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Prognostic biomarkers that can reliably predict the disease-free survival (DFS) of locally
advanced cervical cancer (LACC) are needed for identifying those patients at high risk for
progression, who may benefit from a more aggressive treatment. In the present study, we
aimed to construct a multiparametric MRI-derived radiomic signature for predicting DFS of
LACC patients who underwent concurrent chemoradiotherapy (CCRT).

Methods: This multicenter retrospective study recruited 263 patients with International
Federation of Gynecology and Obetrics (FIGO) stage IB-IVA treated with CCRT for whom
pretreatment MRI scans were performed. They were randomly divided into two groups:
primary cohort (n = 178) and validation cohort (n = 85). The LASSO regression and Cox
proportional hazard regression were conducted to construct the radiomic signature (RS).
According to the cutoff of the RS value, patients were dichotomized into low- and high-risk
groups. Pearson’s correlation and Kaplan–Meier analysis were conducted to evaluate the
association between the RS and DFS. The RS, the clinical model incorporating FIGO
stage and lymph node metastasis by the multivariate Cox proportional hazard model, and
a combined model incorporating RS and clinical model were constructed to estimate DFS
individually.

Results: The final radiomic signature consisted of four radiomic features: T2W_wavelet-LH_

glszm_Size Zone NonUniformity, ADC_wavelet-HL-first order_ Median, ADC_wavelet-HH-glrlm_Long Run Low

Gray Level Emphasis, and ADC_wavelet _LL_gldm_Large Dependence High Gray Emphasis. Higher RS was
significantly associated with worse DFS in the primary and validation cohorts (both
p<0.001). The RS demonstrated better prognostic performance in predicting DFS than
the clinical model in both cohorts (C-index, 0.736–0.758 for RS, and 0.603–0.649 for
clinical model). However, the combined model showed no significant improvement (C-
index, 0.648, 95% CI, 0.571–0.685).
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Conclusions: The present study indicated that the multiparametric MRI-derived radiomic
signature could be used as a non-invasive prognostic tool for predicting DFS in LACC
patients.
Keywords: locally advanced cervical cancer, concurrent chemoradiotherapy, multiparametric magnetic resonance
imaging, disease-free survival, radiomics
INTRODUCTION

Cervical cancer is one of the most frequent malignancies in
women, with over 604,000 new cases annually worldwide,
associated with 342,000 deaths in 2020 (1). For patients
diagnosed with locally advanced cervical cancer (LACC),
concurrent chemoradiotherapy (CCRT) including pelvic
external beam radiotherapy (EBRT), cisplatin-based
chemotherapy, and brachytherapy, was the primary choice.
However, about 1/3 patients suffer treatment failure; they
experience unnecessary treatment-related complications and
low locoreginal control rates, which worsen the prognosis
(2). Usual clinical features and standard exploitation of
imaging fail to deliver actionable predictive models with
sufficient accuracy in cervical cancer (3, 4). Improving the
patients’ risk stratification in order to individualize the
treatment or surveillance schemes in cervical cancer patients
would fulfill an unmet clinical need.

Magnetic resonance imaging (MRI) is recognized as the first-
line image modality for diagnosing, staging, treatment planning,
treatment response evaluating, and monitoring during the whole
process for LACC patients (5, 6). Radiomics is an emerging field
that reflects spatial and temporal heterogeneity of tumors, via the
extraction of high-dimensional quantitative features from
clinically accessibly commonly performed medical images
using automated data mining algorithms, with the aim to
support clinical decision-making (7–9). Previous radiomic
studies in cancer have shown the potential to discover hidden
information that was inaccessible with single-parameter
approaches (9). For early-stage cervical cancer patients who
underwent radical hysterectomy, radiomic features could
predict patients’ survival with high accuracy (10). Nevertheless,
whether the multiparametric MRI-derived radiomic features
could be used to predict survival in LACC patients underwent
CCRT remains uncertain.

Therefore, the aim of this study was to develop a radiomic
signature by pretreatment MRI and evaluate the performance of
different models to predict DFS in LACC patients.
imaging; DFS, disease-free survival;
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METHODS

Patients
The hospital ethics review board approved this study; written
informed consent was not required for this retrospective study.
All procedures performed in the study involving human
participants were in accordance with the 1964 Helsinki
declaration and its later amendments.

This retrospective study included patients with biopsy-
confirmed locally advanced cervical cancer from three tertiary
centers in different parts of China (Xijing Hospital, Shanxi
Traditional Chinese Medical Hospital, and Jinshan Hospital)
between October 1, 2014, and December 1, 2017. The patients’
baseline demographics, laboratory test results, pretreatment MRI
images, pathological results, and survival outcome were
reviewed. All patients were enrolled with strict inclusion and
exclusion criteria, which are shown as follows:

Inclusion criteria
1) primary cervical cancer confirmed via biopsy;
2) locally advanced disease (Federation of Gynecology and

Obstetrics [FIGO] stage IB-IVA) determined based on
pretreatment MRI of the pelvis;

3) patients underwent pelvic MRI scans within a 2-week
period before CCRT started;

3) the largest diameter of the cervical mass was 1.0 cm or larger;
4) age of 18–75 years;
5) no other treatment before MRI scan;
6) finished the entire CCRT treatment.
Exclusion criteria
1) patients with a history of cancer <5 years;
2) patients with insufficient clinical and/or follow-up data.
Finally, 263 patients were recruited in this study. Figure 1

displays the patient selection flowchart from the three hospitals.
Eligible patients were randomly divided into a primary cohort
(n = 178) and an independent validation cohort (n = 85) at a
ratio of 2:1.

CCRT Treatments and Follow-Up
All patients were treated with a combination of external beam
radiotherapy (EBRT) and intracavitary brachytherapy (ICBT).
EBRT was delivered to the whole pelvis with 15-MV photon
beams at a daily dose of 2 Gy, 5 times per week, for a total dose of
50 Gy. EBRT was accompanied by concurrent chemotherapy: six
cycles of weekly cisplatin (30 mg/mm2) in 30 patients and three
cycles of 5-fluorouracil (1,000 mg/mm2) plus cisplatin (60 mg/
mm2) at 3-week intervals in 18 patients. ICBT was delivered
twice a week in 4 fractions with a fractional dose of 7 Gy at point
A. the median overall treatment time was 59 days (range 45–71
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days). The selection of the chemotherapeutic regime was
individualized according to local tumor extent, pelvic lymph
node involvement, and general patient condition (11).

Regular follow-up was conducted every 3 months during the
first 2 years after treatment, 2 times annually for 3–5 years, and
once a year thereafter or as clinically indicated. The endpoint of
our study was DFS, which is defined as the period from the date
of CCRT completion to the date of the first locoregional
recurrence, distant metastasis, death, or the last visit in follow-
up. Locoregional recurrences and distant metastasis were
confirmed by gynecological examination and imaging
modalities such as CT, MRI, and PET/CT. Available
information was collected from patients’ medical records.

MR Image Acquisitions
Pelvic MRI scans were conducted before the biopsy to avoid the
impact of inflammation. All patients underwent pelvic MRI
protocol that include T2WI and DWI with two b values (0 and
800 s/mm2). ADC maps were automatically generated and
included both b values in a mono-exponential decay model.
The MRI images were obtained by different MRI devices at three
institutions. Detailed MRI acquisition parameters are presented
in Supplementary Methods 1.

Radiomic Analyses
The radiomic analysis workflow included five steps as illustrated
in Figure 2: tumor image segmentation, radiomic feature
extraction, feature selection, radiomic signature construction,
and validation.

Tumor Image Segmentation
The open-source ITK-SNAP software was used for three-
dimensional manual segmentation. The regions of interest
Frontiers in Oncology | www.frontiersin.org 3
(ROIs) were delineated manually on each slice obtained in
T2WI and ADC (delineated on DWI images with a b value of
800 s/mm2 and then copied to the corresponding ADC maps).
Three radiologists with at least 3 years’ experience in
gynecological MR imaging interpretation were chiefly
responsible for the evaluation of tumor masking. To ensure
reproducibility, each radiologist repeated the tumor
segmentation and generation of radiomic features twice with
an interval of at least 1 month, following the same procedure. To
ensure the accuracy of tumor segmentation, the tumor masks
were validated by a senior radiologist with 10 years of experience
in segmentation result validation.

Radiomic Feature Extraction
All images of each MRI scan for each patient were normalized
separately using Z-scores to obtain a standard and normal
distribution of image intensity. Then, we extracted radiomic
features from T2WI and ADC respectively through an open-
source package PyRadiomics, to extract 120 dimensional
radiomic features of the segmented lesions. We extracted the
following radiomics features: 19 first-order statistics features, 16
shape-based 3D features, 10 shape-based 2D features, 24 gray-
level co-occurrence features, 16 gray-level run-length features, 16
gray-level size zone features, five neighboring gray tone
difference features, and 14 gray-level dependence features.
Details of the feature extraction are presented on the webpage
of PyRadiomics (12). These features described the tumor
information from multiscale space which incorporate the very
detailed and macroscopic tumor texture patterns.

Radiomic Signature Construction
and Validation
The radiomic signature was constructed with multiparametric
MRI (T2WI and ADC) based on the primary cohort. The imaging
FIGURE 1 | Flow diagram of patient enrollment.
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features were first normalized, and then a coarse-to-fine feature
selection strategy was used to reduce the risk of bias and potential
overfitting. Then, we conducted a three-step feature selection
method to retain only the most robust features that are
significantly associated with DFS. First, univariate Cox analysis
was used to detect the associations between each feature and the
DFS. All features were then ranked in ascending order according
to the Cox p value, and the top 20% of the features with p<0.1 was
used for the next step. Second, among these features, the Pearson
correlation coefficients for each feature were then calculated.
Features with |r|>0.6 were selected for the next step. Finally, the
LASSO algorithm with Cox analysis was used to identify the most
useful prognostic features for constructing the radiomic signature.

The potential association between the radiomic signature and
DFS was initially assessed in the primary cohort and then
validated in the validation cohort based on Kaplan–Meier
survival analysis. The median value for the radiomic signature
in the primary cohort was used as the cutoff for dividing patients
into groups with high- or low-risk groups. The same cutoff value
was applied to the validation cohort. The receiver-operating
characteristic (ROC) curves for 1-, 2-, and 3-year DFS were
plotted for each cohort, and the AUCs were quantified. Kaplan–
Meier survival analysis was also performed to explore whether
the radiomic signature was associated with DFS within FIGO
stage subgroups for each cohort.
Frontiers in Oncology | www.frontiersin.org 4
Development and Validation of the
Clinicopathological Model and Radiomic
Signature on DFS Prediction
Among the clinicopathological factors, we firstly conducted the
univariate Cox proportional hazard model to select the
significant prognostic factors in the primary cohort. Then,
significant factors were included in the multivariate Cox model
to build a clinical model for DFS prediction.

We also evaluated whether the radiomic signature showed a
superior value than the clinical model for predicting DFS in
cervical cancer patients. These models were tested in the primary
and validation cohorts. The prognostic performance of each
model in predicting 3-year DFS was evaluated based on
Harrell’s concordance index (C-index) and ROC analysis.

Statistical Analysis
All the statistical analyses in this study were performed with SPSS
v.22.0 (IBM; Armonk, NY) and R software v.4.1 (R Foundation
for Statistical Computing, Vienna, Austria). Descriptive statistics
were summarized as mean ± SD. Comparisons between groups
were made with the t test or Mann–Whitney U test, when
appropriate, for quantitative variables and with the X2 test or
Fisher’s test for qualitative variables. The interobserver
agreement of feature extraction was calculated by ICC from the
different radiologists’ tumor segmentation of the three
FIGURE 2 | Radiomics framework of predicting the DFS of LACC patients. DFS represents disease-free survival; LACC represents locally advanced cervical cancer;
ROC represents receiver operating curves.
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radiologists. The AUC, ACC, specificity, and sensitivity with the
cutoff of 0.5 and the 95% CI by the DeLong (13) method were
used to assess the ability of different models to predict DFS. The
Kaplan–Meier survival curve method and Cox proportional
hazard model were used to analyze DFS. All tests were two-
sided, and results were considered significant at p<0.05.
RESULTS

Patient Characteristics
Atotal of 263patientswere included fromthree centers. Thepatient
characteristics are displayed in Table 1. The mean age of the
patients was 53.77 ± 8.93 years. The median follow-up time was
45.0 months (interquartile range [IQR]: 32.2–56.7 months) in the
primary cohort, 43.2 months (interquartile range [IQR]: 28.6–58.5
months) in thevalidationcohort.The comparisons between the two
cohorts showed no significant difference (p = 0.099–0.984).

Satisfactory inter- and intraobserver reproducibility was
observed for the tumor segmentation and radiomic feature
extraction (ICC>0.60) (14) when we compared results for three
radiologists and results from the same radiologist at baseline and
at least 1 month later.

Radiomic Signature Construction and
Validation
A total of 4 radiomic features were selected for the RS
construction (Supplementary Table 1). The selected features
were combined into a LASSO-Cox regression model to define the
Frontiers in Oncology | www.frontiersin.org 5
radiomic signature (RS) (Supplementary Figure 1). For the
primary cohort and the validation cohorts, patients were
dichotomized into high- and low-risk groups based on the
median RS of the primary cohort as the cutoff value for further
analyses. Figure 3 shows two representative patients with similar
clinicopathological features, but distinctively different DFS time,
due to the different risk stratification by the radiomic signature.

The Kaplan–Meier survival curves confirmed a significant
difference in DFS between the high- and low-RS groups (p<0.0001)
(Figure4, upper),with relativelyhighhazard ratios (HRs=10.688) in
the primary cohort (Table 2). In the primary cohort, the RS showed
good performance on DFS prediction (C-index, 0.758; 95% CI:
0.691–0.815). In the validation cohort, the performance of the
radiomic score was further confirmed (C-index, 0.736; 95% CI:
0.673–0.800) (Table 3). The areas under the curve (AUCs) at
different follow-up times (1, 2, and 3 years) also confirmed that the
RS had good prognostic accuracy in the primary and validation
cohorts (Figure 4, lower). The hazard ratio (HR) for RS was 10.688
(p<0.001, 95% CI: 6.605–17.294) in the primary cohort and 10.880
(p<0.001, 95% CI: 6.660–17.774) in the validation cohort.

Subgroup analyses further confirmed that the RS could
predict prognosis according to the FIGO stage from primary
and validation cohorts (Figure 5). These results confirmed the
high prognostic accuracy of the RS.

Performance and Validation of the Clinical
Model on DFS Prediction
Only two clinical features (FIGO stage and lymph node
metastasis) were selected to create a clinicopathological model
TABLE 1 | Characteristics of the patients at baseline.

Characteristics Primary cohort (n = 178) Validation cohort (n = 85) p value

Age (years, mean ± SD) 54.28 ± 9.40 53.17 ± 9.36 0.843
SCC (ng/ml) 8.98 ± 12.10 8.74 ± 11.83 0.766
FIGO stage 0.984
IB 3 (1.69%) 1 (1.18%)
IIA 8 (4.49%) 4 (4.71%)
IIB 112 (62.92%) 56 (65.88%)
IIIA 8 (4.49%) 3 (3.53%)
IIIB 18 (10.11%) 8 (9.41%)
IIIC 9 (5.06%) 4 (4.70%)
IVA 20 (11.24%) 9 (10.59%)

Histology 0.449
Squamous cell carcinoma 136 (76.41%) 61 (71.76%)
Adenocarcinoma 34 (19.10%) 17 (20.00%)
Adenosquamous carcinoma 8 (4.49%) 7 (8.24%)

Tumor size 0.099
≤4 cm 107 (60.11%) 60 (70.59%)
>4 cm 71 (39.89%) 25 (29.41%)

Differentiation 0.797
Well 85 (47.75%) 41 (48.24%)
Moderate 40 (22.47%) 21 (24.70%)
Poor 53 (29.78%) 23 (27.06%)

Lymph node metastases 0.611
Positive 45 (25.28%) 24 (28.24%)
Negative 133 (74.72%) 61 (71.76%)

Mean DFS time (months, mean ± SD) 42.82 ± 16.40 40.76 ± 20.17 0.452
January 2022 | Volume 11 | Article
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(Table 2). This model achieved a poor performance in DFS
estimation, with a C-index of 0.631 (95% CI: 0.562–0.691) in the
primary cohort and 0.603 (95% CI: 0.530–0.669) in the validation
cohort (Table 3). The combined model incorporating the RS and
clinicopathological features showed no improvement in both
cohorts (primary cohort, C-index: 0.648, 95% CI: 0.571–0.685;
validation cohort, C-index: 0.585, 95% CI: 0.511–0.637) when
compared with RS.
3-Year DFS Probability Prediction of
Clinical Model and the RS
For 3-year DFS probability prediction, the clinical model
achieved an AUC of 0.608 (95% CI: 0.533–0.681), sensitivity of
0.504 (95% CI: 0.353–0.642), specificity of 0.715 (95% CI: 0.638–
0.778), and accuracy of 0.610 (95% CI: 0.540–0.671) in the
validation cohort (Figure 6A and Table 3). The RS yielded an
AUC of 0.787 (95% CI: 0.687–0.839), sensitivity of 0.771 (95%
CI: 0.627–0.880), specificity of 0.762 (95% CI:0.679–0.832),
and accuracy of 0.767 (95% CI: 0.687–0.839) in the validation
cohort (Figure 6A and Table 3). The RS showed significant
difference between patients with DFS time >3 years and <3
years (Figure 6B).
Frontiers in Oncology | www.frontiersin.org 6
DISCUSSION

In this study, we developed and validated the prognostic value of
multiparametric MR-derived radiomic features on LACC
patients underwent CCRT. The results showed that LASSO-
Cox-based RS had favorable predictive performance in DFS
estimation than the traditional clinical model. The higher value
of the RS was associated with worse outcomes, confirming that
more heterogeneous tumors tended to have a poorer prognosis.
Our study would help to determine whether more intensive
surveillance and aggressive treatment regimens should be
administered to patients with worse DFS, to assist clinical
treatment and healthcare decisions.

Radiomics provided a non-invasive technique to obtain
essential information of “macro-heterogeneity” underlying
diagnostic, therapeutic, and prognostic information by non-
invasively extracting useful imaging features from medical
images (15). Radiomic biomarkers may eventually complement
existing genomic and proteomic biomarkers to form a unique
patient profile that informs personalized care strategies.
Radiomics has been proposed for characterizing cervical cancer
subtypes (16), predicting tumor staging (17), histological grading
(18), and lymph node metastasis (19–21) and predicting the
FIGURE 3 | MR images of two patients with similar clinicopathological features but significantly different DFS time. DFS, disease-free survival.
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A B

FIGURE 4 | Kaplan–Meier analysis and time-dependent ROC curves of the radiomic signature. p values were calculated using a two-sided log-rank test, and AUCs
at 1, 2, and 3 years were calculated to assess the prognostic accuracy within the (A) primary cohort (n = 178) and (B) validation cohort (n = 85). Shadows represent
95% CI. DFS represents disease-free survival. CI represents confidence interval.
TABLE 2 | Univariate and multivariable analyses between DFS, RS, and clinicopathological features in the primary cohort.

Variables Univariate Cox regression Multivariable Cox regression

HR (95% CI) p value HR (95% CI) p value

Radiomic signature 10.688 (6.605–17.294) <0.001 10.880 (6.660–17.774) <0.001
Age 1.002 (0.974–1.032) 0.877
FIGO stage
I–II – –

III 0.931 (0.522–1.660) 0.808 0.793 (0.432–1.455) 0.453
IVa 2.014 (1.015–3.994) 0.005 1.582 (0.566–2.971) 0.046
Histological type
Squamous cell carcinoma – –

Adenocarcinoma 3.030 (0.413–22.214) 0.276
Adenosquamous carcinoma 1.929 (0.603–6.173) 0.269

Differentiation
Well – –

Moderate 0.977 (0.567–1.684) 0.933
Poor 1.520 (0.539–4.288) 0.429

Lymph node metastases
Negative – –

Positive 2.007 (1.098–3.666) 0.002 1.599 (1.050–2.976) 0.033
SCC 1.015 (0.998–1.031) 0.088
CA 125 1.007 (0.999–1.016) 0.088
CEA 0.999 (0.958–1.042) 0.972
Tumor size 1.010 (0.847–1.204) 0.914
Frontiers in Oncology | www.frontiersin.org
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response to treatment either by CT, MRI alone or in combination
with PET/CT (22–26).

Treatment response of cervical cancer patients varied, even
patients with the same disease stage, which makes accurate
prognostication essential for treatment selection (27). In the
current study, we confirmed that RS was a robust predictor of DFS
fromamulticenter study. Furthermore, we also showed thatRSwas a
better predictor of DFS with superior predictive potency than
traditional clinicopathological features, based on larger C-index
and AUCs in primary and validation cohorts. This may be because
clinicopathological factors only reflect specific tumor characteristics,
while radiomicsbasedonmultiparametricMRIcancomprehensively
Frontiers in Oncology | www.frontiersin.org 8
and quantifiably characterize the tumor phenotype (28, 29). It is also
possible that high-dimensional imaging features provide additional
information, allowing radiomics to be less affected by patient
distribution. Fang et al. investigated the potency of radiomic
biomarkers in DFS prediction with early-stage (IB-IIA) cervical
cancer patients who underwent hysterectomy by contrast-
enhanced T1WI and T2WI and reported AUCs of radiomic score
as 0.816 in the training cohort and 0.822 in the validation cohort (10),
which was consistent and similar to our results. Sun et al. adopted
T1WI- and T2WI-derived radiomic features for treatment response
prediction in cervical cancer patients who underwent
chemoradiotherapy; the combined model yielded an AUC of 0.998
TABLE 3 | Model performance on predicting DFS and 3-year DFS probability.

Models Cohorts C-index (95% CI) AUC (95% CI) ACC (95% CI) Sensitivity (95% CI) Specificity (95% CI)

Clinical model Primary 0.631 (0.562–
0.691)

0.649 (0.574–
0.719)

0.644 (0.574–
0.702)

0.588 (0.437–0.713) 0.700 (0.621–0.765)

Validation 0.603 (0.530–
0.669)

0.608 (0.533–
0.681)

0.610 (0.540–
0.671)

0.504 (0.353–0.642) 0.715 (0.638–0.778)

Radiomic
signature

Primary 0.758 (0.691–
0.815)

0.816 (0.751–
0.870)

0.792 (0.691–
0.878)

0.792 (0.650–0.895) 0.792 (0.712–0.858)

Validation 0.736 (0.673–
0.800)

0.787 (0.726–
0.845)

0.767 (0.687–
0.839)

0.771 (0.627–0.880) 0.762 (0.679–0.832)

Combined model Primary 0.648 (0.571–
0.685)

0.683 (0.609–
0.751)

0.682 (0.605–
0.744)

0.958 (0.857–0.995) 0.407 (0.322–0.497)

Validation 0.585 (0.511–
0.637)

0.612 (0.536–
0.684)

0.612 (0.533–
0.679)

0.854 (0.722–0.939) 0.369 (0.286–0.458)
January 2022 | Volum
CI represents confidence interval. C-index represents Harrell’s concordance index, which measures the performance of the DFS prediction. AUC represents the area under the receiver
operating characteristic curve, and ACC represents accuracy. AUC and ACC evaluate the performance of the 3-year DFS prediction.
A B

FIGURE 5 | Kaplan-Meier analysis according to the radiomic signature among locally advanced cervical cancer patient subgroups in (A) primary cohort and
(B) validation cohort.
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and 0.999 in the training and validation cohorts, respectively,
showing the prominent potential for treatment response evaluation
and prediction of radiomic features (30). However, the AUCs in our
study were 0.816 in the primary cohort and 0.787 in the training
cohort, whichwas significantly lower than theirs. Thismay be caused
by the different endpoints of the two studies; they defined responders
as complete response or partial response within two cycles of
chemotherapy regardless of the response after the final
chemotherapy cycle, while we chose DFS as the endpoint of our
study, which was sophisticatedly impacted by various factors. Thus,
the RS constructed in our study might be better instructing
personalized treatment, and the radiomic model they built was
more valuable in early treatment evaluation and prediction.
Although many features in MRI were significantly associated with
DFS, we selected the smallest subsets of features available to achieve
high accuracy for the clinical endpoint.

With excellent space definition andmultiple functional imaging
modalities, MRI has become the prior imaging examination in
cervical cancer during the whole CCRT procedure. The clinical
advantage of the extractionofMRI-derived radiomic features is that
it exploits diagnostic images that are available already, so it does not
require additional examinations. Moreover, extracting the RS is
non-invasive and can be repeated at different timepoints during the
whole treatment procedure. The RS provides a high-dimensional
description of the intra-tumor heterogeneity. Interestingly, the
ADC sequence appears to be important, as three of the four
radiomic features of the RS were from ADC maps, which is
consistent with previous results that ADC maps were valuable for
evaluating the treatment response of various cancer types (29, 31),
which also supported the indication that RS is a fairly reliable
marker. Bourbonne et al. (32) and Lucia et al. (24) conducted an
external validation of a multicenter study confirming the good
prognostic predictive ability of ADC-derived radiomic features in
prostate cancer and cervical cancer, which supported our results.
Frontiers in Oncology | www.frontiersin.org 9
Thepresent studyhas some limitations thatmerit consideration.
Firstly, this was a retrospective studywith limited sample size, and a
larger prospective validation study should be conducted. The
accumulation of additional patients will also allow for the
collection of more information from various aspects, which can
make the RSmore stable and accurate. Secondly, whether imaging-
derived digital biopsy features correlated with pathological biopsy
results and genomic sequencing remained undefined, and
molecular biology experiments should be conducted. Thirdly,
although the segmentation of all images was processed by
expertly trained radiologists, the use of semiautomatic
segmentation tools should reduce the user dependency.

In conclusion, this present study provided a multiparametric
MRI-derived radiomic signature that effectively predicted DFS in
LACC patients who underwent CCRT and the RS showed
superior performance than the traditional clinical model. Non-
invasive MRI-derived RS showed prominent ability in risk
stratification of cervical cancer patients, thus allowing radiation
oncologists to select more personalized treatment regimens.
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