (r=number of times the permu-
tation p value is smaller than the original p value, n=number 
of permutations). We chose the Wilcoxon rank- sum test because 
it accounts for differences in sample sizes and the presence of 
any outlier samples.36 R V.3.4.2 was employed to calculate all 
p values. We performed the multiple testing adjustment using 
the fdr method implemented in the function p.adjust in R. For 
rare and singleton variants (figure 1), they were adjusted for 
three variant classes (NONSYN, CADD20 and LoF). We did not 
consider the SYN variants as they were assumed to be neutral. 
Whereas for LoF sub- variant type analysis (figure 2), we adjusted 
for five LoF variant types (frameshift.insertion, frameshift.dele-
tion, splicing, stopgain and stoploss).

In order to ensure that there were no deviations from the 
expected p values due to low quality of data, we generated QQ 
plots by qqplot() in R V.3.6.1 for both rare and singleton variants 
across different functional groups (online supplementary figures 
2–11). The p values were generated using the score method 
available as part of rvtests package. We used the same parame-
ters as for the burden analysis as covariates for this analysis (total 
number of qualifying variants called per sample, gender and the 
first 10 eigenvectors from the EIGENSTRAT analysis).

Construction of genetic features for disease risk models
Similar to previous PD risk models,1 we used a PD- specific PRS 
which is generated based on common variants. To calculate the 
PRS per sample, summary statistics of 43 SNPs that were found 
previously to be genome- wide significantly associated with PD3 
were selected (online supplementary table 2). PRSice37 with 

default parameters was used to calculate the PRS for each sample 
using the available NeuroX genotype data from PPMI. As a new 
genetic feature, we used the count of singleton LoF variants per 
individual as an additional prediction variable.

evaluation of prediction features
A list of clinical and non- clinical PD- specific variables avail-
able for the PPMI study can be found in online supplementary 
tables 3 and 4. To evaluate the predictive ability of the clinical, 
non- clinical and genetic features (see above) for PD risk, we 
employed one- way ANOVA for continuous features and the χ2 
test for categorical variables. One- way ANOVA compares the 
means from two independent (unrelated) groups by using the 
F- distribution. A significant p value (study threshold was set to 
0.05) indicates that the means of two groups are unequal. The 
F- statistics and p values obtained from ANOVA/χ2 test are given 
in online supplementary table 3.

Classification models
After the selection of input features, we built seven disease risk 
prediction models using sex as covariate for all models: (1) based 
on PRS, (2) based on singleton LoF score (number of single-
tons per sample), (3) based on family history of PD, (4) based 
on singleton LoF score and PRS, (5) based on family history of 
PD and singleton LoF score, (6) based on family history of PD 
and PRS, and (7) based on singleton LoF score, PRS and family 
history of PD.

Two state- of- the- art machine learning approaches, namely 
logistic regression and random forest, were chosen to construct 
the prediction models. All the machine learning analyses were 
performed using Ada (https:// ada. parkinson. lu), a novel data 
exploration and analytic platform developed at the Luxembourg 
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Figure 3 Distribution of polygenic risk score (Prs) in the Parkinson’s 
Progression Markers initiative dataset. There is a significant shift in Prs in 
the cases compared with the controls.

Centre for Systems Biomedicine. For advanced statistical anal-
ysis and machine learning, Ada employs the Spark ML library 
(https:// spark. apache. org) including a variety of classification, 
regression, clustering and feature selection routines. For the 
classification models, we used the default parameters provided 
by Spark ML library: L2 regularisation, fitting the intercept, 
maximum 100 iterations, and tolerance of 10E−6 for the 
logistic regression model and with depth 3—maximum 32 bins, 
20 trees, without subsampling of training data for the random 
forest model. For each iteration, we split the sets randomly with 
a training:test ratio of 0.9 and fed the training part to the clas-
sifiers. We repeated this process 1000 times and reported the 
mean test area under the curve (AUC) as a target evaluation 
metric. AUC is always given with a 95% CI.

resulTs
Population stratification and quality control
After filtering based on ethnicity, cryptic relatedness and quality 
parameters, the final PPMI dataset comprised 340 PD and 146 
control samples. As it can be seen from online supplementary 
figure 1, cases and controls clustered both with the European 
samples of the 1000 g data except for a few outliers. This obser-
vation is in line with the previous observations from another 
study based on PPMI data which was performed on genotype 
array data.19 The quality metrics are given in online supplemen-
tary table 1. The Ti:Tv ratio of exonic and splice- site variants 
is >3, indicating good quality. Average call rates of 0.993 and 
0.994 were observed in controls and cases, respectively. No 
significant difference in the call rate was observed between cases 
and controls (Wilcoxon rank- sum test p=0.242). We checked 
the singleton variants from the WES against the recently avail-
able WGS data from the same samples. We found 94.27% 
concordance between both independent sequencing runs from 
the same samples.

excess of rare singleton loF variants
We could not detect exome- wide burden when performing 
burden analysis for all rare variants (figure 1, online supplemen-
tary table 5). However, we found a significant burden of singleton 
LoF variants (corrected pemp=0.034, corrected pglm=0.037, OR 
1.058, 95% CI 1.013 to 1.106) in cases compared with controls. 
Whereas, no significant difference was found for neutral SYN 
variants (corrected pemp=0.191, corrected pglm=0.161, OR 
1.009, 95% CI 0.997 to 1.022) or any other variant class. In 
order to evaluate which variant subtypes of singleton LoF vari-
ants are driving the signal, we tested each subtype independently. 
In figure 2 and online supplementary table 6, it can be seen that 
the majority of the burden signal is coming from frameshift 
deletions (corrected pemp=0.014, corrected pglm=0.014, OR 
1.191, 95% CI 1.060 to 1.344) and stopgain variants (corrected 
pemp=0.035, corrected pglm=0.05, OR 1.141, 95% CI 1.023 to 
1.279). The number of case and control samples with quali-
fying variants per gene for NONSYN, SYN and LoF variants are 
given in online supplementary table 7. In online supplementary 
table 8, we give per sample the number of qualifying variants 
for the different variant classes. No obvious deviations from the 
expected p values were found for single variants ruling out the 
possibility of observed results due to low sample/variant quality 
as shown by the QQ plots (online supplementary figures 2–9). 
On average, we found nine singleton LoF variants per sample in 
cases versus eight in the controls. The distributions and boxplots 
of different singleton variant types in cases versus controls is 
shown in online supplementary figures 10–24.

disease model and prediction performance
For the disease risk prediction model, we tested 12 clinical, 3 
non- clinical and 2 genetic features, the PRS and the singleton 
count from the LoF analysis. An overview on the features and 
their predictive power is given in online supplementary table 3. 
Nine clinical, one non- clinical (PD family history) and the two 
genetic features (PRS and singleton LOF count) were found to 
be significant for the prediction of disease. Predictivity of the 
common genetic background was supported by the statistically 
significant difference between the distribution of PRS in cases 
and controls (p=2.829e−05) (figure 3) using the Wilcoxon 
rank- sum test.

Due to the fact that the clinical scores are designed to distin-
guish the PD cases from healthy controls, the usage of clinical 
features for the classification problem we aim to address makes 
the prediction task rather trivial. This is shown here by the fact 
that most of the clinical features are highly predictive (online 
supplementary table 3) by themselves. For instance, the clinical 
scores of University of Pennsylvania Smell Identification Test 
(UPSIT) and Unified Parkinson’s disease rating scale (UPDRS), 
which describe certain aspects of PD phenotypes, separate nearly 
perfectly PD cases and controls into two distinct groups as can 
be seen in figure 4. In our experiments, the prediction models 
based on these two PD- specific clinical scores reached an AUC 
>0.95 (results not reported here). In addition, by performing 
the ANOVA/χ2 test, we demonstrated that a majority of the clin-
ical features have very low p values and thus possess high predic-
tive power (online supplementary table 3). Age and sex showed 
minimum predictive power given by the independence tests’ p 
values (age=0.3472, gender=0.7193).

Therefore, we aimed to train our PD risk prediction models 
on non- clinical and genetic features alone. For the final risk 
prediction model, we used the PRS, the singleton LoF variant 
count per sample and the PD family history together with sex as 
covariate. The PRS, the singleton LoF count and the PD family 
history showed the most significant predictive power out of 
the non- clinical features we considered (online supplementary 
table 3) and were tested in all possible combinations (figure 4). 
By combining all three features, PRS, singleton LoF count 
and PD family history, we reached an AUC of 0.703 (95% CI 
0.698 to 0.708). The performance of models with two or single 
features were substantially lower, but it is remarkable that the 
singleton LOF variants (AUC=0.587, 95% CI 0.582 to 0592) 
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Figure 4 UPDrs score vs the UPsiT score of the samples from the 
Parkinson’s Progression Markers initiative dataset. cases and controls are 
separated into two distinct groups.

have already more prediction power compared with the family 
history alone (AUC=0.56, 95% CI 0.556 to 0.564) showing that 
they contribute to the overall risk prediction.

Our predictor that is built on the combination of common 
(PRS) and rare variants, the singleton LoF count predicts PD 
disease state with an AUC of 0.653 (95% CI 0.647 to 0.659). It 
performs in line with the state- of- the- art classification model for 
the PPMI dataset built on the basis of PRS1 with an AUC=0.639 
(95% CI 0.589 to 0.688), which also uses a logistic regression 
method. By using solely the PRS (with sex as covariate) to our 
logistic regression, we are reaching an AUC=0.616 (95% CI 
0.611 to 0.621) which is comparable with the previous study.1 
The difference in performance could be due to different utilisa-
tion of SNPs, samples and methods to generate the PRS. Finally, 
by adding the family history of PD to the common and rare 
variants, the AUC increased to 0.703 (95% CI 0.698 to 0.708). 
Using three non- clinical features including rare variant counts 
improves the performance by 10% compared with the predic-
tion based only on common variants.

dIsCussIoN
Even 200 years after the first description of PD by James 
Parkinson, its diagnosis is still a challenge and since the under-
lying mechanisms and its complex genetic architecture are 
not fully understood, no curative treatment is available. By 
studying the whole- exome sequencing data of 340 PD cases and 
146 controls of the PPMI cohort, we have found a polygenic 
exome- wide burden of singleton LoF variants that increases risk 
for PD. From our estimations, on average nine genes with of 
singleton LoF variants contribute to the signal detected in this 
paper compared with on average eight in controls. Singleton 
calls were validated using independently acquired WGS data 
from the same samples. Since we did not have access to the WGS 
raw data, we could not check if all high- quality LoF singleton 
calls in the WES data had enough or comparable coverage in the 
WGS data, such that we expect to have an even higher rate of 
concordance between both technologies. The high concordance 
rate of more than 94% can therefore be seen as a lower bound 
for concordance.

The identification of individual genes that show a genome- 
wide significance is often difficult primarily due to the small 

sample sizes and the accompanied multiple testing problem, also 
valid for this study. However, our results indicate the additive 
contribution of singleton LoF variants of an individual to the 
aetiology/pathogenesis of PD. We have corrected for various 
confounding factors by applying generalised linear models and 
additionally by performing sample label permutations, mini-
mising potential bias. Moreover, and further strengthening our 
findings, we see a significant burden in PD of singleton LoF 
variants but not in functionally neutral synonymous variants. 
The major signal within the singleton LoF variants came from 
the frameshift deletions and stopgain variants. Based on the 
evidence from the current study, we speculate that the genetic 
risk for sporadic PD is not confined to certain genes but instead 
is distributed across multiple genes supporting the assumed poly-
genic inheritance and complex genetic architecture of PD.

Based on these findings, we trained seven disease risk predic-
tion models based on binomial logistic regression and random 
forest using combinations of one non- clinical and two genetic 
features as input: the singleton LoF variants count, the PRS 
based on common risk variants and the family history of PD. 
Our logistic regression model performs better than the state- of- 
the- art PD risk classification model for the PPMI data set for 
non- clinical features only.1 2 Also, we showed that the predictive 
models built on the features based on a combination of rare and 
common variants perform better compared with the models built 
on common variants alone. The previous study1 also presented 
an UPSIT- score- only model with a very high performance 
(AUC=0.901 (95% CI 0.874 to 0.928)). By adding the demo-
graphic features and PRS, they attained an AUC=0.923 (95% CI 
0.9 to 0.946). Even though it is a significant increase as shown 
in the study based on DeLong’s test for correlated ROC curves 
(|z|=3.027, p=0.002), in relative terms the PRS could increase 
the AUC only marginally and thus, the prediction is almost fully 
dominated, as expected, by the UPSIT score. We wanted to avoid 
this situation and perform a more challenging prediction without 
including any clinical scores as discussed above.

Besides the logistic regression, we trained a second machine 
learning classifier, a random forest. As presented in figure 5, the 
logistic regression performs here better than the random forest, 
due to the fact that our classifiers were fed with only very few 
variables, which makes the task too simple for the random forest. 
Unlike logistic regression, which has almost identical perfor-
mance on the training and test sets, the random forest overfit 
the training data (data not shown). This would even worsen for 
random forests with larger depths (hence the shallow setting).

In PD research, a general consensus is that, in very broad terms, 
PD is triggered by a combination of genetic and environmental 
factors, which is underlined by the fact that there is no single 
gene or variant that explains the majority of inheritance in our 
sporadic PD cohort. On the other hand, acquiring clinical scores 
is time consuming, cost- expensive and laborious. Therefore, by 
limiting to genetics and a small set of non- clinical features, we 
make potential diagnostic applications of risk models more prac-
tical, cost- effective and scalable. To the best of our knowledge, 
this study makes for the first time use of available whole- exome 
sequencing data to define genetic features in combination with 
non- clinical data to improve risk prediction in PD.

Despite the fact that there is a burden of singleton LoF vari-
ants in PD cases, our study should be considered preliminary 
and needs replication in larger PD cohorts. Identification of vari-
ants associated with PD along with the integration of PD- spe-
cific pathway information that is represented in resources such 
as PD map38 could lead to a higher diagnostic accuracy of PD, 
and there is an imperative need to decipher the contribution of 
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Figure 5 Performance of different models for the prediction of 
Parkinson’s disease (PD) risk. The area under the curve (aUc) values (with 
95% cis) of seven models and two prediction models for the Parkinson’s 
Progression Markers initiative dataset. Two predictors, logistic regression 
and random forest, were applied. PD family history, family history of PD up 
to first degree; Prs, polygenic risk score; sex, reported gender; singleton, 
singleton loss- of- function count per sample. The higher the mean aUc, the 
better the model. The reported aUc is a mean over 1000 repetitions on test 
sets randomly drawn with a 0.9 training–test split.

rare and common variants to further dissect the aetiology of PD. 
The major limitation of the current study is the limited sample 
size. When studying rare and singleton variants, larger samples 
sizes are needed to confirm certain genes or variants that are 
associated with the disorder. Excess of singleton variants can 
also occur due to quality issues. We think, although we avoided 
this issue with stringent quality control, a replication study is 
required in order to substantiate these findings. Another limita-
tion of our study and of WES studies in general is that we could 
only perform burden analyses of coding variants and adjacent 
intronic regions for splice variants. However, there might be 
additional factors such as non- coding variants which could also 
contribute to the progression of PD. Clearly, this could be only 
tested when whole- genome sequencing data would be available. 
The limitation of our risk prediction model is that by employing 
a small sample set for both training and testing, the resulting 
model is more vulnerable to chance fluctuations than a larger 
dataset or using independent samples. We expect that with an 
increasing number of sequenced and genotyped PD samples 
with deeply phenotyped clinical data, more accurate predictive 
models can be constructed and the contribution of rare variants 
in generating these models will improve significantly.

We could show that singleton LoF variants contribute to the 
complex genetics of PD and that disease risk prediction models 
combining singleton and common variants improve risk models 
based solely on common variants. In the future, more refined 
strategies to include rare variants in the construction of PRS 
is warranted. It is our hope that we can extend this work and 
further develop our strategy in order to build an accurate diag-
nostic tool that can be employed in the clinical setting. The PRS 
and the risk model could also be applied to stratify the patients 
for a personalised medical treatment.
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