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Objective: Exposure to ambient fine particulate matter (PM2.5: PM with aerodynamic

diameters <2.5µm) has been linked with cognitive deficits in older adults. Using

fine-grained voxel-wise analyses, we examined whether PM2.5 exposure also affects

brain structure.

Methods: Brain MRI data were obtained from 1365 women (aged 71–89) in the

Women’s Health Initiative Memory Study and local brain volumes were estimated using

RAVENS (regional analysis of volumes in normalized space). Based on geocoded

residential locations and air monitoring data from the U.S. Environmental Protection

Agency, we employed a spatiotemporal model to estimate long-term (3-year average)

exposure to ambient PM2.5 preceding MRI scans. Voxel-wise linear regression models

were fit separately to gray matter (GM) and white matter (WM) maps to analyze

associations between brain structure and PM2.5 exposure, with adjustment for potential

confounders.

Results: Increased PM2.5 exposure was associated with smaller volumes in both

cortical GM and subcortical WM areas. For GM, associations were clustered in the

bilateral superior, middle, and medial frontal gyri. For WM, the largest clusters were

in the frontal lobe, with smaller clusters in the temporal, parietal, and occipital lobes.

No statistically significant associations were observed between PM2.5 exposure and

hippocampal volumes.

Conclusions: Long-term PM2.5 exposures may accelerate loss of both GM and WM

in older women. While our previous work linked smaller WM volumes to PM2.5, this is

the first neuroimaging study reporting associations between air pollution exposure and

smaller volumes of cortical GM. Our data support the hypothesized synaptic neurotoxicity

of airborne particles.
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INTRODUCTION

Growing evidence suggests that exposure to ambient air
pollutants, especially particulate matter (PM), is a novel
environmental risk factor of brain aging (Block et al., 2012).
Cross-sectional studies have indicated that residing in places with
higher levels of fine particulate matter (i.e., PM2.5) is associated
with poorer cognitive functioning in older adults (Ailshire and
Crimmins, 2014; Gatto et al., 2014). Further support comes
from longitudinal studies showing that greater ambient PM2.5

exposure is associated with accelerated cognitive aging (Weuve
et al., 2012; Tonne et al., 2014). In addition, neurotoxic effects
of exposure to particulate air pollutants on the brain have been
reported in animalmodels (Fonken et al., 2011; Davis et al., 2013).

Despite increasing epidemiologic evidence linking late-life
exposure to ambient air pollution with accelerated cognitive
aging (Block et al., 2012), only a few studies have examined
associations with brain structure in humans using neuroimaging
data. Wilker et al. recently reported that greater residential
exposure to PM2.5 was associated with smaller cerebral volumes
in the Framingham Offspring Study (Wilker et al., 2015). We
recently reported that participants in the Women’s Health
Initiative Memory Study (WHIMS) who lived for at least 6–7
years in places with greater levels of PM2.5 had smaller overall
brain and white matter (WM) volumes compared to women with
less exposure (Chen et al., 2015).

Both of the aforementioned studies used ROI-based analyses,
which aggregate volumetric measures within pre-defined
neuroanatomical regions and assume homogenous associations
across all voxels within each ROI. While ROI-based analyses
reduce the dimensionality of imaging data, regions of interest
have to be defined in advance and the quality of the analyses
depends on the precision of the segmentation approaches (Lee
et al., 2015). Detecting patterns that extend continuously across
multiple regions may be challenging for these approaches.

Voxel-based morphometry (VBM) is a complementary
technique that measures local brain volumes in a normalized
space and thus does not suffer from these limitations (Goldszal
et al., 1998; Good et al., 2001). Our analyses are based on
the Regional Analysis of Volumes Examined in Normalized
Space (RAVENS) which is a well-validated form of voxel-
based morphometry that preserves local tissue volumes after
transformation to stereotaxic space (Davatzikos et al., 2001).
The RAVENS approach has been extensively used in the last 15
years in large-scale neuroimaging studies such as Alzheimer’s
Disease Neuroimaging Initiative (Misra et al., 2009), Baltimore
Longitudinal Aging Study (Davatzikos et al., 2009; Driscoll et al.,
2012), WHIMS-MRI (Zhang et al., 2016), etc. We hypothesized
that conducting more detailed analyses of the associations
between air pollution neurotoxicity and local brain structure
using RAVENS approaches would generate further insights about
the impact of air pollution on brain structure.

METHODS

Participants
The Women’s Health Initiative Memory Study (WHIMS)
investigated the effects of postmenopausal hormone therapy on

the risk of dementia and changes in cognitive function in women
aged 65–80 at enrollment (1996–1998) into theWHI randomized
placebo-controlled clinical trials (Shumaker et al., 1998; Espeland
et al., 2004). The WHIMS Magnetic Resonance Imaging study
(WHIMS-MRI) study enrolled WHIMS participants from 14
of 39 sites, (Jaramillo et al., 2007; Resnick et al., 2009) from
January 2005 through April 2006. Here we analyzed images
from 1365 participants who met WHIMS-MRI reading criteria.
These criteria were described previously (Coker et al., 2014). This
study was also conducted in accordance with the Declaration
of Helsinki. All participants provided written informed consent.
This research was approved by the Wake Forest School of
Medicine IRB.

Image Acquisition and Pre-processing
MRI scans were performed using a standardized protocol
developed by the MRI Quality Control Center in the Department
of Radiology of the University of Pennsylvania. Details on
procedures for acquisition and processing were published
previously (Coker et al., 2009; Resnick et al., 2009). Briefly, the
scans were obtained with a field of view = 22 cm and a matrix of
256× 256. Included were oblique axial spin density/T2-weighted
spin echo (TR:3200ms, TE= 30/120ms, slice thickness= 3mm),
fluid-attenuated inversion recovery (FLAIR) T2-weighted spin
echo (TR= 8000ms, TI= 2000ms, TE= 100ms, slice thickness
= 3mm), and oblique axial three-dimensional T1-weighted
gradient echo (flip angle = 30 degrees, TR = 21ms, TE = 8ms,
slice thickness = 1.5mm) images from the vertex to the skull
base parallel to the anterior commissure–posterior commissure
(AC-PC) plane.

For voxel-based analyses, the T1-weighted images were
preprocessed using the following steps: (1) alignment of the
brain with the AC-PC plane; (2) removal of extracranial
material; (3) tissue segmentation into gray matter (GM), white
matter (WM), and cerebrospinal fluid (CSF), using a method
described elsewhere (Zhang et al., 2016); (4) high-dimensional
image warping to a standard MNI space through an elastic
registration method (Shen and Davatzikos, 2002); (5) applying
the deformation field that resulted from the spatial registration
to the segmented images, thereby generating mass-preserved
volumetric maps (or tissue density maps), named Regional
Analysis of Volumes Examined in Normalized Space (RAVENS)
maps (Davatzikos et al., 2001); (6) the RAVENS maps are
normalized by the intracranial volumes to control for inter-
subject differences in head size; (7) resampling the RAVENS
maps to have 2× 2 × 2mm voxel size; and (8) smoothing of the
GM and WM RAVENS maps using an 8mm isotropic Gaussian
kernel.

Ambient Air Pollution Data
We estimated residential exposures to PM2.5 from ambient
sources, using a Bayesian Maximum Entropy (BME)-based
spatiotemporal modeling approach. BME is a powerful stochastic
modeling andmappingmethod for characterizing environmental
exposure and human-ecosystem interactions (Christakos et al.,
2001), which has been used in several large epidemiological
cohort studies (Jerrett et al., 2013; Chen et al., 2015). In order to
minimize the scaling error resulting from temporal misalignment
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in both the exposure source data and the subsequent estimates,
a BME spatiotemporal model was constructed to produce daily
ambient PM2.5 concentration at each geocoded location where
WHIMS participants resided. To evaluate the validity of resulting
exposure estimates, we conducted cross-validation analyses on
the estimation accuracy, using US Environmental Protection
Agency (EPA) air monitoring data. We first randomly divided
the data into 10 distinctive sets of monitoring stations. For
each “held-out” 10% of these data, we obtained daily BME
estimates using only data from the remaining 90% of monitoring
stations. We then pooled the cross-validation statistics across
10 distinctive sets and found moderate correlations between
the “held-out” data and their BME estimates (cross-validation
R2 = 0.74 for daily PM2.5). These daily BME estimates were then
aggregated and combined with the residential histories, including
relocations to calculate the 3-year average exposures preceding
each brainMRI scan. These 3-year average exposures were highly
correlated (Pearson’s R = 0.93) with the cumulative exposure
estimates of yearly PM2.5 used in previous work (Chen et al.,
2015).

Measurement of Covariates
At the WHIMS enrollment, participants completed structured
questionnaires to provide information on demographics (age,
race/ethnicity), socioeconomic status (including education,
family income, employment status), lifestyle factors (smoking,
alcohol consumption), clinical characteristics (cardiovascular
disease [CVD] and related risk factors), and prior hormone
therapy use. History of CVD included previous coronary heart
disease (myocardial infarction, coronary angioplasty, or coronary
artery bypass graft), stroke, or transient ischemic attack. Body
mass index (kg/m2) was calculated. Hypertension was defined
as use of antihypertensive medication or elevated blood pressure
(systolic blood pressure ≥140mmHg or diastolic blood pressure
≥90mmHg). Treated diabetes mellitus (DM) was defined as a
physician diagnosis plus oral medications or insulin therapy.
Good reliability and validity of both the self-reported medical
histories and the physical measures have been documented
(Heckbert et al., 2004).

Statistical Analysis
Voxel-wise linear regression models (Good et al., 2001)
were fit to GM and WM RAVENS maps using Statistical
Parametric Mapping (SPM) software (version 8) to examine
the associations that brain structures had with PM2.5 exposure
after adjusting for intracranial volume and potential confounders
including age, race, BMI, geographic region (Northeast, South,
Midwest, and West; Chen et al., 2015), education, family
income, employment status, smoking, alcohol consumption,
CVD history, hypertension, treated diabetes, and prior hormone
therapy use. We investigated both negative and positive
associations of PM2.5 with tissue volumes. All results were
corrected for multiple comparisons using a false discovery rate
(FDR) <0.05 (Benjamini and Hochberg, 1995). Clusters with
fewer than 50 voxels were removed from the results.

RESULTS

Demographic, lifestyle, and clinical characteristics of participants
are listed in Table 1. Greater PM2.5 exposure was associated
with spatial patterns of smaller brain volumes in cortical GM
and subcortical WM areas (Figures 1, 2). For GM, higher PM2.5

was associated with smaller volumes clustered in the bilateral
superior, middle, and medial frontal gyri. Other clusters of
negative associations were in the left inferior frontal gyrus
and bilateral superior parietal lobule and occipital poles. For
WM, the largest clusters of negative associations were in the
anterior and posterior extreme/external capsule and the calcarine
gyri. No correlation was found between corpus callosum and
PM2.5 exposure. In addition, we found no evidence for smaller
hippocampal or temporal lobe volumes with PM2.5 exposure.

TABLE 1 | Baseline characteristics of WHIMS-MRI participants (N = 1365).

Variable Mean (SD)

Frequency (%)

Age 70.53 (3.64)

Body mass index 28.23 (5.43)

Race/Ethnicity

Black/African–American 61 (4.47%)

Hispanic/Latino 19 (1.39%)

White 1245 (91.21%)

Other 40 (2.93%)

Education

<High school 60 (4.41%)

High school/general education degree 317 (23.27%)

>High school 985 (72.32%)

Employment

Currently employed 246 (18.05%)

Not working 142 (10.42%)

Retired 975 (71.53%)

Region

Northeast 310 (22.71%)

South 204 (14.95%)

Midwest 477 (34.95%)

West 374 (27.40%)

Smoking

Never 784 (57.90%)

Past 513 (37.89%)

Current 57 (4.21%)

Alcohol

Non-drinker 176 (13.00%)

Past drinker 225 (16.62%)

<1 drink per day 800 (59.08%)

>1 drink per day 153 (11.30%)

High cholesterol requiring pharmaceutical treatment 215 (16.06%)

Cardiovascular disease ever 187 (13.87%)

Hypertension ever 491 (36.21%)

Prior use of hormone therapy 6733 (46.37%)

Diabetes treated ever (oral therapy or injected insulin) 44 (3.23%)

Baseline score on mini-mental examination 96.10 (3.45)
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FIGURE 1 | GM areas negatively associated to PM2.5 exposure (q < 0.05 FDR corrected) in the VBM linear regression models are presented in color.

Images are oriented according to the neurological convention.

Statistically significant clusters of associations were found in deep
gray matter nuclei (q < 0.05 FDR corrected): larger volumes
were associated with increased PM2.5 exposures (Figure 3). These
local GM regions, pinpointed by colors in Figure 3, included the
thalamus, putamen, and globus pallidus bilaterally, as well as
the posterior insula. There were no WM areas with significant
positive associations with increased PM2.5 exposure.

DISCUSSION

Our detailed analyses identified specific subcortical areas in
which smaller WM volumes were associated with greater
PM2.5 exposure, namely the external and extreme capsule and
the calcarine cortices. This observation suggests that regions
involved in important functional networks, such as the salience
and visual networks, appear to be affected by ambient PM2.5.
We also found that ambient PM2.5 exposure was associated
with local GM brain structures. Our findings provide the
first epidemiologic evidence that PM2.5-induced neurotoxic

effects may involve structural damage to cortical GM. In
cohorts like WHIMS-MRI participants, lower GM volumes may
reflect shrinkage of neurons, reductions of synaptic spines,
and dendritic arborization, and lower numbers of synapses
(Fjell and Walhovd, 2010) rather than neuronal loss. To date,
there is limited data from animal studies showing evidence
for PM-induced neuronal toxicity, including the reduction of
dopaminergic neurons in the striatum of genetically-modified
mice (Veronesi et al., 2005) exposed to concentrated PM2.5

representing the ambient background and cortical neuronal loss
in rats with oral ingestion of PM from vehicular emissions

with unspecified particle sizes (Ejaz et al., 2014). However,
there is growing evidence that synaptic neurotoxicity results
from exposure to ambient particles. In the mouse hippocampus,
impaired synaptic function is induced by short-term in vitro
exposure to particulate matter from urban traffic (Davis et al.,

2013). Reduced synaptic plasticity (decreased dendritic spine
density and branching) may result from long-term inhaled
exposure to ambient PM2.5 (Fonken et al., 2011).
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FIGURE 2 | WM areas with decreased volumes associated to increased PM2.5 exposure (q < 0.05 FDR corrected) in the VBM linear regression models

are presented in color. Images are oriented according to the neurological convention.

The associations between PM2.5 exposure and patterns of
smaller GM volumes that we identified were primarily in the
dorsolateral andmedial prefrontal cortex, regions associated with
higher cognitive function such as working memory, episodic
memory retrieval, and executive function. Age-related deficits in
retrieval of episodic memory have been associated with volume
reductions and functional changes in the middle frontal gyrus
(Buckner et al., 2000; Raz et al., 2005). Weuve et al. reported
memory function declined in older women (70–81 years) living
in locations with higher PM2.5 exposures (Weuve et al., 2012).
Two other studies also reported associations between PM2.5

exposure and low performance of episodic memory (Ailshire and
Crimmins, 2014; Tonne et al., 2014).

We found little evidence that PM2.5 exposure was related to
hippocampal volume. This is consistent with two previous studies
employing ROI-based analyses (Chen et al., 2015; Wilker et al.,
2015). This null finding may be influenced by the nature of the
cohort and characteristics of the exposure. Longitudinal brain
MRI studies have shown that loss of hippocampal volume starts
in young adulthood, with age-related accelerated shrinkage in the
mid-50s (Raz et al., 2005). Long-term (10-month) exposure to
concentrated ambient PM2.5 decreased dendritic spine density
in hippocampal CA1 neurons of 4-week-old wild-type mice

(C57BL/6; Fonken et al., 2011). It is therefore possible that
PM2.5 exposure affects hippocampal volume in early- or mid-
life. Also, because our exposure estimation relied exclusively on
EPA’s ambient monitoring data, we cannot exclude the possibility
that reduced hippocampal volume might be found in older
adults exposed to other particulate matter with different profiles
of neurotoxicity (e.g., the ultrafine particles from vehicular
exhausts; Davis et al., 2013).

The positive associations we observed between PM2.5

exposure and GM volumes in basal ganglia were unexpected,
and the potential underlying mechanisms are unclear. In our
previous ROI-based analyses, we found no positive associations
between PM2.5 exposure and basal ganglia volume (Chen et al.,
2015). Experimentally, exposure to small particles may result
in a loss of dopaminergic neurons in striatum, as shown
with in vitro (Gillespie et al., 2013) or inhalation exposure
(Veronesi et al., 2005) to concentrated ambient particles. These
results would predict an association between PM2.5 and smaller
volumes of basal ganglia. On the other hand, environmental
exposures to paramagnetic substances (e.g., magnesium and iron)
may distort T1-weighted images and interfere with volumetric
estimation (Goto et al., 2013; Lorio et al., 2014). One recent
neuropathological study identified (Maher et al., 2016) the
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FIGURE 3 | GM areas positively associated to PM2.5 (q < 0.05 FDR corrected) according to VBM linear regression are presented in color. Images are

oriented according to the neurological convention.

magnetite nanoparticle from environmental sources in human
brains, and others have shown that airborne particles with
magnetic properties are abundant in polluted cities (Gargiulo
et al., 2016). Larger basal ganglia volumes have been linked to
some pathological processes in the brain (e.g., schizophrenia;
Mamah et al., 2007) and use of antipsychotic medications(Scherk
and Falkai, 2006). However, we are unaware of prior studies
showing increased psychiatric disease/use of antipsychotics or
changes in paramagnetic properties resulting from long-term
PM2.5 exposure. It is also unclear why higher PM2.5 exposure
would be associated with larger volumes in the thalamus and
lenticular nucleus, but have a less pronounced effect on caudate.
Our sample size was unusually large for VBM analyses, which
could mean that we detected subtle differences not readily
identified in previous VBM studies.

Our findings strengthen the evidence that WM architecture
may represent a novel target of particle-induced neurotoxicity.
While associations with GM volumes are largely restricted to
frontal gyri (Figure 1), the impact of PM2.5 on WM volumes
appears to bemore regionally-distributed (Figure 2) and involves
the same regions (frontal, parietal, and temporal lobes) as
previously reported in our ROI-based study (Chen et al., 2015).
These observed differences in affected brain regions raise the

interesting possibility that the smaller WM volumes reflect
adverse effects on oligodendrocytes and/or myelin damage, while
smaller GM volumes may imply synaptic neurotoxicity, both
possibly resulting from long-term PM2.5 exposure. Investigation
on the neurobiological mechanisms (e.g., neuroinflammation,
oxidative stress) linking PM exposure to central neurotoxicity
is an active area of research in environmental neurosciences,
likely involving multi-level pathways perturbed at the molecular
levels (e.g., activation of TNF-alpha; Levesque et al., 2011;
Cheng et al., 2016), selected target tissues (e.g., remodeling
glutamatergic synapses; Morgan et al., 2011), and interactions
among different neural cells (e.g., neuron-glial interaction; Block
and Calderón-Garcidueñas, 2009) and across systems (e.g., via
the neurohormonal stress response to air pollution; Kodavanti,
2016). Subclinical cerebrovascular injuries may also result in loss
of brain tissues, although published neuroimaging studies with
late-life exposure to PM2.5 so far (Chen et al., 2015; Wilker
et al., 2015, 2016) had not produced strong evidence for this
neurovascular pathway linking air pollution to brain aging.

One recent cross-sectional study also showed that early-
life PM2.5 exposure may affect age-related WM maturation
(Peterson et al., 2015). In a sample of 40minority urban-
dwelling school-age children, prenatal exposures to polycyclic
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aromatic hydrocarbons (measured from personal air samples of
PM2.5 during pregnancy) was associated with a smaller local
WM volume, as indicated by the reduction of surface areas
(Peterson et al., 2015). PM-induced WM damage, as reflected by
hypomyelination and aberrant white matter structural integrity
were recently demonstrated in mouse models with early-life
exposure to concentrated ambient ultrafine particles (Allen
et al., 2015). Beyond volumetric measures, future studies should
consider diffusion tensor tractography (Madden et al., 2009) and
MR spectroscopy (Bray and Mullins, 2014) to better understand
the WM connectomes and molecular profilles potentially
disrupted by PM exposure. To elucidate the neuropathology
and mechanisms underlying the observed neurotoxicity on WM,
we also need to understand whether PM2.5 exposure results
in myelination disturbance (Kohama et al., 2012) and age-
related decrease of the oligodendrocytes in subcortical WM
(Chen et al., 2011). VBM and ROI methods operate based
on different assumptions. Thus, while often they show some
degree of coincidence, they also can lead to different findings.
It is interesting to note that the present VBM analyses did not
reveal a statistically significant association between PM2.5 and
corpus callosum, in contrast to our findings using ROI based
methods (Chen et al., 2015). In one study of schizophrenic
patients (Giuliani et al., 2005), despite some similarities in results,
there also were brain areas uncovered differentially by each
of the methods. In general, VBM and ROI approaches are
complementary; their relative effectiveness is likely related to the
specific shape of the spatial patterns of brain tissue atrophy and
the image warping and segmentationmethods used to preprocess
the MRI data. Finally, we used in our analyses RAVENS maps
that were ICV adjusted as part of the image preprocessing. The
ICV-adjustment strategies (e.g., proportional, residuals, nuisance
covariate, etc.) have been the subject of debate in the past (Arndt
et al., 1991; Barnes et al., 2010) and more recently (Voevodskaya
et al., 2014; Nordenskjöld et al., 2015). While other analyses
are possible, they would be beyond the scope of this particular
paper.

Our study has some limitations. First, our analyses were
based on cross-sectional measures of brain volume. Longitudinal
studies with repeated brain MRI scans are needed to characterize
associations with rates of changes in brain volumes. We only
studied older women, so our findings may not generalize to
men. This cohort was composed of relatively well-educated and
mostly Caucasian women, which may not be representative of
the general population. We only studied PM2.5, and have not
assessed emission sources, particle constituents, or interactions
with other pollutantmixtures. The lack of nationwidemonitoring
data before 1999 prevented us from assessing the impact
of earlier exposures. Finally, long-term chronic exposure,
especially if accumulated since mid- or earlier life, might have
different—and potentially greater—adverse effects than what we
observed.

CONCLUSIONS

This first neuroepidemiologic VBM analysis of brain regions
associated with air pollution provides further evidence for the

adverse effect of particulate air pollutants on brain structure in
older women. Long-term PM2.5 exposures are linked to potential
loss of brain volume in both GM and WM tissues, but in
different brain networks. Longitudinal studies are needed to
clarify the sequence of pathogenetic events associated with long
term exposure to fine particles.
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