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Subjective tinnitus (ST) is a frequent but poorly understood medical condition. Recent
studies demonstrated abnormalities in several types of eye movements (smooth
pursuit, optokinetic nystagmus, fixation, and vergence) in ST patients. The present
study investigates horizontal and vertical saccades in patients with tinnitus lateralized
predominantly to the left or to the right side. Compared to left sided ST, tinnitus
perceived on the right side impaired almost all the parameters of saccades (latency,
amplitude, velocity, etc.) and noticeably the upward saccades. Relative to controls,
saccades from both groups were more dysmetric and were characterized by increased
saccade disconjugacy (i.e., poor binocular coordination). Although the precise mechanisms
linking ST and saccadic control remain unexplained, these data suggest that ST can lead
to detrimental auditory, visuomotor, and perhaps vestibular interactions.
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INTRODUCTION
Subjective tinnitus (ST) is an auditory percept perceived in the
absence of any external or internal auditory stimulus. ST is expe-
rienced by around 10% of the population and can strongly impair
the quality of life (Holmes and Padgham, 2011). Pathophysiology
of ST remains poorly understood despite extensive animal and
human research aiming at deciphering the neural correlates of
such illusory percept to promote effective treatments (Elgoyhen
et al., 2012). However, there is strong evidence suggesting that
an auditory peripheral insult and related deafferentation could
trigger complex neuroplastic subcortical and cortical maladap-
tive changes involving auditory and non-auditory brain areas
(Roberts et al., 2010).

Obviously the causes of this multifaceted audiologic symp-
tom are multifactorial even if epidemiologic data have shown
that the main medical condition related to it is hearing loss inde-
pendently of its cause (Nicolas-Puel et al., 2006; Mazurek et al.,
2010). Peripheral auditory impairment can indeed be consid-
ered as a trigger. But to explain both tinnitus persistence and
tinnitus induced intolerance, different pathophysiological mod-
els (for a review, see Kaltenbach, 2011) highlight the crucial role
of sub-cortical and cortical plasticity, resulting from the maladap-
tive efforts of auditory and non-auditory pathways to compensate
such deficit (Yang et al., 2011).

Different intriguing tinnitus clinical patterns show up this cen-
tral involvement. Among them, somatic modulation of tinnitus
features (intensity, frequency) with specific movements (jaw pro-
trusion, head rotation, muscular contraction, etc.) constitutes
a specific sub-type of tinnitus (Levine, 1999; Abel and Levine,
2004). Interestingly, lateral gaze has also been shown to interact
with ST percept (Coad et al., 2001). These somatic modulations

of ST are putatively supported by the cross-modal wiring and
talking between somatosensory and auditory pathways. This has
been demonstrated at a sub cortical level (dorsal cochlear nuclei,
inferior colliculi) via a trigeminal modulation of auditory func-
tion in a behavioral animal model of ST induced by an auditory
damage (Shore et al., 2007). Neuronal pathways, by which the
somatic afferences interact with the central auditory pathways,
are not ascertained. But animal data (Shore et al., 2003) support
the implication of the dorsal cochlear nucleus, via a trigeminal
input, as an important hub for auditory and somatic bimodal
interaction especially after cochlear damage (Dehmel et al., 2008).
In humans, jaw protrusion modulation of tinnitus assessed with
functional imaging (fMRI) also showed increased activation in
cochlear nuclei and inferior colliculi but decreased cerebellar acti-
vation when compared to controls (Lanting et al., 2010). PET
data on gaze evoked tinnitus support the hypothesis of the emer-
gence of abnormal links between brainstem systems controlling
eye movements and auditory structures (Lockwood et al., 2011).
Moreover an interaction of somatosensory stimulation (TENS)
with tinnitus loudness has been reported in tinnitus patients
(Vanneste et al., 2011a) and has been interpreted as a clue for
the activation of the non-specific extralemniscal pathways ending
into parietal cortices (Møller, 2007). Neural plasticity induced by
tinnitus could then interact at many different levels with neural
circuitries involved in saccade programming and execution.

Indeed, cross-modal interaction of auditory, visual, and
somatosensory inputs is obvious because in our dynamic and
changing environment we constantly shift our gaze and move
our body toward detected relevant auditory objects. We also
need to be able to compensate one sense with another when
one modality fails i.e., vision in darkness or audition in a noisy
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atmosphere (Maier and Groh, 2009). Of particular interest in the
perspective of the present paper is the question whether there
is a different clinical pattern between left sided and right sided
tinnitus. Actually, clinical evidence indicates that in many cases
tinnitus is lateralized, at least it is perceived predominantly to the
left or to the right of the median sagittal plane and that tinnitus
laterality is related to different clinical features (Mazurek et al.,
2010).

Interestingly, recent studies demonstrated that ST could
impair oculomotor performance both during fixation, smooth
pursuit, and optokinetic nystagmus movements (Coad et al.,
2001; Jozefowicz-Korczynska and Pajor, 2002; Mezzalira et al.,
2007; Kapoula et al., 2010; Lockwood et al., 2011), and also in
vergence movements (Yang et al., 2010). To our knowledge, quan-
titative studies of saccades in ST patients have not yet been done,
leaving alone the possible differences between right and left sided
tinnitus. Saccades are among the most robust eye movements.
Yet fine analysis of their spatial temporal properties might be
affected by tinnitus. This study examines the parameters of ocu-
lar saccades toward four directions (left, right, up, and down)
in patients suffering from lateralized (predominantly left or pre-
dominantly right) chronic ST. Many multiple parameters of the
saccades were examined related to cortical-subcortical brainstem
functions. These parameters concern the preparation of the sac-
cade (latency, drift of the eyes before the start of the saccade),
its execution (amplitude, velocity, saccade disconjugacy), and the
immediate period after its completion (drift after the saccade).
The study focuses on the comparison of left vs. right tinnitus
patients aiming to assess relative differences and the degree of
optimal behavior of the saccade system that could be maintained
despite the tinnitus. A comparison will also be made with data
from healthy subjects from two other studies from our group
(Vernet et al., 2008a,b) using similar experimental setups.

MATERIALS AND METHODS
ETHICS STATEMENT
The eye movement investigation adhered to the tenets of the
Declaration of Helsinki and was approved by the local ethics
committee for human experimentation, CPP Ile de France II
(No: 07035, Hospital Necker in Paris). Written consent approved
by the committee was obtained from all subjects after the nature
of the examination had been explained.

SUBJECTS AND CLINICAL DATA
A total of 20 patients (47.5 ± 12.6 years) volunteered to par-
ticipate in this experiment. All patients attended a tertiary care
tinnitus clinic at European Hospital Georges Pompidou in Paris;
tinnitus perception being stated as their main medical com-
plaint. They were selected for this study because of their ability to
modulate their tinnitus by somatic stimuli (movements, muscle
pressure). Complete otologic and neurologic testing was per-
formed on each subject (audiometry, tympanometry, stapedial
reflexes, auditory evoked potential, and/or MRI). All patients
suffered from tinnitus for at least 1 year (6 years on average).
Tinnitus was predominantly left sided in 12 patients and pre-
dominantly right sided in eight patients. Table 1 summarizes the
characteristics of both populations.

Table 1 | Clinical characteristics of tinnitus patients.

TSL subjects TSR subjects

N = 12 (6 males, 6 females) N = 8 (5 males, 3 females)

Mean age = 44 ± 12 years Mean age = 53 ± 12 years

Duration = 6 ± 8 years
(from 1 to 30)

Duration = 6 ± 7 years
(from 1 to 20)

Tinnitus severitya (max = 16) =
10 ± 3

Tinnitus severitya (max = 16) =
11 ± 2

Pathological condition: otological
(n = 2), neuro-muscular (n = 4),
idiopathic (n = 2)

Pathological condition:
otological (n = 3),
neuro-muscular (n = 2),
idiopathic (n = 1)

Stress: n = 8 Stress: n = 3

aTinnitus severity was evaluated with the Subjective Tinnitus Severity Scale

(Halford and Anderson, 1991; Meric and Chery-Croze, 1996); Score > 8 indicates

moderate tinnitus; Score > 12 indicates severe tinnitus.

Tinnitus was modulated by jaw movements in 13 patients,
head movements in seven patients, muscular pressure in eight
patients, eye movements in three patients, and global mus-
cular effort in two patients. One condition elicited tinnitus
modulation in 10 patients, two conditions in seven patients
and three in the remaining three patients. The pathological
conditions being present at the onset of tinnitus were either
otological (right otitis media, left otosclerosis surgery, bilat-
eral noise induced hearing loss, sensorineural hearing loss) or
neuro-muscular (acoustic neuroma, right meningomia, meningi-
tis, left head trauma with TMJ luxation, cervicalgia, abdominal,
or orthopedic surgery). The causal link between these medi-
cal conditions and tinnitus is only putative. Unusually stress-
ful circumstances were indicated by 11 patients; these patients
had a mean score higher than 100 on the Holmes and Rahe
life events related stress questionnaire (Miller and Rahe, 1997).
Even if the stress is not direct cause of tinnitus it can be con-
sidered as a trigger of tinnitus intrusiveness (Andersson and
Westin, 2008; Hesser and Andersson, 2009). Tinnitus was con-
sidered as idiopathic in the remaining three patients, i.e., no
specific condition was associated with the onset of tinnitus.
There was no difference between right sided tinnitus patients
(4/8, i.e., 50%) and left sided tinnitus patients (6/12, i.e.,
50%) regarding the presence of an organic disorder linked to
tinnitus onset.

Standard audiometric thresholds (0.250, 0.500, 1, 2, 4, 6,
8 kHz) were normal in seven patients (audiometric threshold
>20 db on each tested frequency) and demonstrated high fre-
quency sensorineural hearing loss in nine patients, middle fre-
quency sensory neural hearing loss in two patients, and total
unilateral cophosis in two patients (acoustic neuroma patients).
All patients had stable hearing levels at the time of testing with
no recent impairment. This is in line with previous reports of
the high prevalence of hearing impairment in tinnitus (Nicolas-
Puel et al., 2002). None of them had acute clinical vestibular
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dysfunction at the time of testing as attested to by the absence
of vertigo or dizziness or spontaneous nystagmus.

In summary, the pathophysiological mechanisms underlying
the tinnitus percept probably vary among patients. Yet, this
group of subjects is homogenous because of their spontaneously
modulated tinnitus following different types of movements.

VISUAL DISPLAY
The stimuli consisted of a white dot that was displayed at different
locations on a computer screen filled with a black background
as in Figure 1. Subjects were comfortably seated in an adapted
chair with a chin rest to stabilize the head at about 57 cm from
the computer screen.

EYE MOVEMENT RECORDING
Horizontal and vertical eye movements were recorded binocularly
with the EyeLink II device. Each channel was sampled at 250 Hz.
The spatial resolution of the system was 0.025◦ of visual angle.
Before the eye movement task, the subject made a sequence of
saccades of 10◦ between the white dots, in the four directions;
each dot was turned on for 1000 ms (a period of time allowing
accurate and stable fixation). The calibration factors for each eye
were extracted from these recordings; a linear function was used
to fit calibration data.

FIGURE 1 | (A) Spatial arrangement. The white dot is here represented at
the center but could be located at one of the other peripheral locations
(gray), at ±10◦ horizontally or vertically. Arrows represent the possible
saccade stimulation. (B) Temporal arrangement (T0, central dot turns on;
T1, central dot cuts off and peripheral dot turns on; T2–T1, latency of ocular
response; T3, peripheral dot cuts off).

OCULOMOTOR TASKS
Subjects were instructed to gaze at the white dot as accurately as
possible. The dot was successively displayed at five possible loca-
tions: center of the screen, 10◦ left, 10◦ right, 10◦ up, or 10◦ down
(see Figure 1). The task involved saccade eye movements to the
four directions (left, right, up, or down) from the center in every
instance. Each subject was randomly presented with 10 of each
type of saccades. For each of the 40 saccades, the initial central
dot was turned on for a random period varying between 1500
and 2000 ms to reduce anticipation; at the immediate end of this
period, the next peripheral dot was simultaneously turned on for
1000 ms (see Figure 1). Two trials were separated with a 1-s blank
screen.

DATA ANALYSIS
From the two individual calibrated eyes position signals (LE: left
eye; RE: right eye), we derived the conjugate (version) signal
(RE/2 + LE/2) and the disconjugate (vergence) signal (LE-RE).
The eye velocity of the conjugate signal was computed using a
symmetrical two-point diffentiator after low-pass filtering with a
Gaussian FIR filter with a cut-off frequency of 33 Hz. The start
and the end of the saccade were defined as the time point when
the velocity of the conjugate signal exceeded or dropped below
15◦/s. For the vergence signal, the start and the end of the move-
ment were defined as the time point when the velocity exceeded
or dropped below 5◦/s. These criteria are standard (Takagi et al.,
1995; Yang et al., 2002). For both saccade and vergence, the
process was performed automatically by the computer, and the
verification was made by visual inspection of the individual eye
position and velocity traces.

On the version signal, we measured for each saccade the
latency, i.e., the time between the target onset (0 ms) and the
start of the saccade, the amplitude, the mean velocity (ampli-
tude/saccade duration), the drift before the saccade, i.e., the
fluctuation of amplitude during the latency, the drift after the sac-
cade, i.e., during the first 80 ms after the end of the saccade. These
pre- and post-saccadic drifts were the absolute eye movements
in the saccade dimension (i.e., horizontal for leftward or down-
ward saccades and vertical for upward and downward saccades).
On the vergence signal, we measured for each saccade the discon-
jugacy (horizontal disconjugacy for horizontal saccades, vertical
disconjugacy for vertical saccades). Eye movements in the wrong
direction, with latency shorter than 80 ms (anticipation) or longer
than 800 ms, or contaminated by blinks were rejected.

The data on three parameters (fixation drift before the start
of the saccade, fixation drift after the saccade and saccade dis-
conjugacy) were not normally distributed; however, these data fit
normal distribution after log transformation. Based on the trans-
formed (fixation drift before and after saccades, disconjugacy) or
raw (latency, amplitude, mean velocity) data, a Two-Way analysis
of variance (ANOVA) was performed on individual mean val-
ues of each parameters with the between subjects factor Tinnitus
Side [Tinnitus Side Left (TSL), Tinnitus Side Right (TSR)], and
the within subjects factor Saccade Direction (L, Left; R, Right; U,
Up; D, Down). Post-hoc comparisons were done with the Tukey’s
Honestly Significant Difference (HSD) test. The significance level
was set at p < 0.05.
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RESULTS
This section presents the results of ANOVA, evaluating the effects
of the Tinnitus Side conditions and Saccade Direction conditions
on each of the following parameters: latency and fixation drift
before saccades (preparation of the saccade), amplitude and mean
velocity (execution of the saccade), fixation drift after saccades,
and saccade disconjugacy (binocular coordination).

LATENCY
Figure 2 presents the mean latencies and standard errors for each
direction of the saccades and side of the tinnitus. ANOVA applied
on the mean values of latency shows statistically significant main
effect of the tinnitus side [F(1, 18) = 17.49; p < 0.001], i.e., higher
latencies for subjects with right than those with left tinnitus,
and a significant main effect of the direction of the saccades
[F(3, 16) = 22.24; p < 0.001], i.e., upward and downward sac-
cades have longer latencies than leftward and rightward saccades
(for each paired comparisons, p < 0.001; except for leftward vs.
rightward saccades, p = 0.990, and upward vs. downward sac-
cades, p = 0.504). Finally, the interaction effect between tinnitus
side and saccades direction is also significant [F(3, 16) = 2.89;
p < 0.05), i.e., upward saccades have significantly longer laten-
cies for right side tinnitus than for left side tinnitus (p < 0.001;
others paired comparisons are n.s.).

ABSOLUTE FIXATION DRIFT PRIOR TO SACCADE START
Figure 3 presents the absolute mean fixation drift before sac-
cades start and standard errors for each direction of the saccades
and side of the tinnitus. ANOVA shows statistically significant
main effect of the tinnitus side [F(1, 18) = 8.36; p < 0.01], i.e.,
subjects with right tinnitus drifted more from the fixated target

FIGURE 2 | Mean values of latency for each saccade direction

(L, leftward; R, rightward; U, upward; D, downward) and tinnitus side

(TSL, tinnitus side left; TSR, tinnitus side right). Error bars represent the
standard error. The symbol * indicates a statistically significant effect
(∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001).

before saccades than subjects with left tinnitus, and a signifi-
cant main effect of the direction of the saccades [F(3, 16) = 17.84;
p < 0.001], i.e., vertical drift before a saccade to a vertical sac-
cade target is higher than horizontal drift toward a horizontal
saccade target (for each paired comparisons, p < 0.001; except
for leftward vs. rightward saccades, p = 0.990, and upward vs.
downward saccades, p = 0.792). There is no interaction effect
between tinnitus side and saccades direction [F(3, 16) = 1.61;
p = 0.186].

AMPLITUDE
Figure 4 presents the mean amplitude of saccades and standard
errors for each direction of the saccades and side of the tin-
nitus. ANOVA shows statistically significant main effect of the
tinnitus side [F(1, 18) = 4.49; p < 0.05], i.e., subjects with right
tinnitus perform more hypometric amplitudes than those with
left tinnitus, and significant main effect of the direction of the sac-
cades [F(3, 16) = 20.13; p < 0.001); i.e., downward saccades are
less hypometric than upward, leftward, and rightward saccades
(for each paired comparisons, p < 0.001; except for leftward vs.
rightward saccades, p = 0.327, and upward vs. leftward saccades,
p = 0.283). The interaction effect between tinnitus side and sac-
cades direction is significant (F(3, 16) = 4.04; p < 0.01), i.e., for
upward saccades, hypometria is wider for right tinnitus than for
left tinnitus side (p < 0.05; others paired comparisons are n.s.). It
could be argued that the greater undershooting of saccade ampli-
tude in TSR may be partly due to the greater average drift before
the saccade. This appeared to be not the case because we cal-
culated that only 49.4% of pre-saccadic drifts and of saccades
were made in the same direction; in 50.6% of cases, drifts before
saccades were made in the opposite direction.

FIGURE 3 | Absolute mean values of fixation drift before saccade for

each saccades direction (L, leftward; R, rightward; U, upward; D,

downward) and tinnitus side (TSL, tinnitus side left; TSR, tinnitus side

right). Error bars represent the standard error. The symbol ∗ indicates a
statistically significant effect (∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001).
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FIGURE 4 | Mean values of amplitude for each saccade direction

(L, leftward; R, rightward; U, upward; D, downward) and tinnitus side

(TSL, tinnitus side left; TSR, tinnitus side right). The dashed line
represents the target amplitude. Error bars represent the standard error.
The symbol ∗ indicates a statistically significant effect (∗p < 0.05;
∗∗p < 0.01; ∗∗∗p < 0.001).

FIGURE 5 | Mean values of mean velocity for each saccade direction

(L, leftward; R, rightward; U, upward; D, downward) and tinnitus side

(TSL, tinnitus side left; TSR, tinnitus side right). Error bars represent the
standard error. The symbol * indicates a statistically significant effect
(∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001).

MEAN VELOCITY
Figure 5 presents the mean velocity and standard errors for
each direction of the saccades and side of the tinnitus. ANOVA

FIGURE 6 | Absolute mean values of fixation drift after saccades

for each saccade direction (L, leftward; R, rightward; U, upward;

D, downward) and tinnitus side (TSL, tinnitus side left; TSR,

tinnitus side right). Error bars represent the standard error. The symbol
* indicates a statistically significant effect (∗p < 0.05; ∗∗p < 0.01;
∗∗∗p < 0.001).

indicates statistically significant main effect of the tinnitus side
[F(1, 18) = 5.10; p < 0.05], i.e., subjects with right tinnitus per-
formed slower saccades than those with left tinnitus, and a
significant main effect of the direction of the saccades [F(3, 16) =
8.17; p < 0.001], i.e., mean velocity of upward saccades is slower
than that of rightward and of leftward saccades (p < 0.001; oth-
ers paired comparisons are n.s.). There is no interaction effect
between tinnitus side and saccades direction [F(3, 16) = 1.22;
p = 0.30].

ABSOLUTE FIXATION DRIFT AFTER THE SACCADE
Figure 6 presents the absolute mean fixation drift after saccades
and standard errors for each direction of the saccades and side
of the tinnitus. ANOVA shows statistically significant main effect
of the direction of the saccades [F(3, 16) = 13.35; p < 0.001], i.e.,
vertical drift after vertical saccades is higher than horizontal drift
after horizontal saccades (for each paired comparisons, p < 0.05;
except for leftward vs. rightward saccades, p = 0.878, and upward
vs. downward saccades, p = 0.277). There is no main effect of
the tinnitus side [F(1, 18) = 2.16; p = 0.142], and no interaction
effect between tinnitus side and saccades direction [F(3, 16) =
1.58; p = 0.192].

BINOCULAR COORDINATION
Figure 7 presents the mean saccade disconjugacy and standard
errors for each direction of the saccades and side of the tinni-
tus. ANOVA indicates statistically significant main effect of the
tinnitus side [F(1, 18) = 3.93; p < 0.05], i.e., subjects with right
tinnitus presented higher disconjugated eye movements during
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saccades than those with left tinnitus, and a significant main effect
of the direction of the saccades [F(3, 16) = 5.72; p < 0.001], i.e.,
saccade disconjugacy is higher for downward saccades than that
of upward (p < 0.001), leftward (p < 0.01), and rightward sac-
cades (p < 0.05; others paired comparisons are n.s.). There is no
interaction effect between tinnitus side and saccades direction
[F(3, 16) = 2.43; p = 0.064].

FIGURE 7 | Mean values of saccade disconjugacy for each saccade

direction (L, leftward; R, rightward; U, upward; D, downward) and

tinnitus side (TSL, tinnitus side left; TSR, tinnitus side right). Error bars
represent the standard error. The symbol ∗ indicates a statistically
significant effect (∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001).

COMPARISON WITH DATA FROM HEALTHY ADULTS
Table 2 summarizes the mean values of latency, of saccade
amplitude and disconjugacy for leftward, rightward, upward,
and downward saccades made by our tinnitus patients (TSL
and TSR groups), and by 12 healthy subjects (mean age
= 25 years old) in the studies of Vernet et al. (2008a,b).
These latter subjects performed saccade movements in a similar
paradigm as in the present study, i.e., interleaving 10◦ saccades
toward a target presented in one of the four directions (left,
right, up, down); the peripheral target was turned on after a
200-ms gap period (and not simultaneously as in the present
experiment).

In most cases, there are no significant differences between tin-
nitus patients and control subjects in terms of saccade latency;
only rightward and upward saccades showed longer latencies in
TSR patients than in controls. However, it has to be noted that the
delay between the offset of the central target and the onset of the
peripheral target (gap paradigm) is known to shorten the latency
of saccades (Fisher, 1987). In addition, controls are younger than
tinnitus patients and age is known to affect latency of saccades.
Given this, it is difficult to jump to conclusions in terms of
latency.

As far as we know, there is no evidence that age can
affect saccade amplitude, at least for the two age ranges con-
cerned. In particular, the study of Yang and Kapoula (2008)
found that the amplitudes of vertical saccades were not sig-
nificantly different in a group of young adults (20–28 years
of age) and in a group of elderly adults (63–75 years of
age). In the present set of data, amplitude hypometria appears
to be significantly higher in patients compared with controls
for leftward, rightward, and for upward saccades. For down-
ward saccades, the amplitude was similar in TSL and con-
trols but for TSR patients amplitudes were significantly larger
than for control subjects. Downward saccades are known to

Table 2 | Mean values and standard deviation of latency, amplitude, and disconjugacy for leftward, rightward, upward, and downward

saccades in control subjects (Vernet et al., 2008a,b) and tinnitus patients (TSL and TSR).

Control subjects TSL TSR

LATENCY (MS)

Leftward saccades 165 ± 31 168 ± 42 (p = 0.5056) 174 ± 48 (p = 0.0903)

Rightward saccades 166 ± 29 166 ± 39 (p = 1) 181 ± 56 (p = 0.0088)

Upward saccades 190 ± 26 184 ± 40 (p = 0.1696) 217 ± 67 (p = 0.0001)

Downward saccades 199 ± 30 201 ± 52 (p = 0.6967) 208 ± 49 (p = 0.0897)

AMPLITUDE (DEG)

Leftward saccades 9.5 ± 0.5 8.8 ± 1.1 (p < 0.0001) 8.5 ± 1.9 (p < 0.0001)

Rightward saccades 9.5 ± 0.6 9.1 ± 1.4 (p = 0.0021) 8.8 ± 1.3 (p < 0.0001)

Upward saccades 9.4 ± 0.7 8.7 ± 1.8 (p = 0.0001) 7.9 ± 2.0 (p < 0.0001)

Downward saccades 9.4 ± 1.3 9.5 ± 1.8 (p = 0.6015) 10.0 ± 2.5 (p = 0.0189)

DISCONJUGACY (DEG)

Leftward saccades 0.8 ± 0.4 0.7 ± 0.8 (p = 0.1894) 0.8 ± 1.3 (p = 1)

Rightward saccades 0.7 ± 0.4 0.7 ± 1.1 (p = 1) 0.9 ± 0.7 (p = 0.0070)

Upward saccades 0.6 ± 0.3 0.6 ± 1.0 (p = 1) 0.9 ± 1.1 (p = 0.0050)

Downward saccades 0.8 ± 0.4 1.3 ± 1.5 (p = 0.0002) 1.6 ± 2.7 (p = 0.0006)

p-values from t-test comparison with control data are given for both TSL and TSR.
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be frequently hypermetric in controls (e.g., Collewijn et al.,
1988b; Jagla et al., 1992) and this is perhaps magnified in tin-
nitus patients. Finally, saccade disconjugacy was significantly
higher for TSR patients than for controls and for several direc-
tions (rightward, upward, and downward); for TSL patients,
disconjugacy was higher than for controls only for downward
saccades.

Overall, the data indicate abnormalities in the tinnitus patients
in terms of saccade amplitude and disconjugacy that are more
marked for right sided tinnitus.

DISCUSSION
The main findings are the following: spatial temporal analysis
of eye movements highlights saccade differences in patients with
predominantly right sided ST compared to those with predom-
inantly left sided ST—i.e., latency, hypometria, and drift before
saccade (along the saccade axis) are higher while velocity and
quality of binocular coordination are lesser in TSR than in TSL
patients. Most important, some of these effects are not general
but specific to some directions. In particular, upward saccades
presented increased latency and hypometria in TSR compared
to TSL, the interaction effect between group (TSL/TSR) and
saccade direction being significant in both cases. Moreover, hor-
izontal saccades (leftward and rightward) were generally better
performed than vertical saccades (downward and/or upward),
regardless of the tinnitus side. Finally, relative to controls, ampli-
tude, and disconjugacy of the saccades appear to be globally
poorer in this tinnitus population compared with control sub-
jects, specifically in TSR.

NORMALITY AND ABNORMALITIES OF SACCADES IN TINNITUS
PATIENTS
Many recent studies reported eye movement abnormalities in tin-
nitus patients (e.g., Mezzalira et al., 2007; Kapoula et al., 2010;
Yang et al., 2010). Kapoula et al. (2010) pointed out abnormal-
ities in fixation, smooth pursuit, and optokinetic nystagmus in
a few cases. In a more extensive study, they reported specific
abnormalities in vergence eye movements, particularly in diver-
gence, and abnormal interactions between saccade and vergence
(Yang et al., 2010). The present study extends these findings
as it shows abnormalities in terms of both saccade amplitude
and disconjugacy, i.e., the quality of binocular coordination of
saccades.

In line with these prior studies, the multiple eye movement
abnormalities in tinnitus patients reflect dysfunction of many
oculomotor subsystems (saccade, vergence, binocular coordina-
tion). Both cortical level, (e.g., parietal cortex), the brainstem
as well as the cerebellum could be affected by such dysfunction.
For instance, Vernet et al. (2008b) have shown that perturbation
of the posterior parietal cortex (PPC) by transcranial magnetic
stimulation (TMS) reduces binocular coordination of saccades. In
addition, dysmetria of saccades and problems of binocular coor-
dination can also result from cerebellum dysfunction (for review,
see Leigh and Zee, 2006). As mentioned in the introduction, the
neural circuitries at these different levels that are involved in eye
movements supposedly interact with the neural plasticity induced
by tinnitus.

DIRECTIONAL ASYMMETRIES
The major effects found in this experiment indicate directional
asymmetries that are specific to our tinnitus participants. First,
horizontal saccades were globally better performed than verti-
cal saccades, i.e., latencies and drifts prior and after saccades
were all higher for both downward and upward saccades in
comparison with rightward and leftward ones. Second, no left-
right differences were found. Finally, these tinnitus patients
showed specific vertical asymmetries of saccades: on the one
hand, amplitudes were more hypometric and velocities lower
for upward saccades in comparison with the other sac-
cadic directions; on the other hand, binocular coordination
was poorer for downward saccades as compared with other
saccades.

Horizontal vs. vertical saccades
Horizontal and vertical saccades receive premotor commands
from distinct burst neurons respectively located in the pontine
and mesencephalic reticular formation (Leigh and Zee, 2006).
Different patterns of event-related desynchronization (ERD) or
event-related synchronization (ERS) have also been identified for
vertical vs. horizontal eye movements (Kaiser et al., 2009). At the
behavioral level, and in line with the reported results, eye move-
ments from healthy subjects are known to be faster when saccades
are made horizontally in comparison with vertical saccades, at
least when they do not exceed 50◦ (Collewijn et al., 1988a,b).
Directional asymmetries of latency, accuracy, and velocity of sac-
cades have been investigated in several studies. However, most
of them dealt either with horizontal (e.g., Weber and Fischer,
1995; Honda, 2002) or with vertical saccades (e.g., Heywood and
Churcher, 1980; Honda and Findlay, 1992; Huaman and Sharpe,
1993; Schlykowa et al., 1996; Pitzalis and Di Russo, 2001; Zhou
et al., 2002; Tzelepi et al., 2005, 2010) separately. In the following
discussion, we will deal first with horizontal saccades and then
with vertical saccades.

Horizontal saccades: no left-right asymmetry in tinnitus patients
The reported results do not indicate any left-right asymmetry
neither for TSL nor for TSR. It has been argued that the hor-
izontal rightward ocular motor system could be privileged due
to scanning and reading habits (Manning et al., 1990; Chokron
et al., 1998). However, a systematic left perceptual bias has
been observed both in left-to-right and in right-to-left readers
(Nicholls and Roberts, 2002). Left-right asymmetries as observed
in perceptual judgment tasks are most probably due to an atten-
tional bias induced by the dominance of the right hemisphere
for spatial attention (Corbetta et al., 1995; Niemeier et al.,
2008). Concerning experiments based on visually guided sac-
cades, left-right asymmetry does not appear to systematically
happen. Besides, some studies noticed that horizontal asymme-
tries of saccadic latencies could be idiosyncratic (Weber and
Fischer, 1995; Honda, 2002).

Vertical saccades: marked upward deficit
The major effect found in the present study is the marked impair-
ment of upward saccades in TSR group compared with saccades
in the other directions in terms of almost all analyzed parameters
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(see Figures 2–6). This specific effect for upward saccades is
also indicated by interaction effects which were significant only
between upward vs. the other saccadic directions and the group
(TSR vs. TSL) for both the latency and the amplitude. At the
same time, binocular coordination was virtually the same in
upward and horizontal saccades while it was poorer in downward
saccades, TSR performing worse coordinated saccades than TSL.

Previous works already suggested that external physical sound
can activate the vestibular system which can lead to body shift
(Alessandrini et al., 2006). Hypothetically, phantom noise could
trigger vestibular reactions similarly. And yet it is known that
vestibular function is linked with different eye movements not
limited to vestibuloocular reflex. In particular, cell activities in
vestibular nuclei were found to be related to saccades (Chubb
et al., 1984; Tomlinson and Robinson, 1984). Of interest, neurons
discharging before vertical saccades and during vertical vestibular
stimulation have also been identified in the interstitial nucleus of
Cajal (Kaneko and Fukushima, 1998). It remains unclear whether
tinnitus can affect the vestibular function in such a way that verti-
cal saccades would be selectively defected. However, some diseases
are known to affect specifically vertical saccades. For example,
oculomotor deficit in progressive supranuclear palsy can start
with impairment of either upward or downward saccades or both
(Leigh and Zee, 2006). Niemann–Pick type C disease was also
found to selectively affect vertical burst neurons (Rottach et al.,
1997). Pending further investigations, we propose that tinnitus
can induce subclinical vestibular dysfunction, affecting neurons
implicated in the control of vertical saccades.

At the cortical level, TMS studies suggest that right and left
parietal cortices are not identically involved in the control of ver-
tical saccades. In particular, the right PPC has been found to be
involved in the initiation of both downward and upward saccades
(Tzelepi et al., 2005) while vertical saccades seem unaffected by
TMS over the left PPC (Vernet et al., 2008c). In addition, Tzelepi
et al. (2010) used magnetoencephalography and recorded higher
frontal activity during the preparation of downward compared to
upward saccades. Moreover, the superior parietal cortex is known
to be associated with visuo-spatial attention activities (Corbetta
et al., 1998). Many studies (e.g., Corbetta et al., 1998; Beauchamp
et al., 2001; de Haan et al., 2008) indicate that saccadic and atten-
tional processes are tightly integrated, at least at the neural level
since anatomical overlap was demonstrated in frontal-parietal
areas. In the context of cortical hemispheric asymmetries, the
dominance of the right hemisphere has been evidenced for spa-
tial attention both in lesions (e.g., Weintraub and Mesulam, 1987;
Mosidze et al., 1994) and in non-brain damaged studies (e.g.,
Coull and Nobre, 1998; Nobre et al., 1999; see Mapstone et al.,
2003) as well as for the initiation of saccades (e.g., Kapoula et al.,
2004, 2005a,b; Yang and Kapoula, 2004).

We suggest that vertical asymmetries of saccades in tinni-
tus patients could be associated with maladaptive interactions
between saccades, auditory, vestibular, and cortical circuitries.
Auditory pathways will be discussed below.

AUDITORY PATHWAYS ASYMMETRY
In the context of tinnitus perception, the functional and
structural asymmetries of auditory pathways have also to be

underlined. Indeed there is a dominance of the right ear and
audio-spatial attention has a prepotent rightward vector (Sosa
et al., 2010) probably reflecting a left hemisphere predomi-
nance in auditory processing. Spontaneously, the right ear has
a greater sensitivity for speech (McFadden and Mishra, 1993)
and non-speech sounds (Todd et al., 2011) and displays more
spontaneous and evoked acoustic emissions (Khalfa et al., 1998).
Asymmetries in top-down medial olivo-cochlear (MOC) effer-
ent system could account for such asymmetry leading to better
integration of complex stimuli and thus to better speech to
noise detection in the right auditory field (Giraud et al., 1997)
even though some data indicate a stronger correlation between
sound localization abilities and MOC functioning for the left ear
(Andéol et al., 2011). The latter might be considered as a periph-
eral reflection of right-hemisphere dominance for spatial auditory
processing in humans.

Those asymmetries could account for clinical discrepancies
observed between left and right sided tinnitus. Indeed, left sided
tinnitus is more frequent than right sided ones (Martines et al.,
2010). Our short series is in line with these data displaying a
prevalence of left sided tinnitus. Other data also suggest that left
sided tinnitus are more intrusive (Mazurek et al., 2010). The
tinnitus side also affects the correlation between tinnitus pitch
and the frequency of maximum hearing loss, i.e., tinnitus pitch
and hearing loss frequency are significantly correlated for right
sided tinnitus and not for left sided ones (Schecklmann et al.,
2012). On the other hand, it has been shown that only right sided
tinnitus specifically impairs the classic right-ear advantage in a
dichotic auditory listening task (Cuny et al., 2004a). Similarly,
even if auditory attention is preferentially focused toward the
tinnitus ear in case of unilateral tinnitus, tinnitus patients are
better at categorizing a target sound in the right ear and/or to
be less distracted by a deviant sound presented in the left ear
(Cuny et al., 2004b).

Nevertheless, there is no consensus upon what is to be con-
sidered the actual neural correlate of tinnitus laterality. PET data
suggest that left auditory cortices are always involved irrespec-
tive of tinnitus side (Langguth et al., 2006) whereas MRI, MEG,
and EEG indicate that tinnitus generators could be located in
the contralateral cortices (Weisz et al., 2007; van der Loo et al.,
2009; Lefaucheur et al., 2012). But, subcortical structures could
also be involved either bilaterally (i.e., inferior colliculi) accord-
ing to fMRI data (Melcher et al., 2009) or asymmetrically (i.e.,
toward the contralateral parahippocampus) according to EEG
data (Vanneste et al., 2011b).

CONCLUSION
This study is the first to investigate systematically properties of
saccades in patients with unilateral somatic tinnitus modulated
by movements. In line with a prior case study from our team,
we report here saccade abnormalities that interestingly are more
accentuated in TSR than in TSL. The fact that saccade impair-
ment was more marked for upward saccades in patients with
right sided tinnitus remains the concern of the supposition and
further investigations are clearly needed. Indeed, recent litera-
ture suggests that tinnitus is associated with complex neuroplastic
maladaptive changes at the cortical and subcortical levels and in
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auditory as well as in non-auditory networks. However, these
complex changes remain poorly understood. This study sug-
gests that tinnitus can interact with ocular motor cortical areas,
auditory pathways and maybe the vestibular function, leading to

dysfunction of vertical saccades. Relative to horizontal saccades,
vertical saccades are subtended by complex patterns of inner-
vation distributed on the all extra-ocular muscles, by bilateral
cortical activation and are perhaps more fragile.
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