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Strong evidence has been accumulated since the beginning of the COVID-19 pandemic
that neutrophils play an important role in the pathophysiology, particularly in those with
severe disease courses. While originally considered to be a rather homogeneous cell type,
recent attention to neutrophils has uncovered their fascinating transcriptional and
functional diversity as well as their developmental trajectories. These new findings are
important to better understand the many facets of neutrophil involvement not only in
COVID-19 but also many other acute or chronic inflammatory diseases, both
communicable and non-communicable. Here, we highlight the observed immune
deviation of neutrophils in COVID-19 and summarize several promising therapeutic
attempts to precisely target neutrophils and their reactivity in patients with COVID-19.
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INTRODUCTION

Coronavirus disease 2019 (COVID-19), the disease elicited by SARS-CoV-2 infection, has been
diagnosed in over 111 million patients and led to over 2.4 million deaths during the 2020 pandemic
(WHO, covid19.who.int, as of February 24th, 2021). Early on, increased neutrophil counts in the
blood of severely affected individuals were noted as a major clinical feature of this novel disease (1).
In combination with the concomitant lymphopenia, an elevated neutrophil-to-lymphocyte ratio has
emerged as a hallmark of severe COVID-19 (2–4).

Historically, many studies investigating circulating immune cells in disease have focused on the
analysis of peripheral blood mononuclear cells excluding neutrophils and other granulocytes. Thus,
knowledge on this most abundant but also technically challenging immune cell fraction in blood is
lagging behind (5). Recent advances in single-cell omics technologies have opened up new
possibilities to study this cell population in humans, especially in pathological contexts,
challenging the understanding that neutrophils are a homogeneous population of short-lived
cells (6, 7). As part of the innate immune system, granulocytes are among the first cells recruited to a
Abbreviations: COVID-19, Coronavirus disease 2019; GMP, granulocyte-monocyte progenitor cell; Neu, neutrophil; ISG,
interferon-stimulated genes; NET, neutrophil associated extracellular trap; ROS, reactive oxygen species; MDSC, granulocytic-
myeloid derived suppressor cells; LDNs, low-density neutrophils; NE, neutrophil elastase.
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site of infection and key in shaping the early response to an insult
as well as in mediating between the innate and adaptive arm of
the immune system (8). Yet, if not properly regulated, the
powerful effector functions of these cells can lead to tissue
damage (8). Here, we highlight key features and latest findings
of human neutrophil biology with a special focus on COVID-19
(Figure 1).
NEUTROPHIL ONTOLOGY

Lately, multiple studies delineated the extensive heterogeneity of
neutrophils. Different subsets have been identified comprising
maturation stages, but also different cellular activation states
(9–11). In particular, granulocyte-monocyte progenitor
(GMP) cells have been described as a heterogeneous
blend comprising a population of neutrophil-committed
progenitors termed as pro-neutrophils (pro-Neu) (CD81+CD43+

CD15+CD63+CD66b+), which sequentially differentiate into
lineage-committed precursors (pre-Neu) (CD11b+CD66b+

CD101-CD45d+), immature neutrophils (CD11b+CD66b+

CD101+/-CD10-CD16+/-) and mature neutrophils (CD11b+

CD66b+CD101+CD10+CD16+) (10–14).
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This maturation process takes place in the bone marrow (BM)
and the differentiation stages are characterized by specific
transcriptional waves. Pro- and pre-Neu both present a high
proliferation signature which diminishes in mature neutrophils
(6). The genes that best differentiate the subsets are encoding
components of their characteristic granules. Pro-Neu mostly
express azurophilic granule genes (e.g. AZU1), followed by
genes of specific granules such as LTF in pre-Neu and finally
gelatinase and secretory granule genes in mature neutrophils (6).
Interestingly, the majority of proteins found in neutrophils are
generated in early differentiation stages and stored in granules.
This leads to a decrease in mRNA content over their course of life
(6) and thus a potential discrepancy between protein and gene
expression (15). A switch in chemokine receptor expression from
CXCR4 to CXCR2, finally, leads to the egress of mature
neutrophils from the BM into the circulation (16, 17). This
process has recently been linked to the circadian rhythm with a
peak of freshly released neutrophils at night (18).

Mature neutrophils in circulation under homeostasis have
been subdivided into three distinct subsets: homeostatic, which
form the majority, aged and interferon-stimulated genes (ISG)-
related neutrophils (6). Once in circulation, neutrophils either
patrol the vasculature or migrate into different organs (7). Just as
FIGURE 1 | Neutrophil subsets in health and severe COVID-19. Overview of the different subsets of neutrophils found in bone marrow (left), blood (center) and lung
(bronchoalveolar space, right) in health (top) and severe COVID-19 (bottom). HSC, hematopoietic stem cells; CLP, common lymphoid progenitors; GMP,
granulocyte-monocyte progenitor cell; Neu, neutrophil; ISG, interferon-stimulated genes; NET, neutrophil associated extracellular trap; ROS, reactive oxygen species;
created with BioRender.com.
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the downregulation of CXCR4 is responsible for the egress of
neutrophils from the BM, the re-expression of CXCR4 on
aged neutrophils will eventually lead to the migration back
into the BM, spleen, or liver where aged neutrophils are
phagocytosed by macrophages (18, 19). Previously extravasated
neutrophils may also re-enter circulation, migrate to the
pulmonary microcirculation where they upregulate CXCR4 to
subsequently enter the BM for clearance (20). Further, the lung
microvasculature has been recognized as a functional immune
niche (21, 22). Of note, most studies investigating the
differentiation processes have been performed in mouse
models and might thus not be fully translatable to human
neutrophils (23). However, hematopoietic structures including
progenitor populations in fetal bone marrow and umbilical blood
(10) are highly similar between mouse and human (24).
NEUTROPHIL FUNCTION IN HEALTH &
DISEASE

Neutrophils play a crucial role in the first line of cell-mediated
defense against microbes. They phagocytose bacteria and clear
them by fusion with their cytoplasmic granules containing
proteases, defensins, antimicrobial peptides or reactive oxygen
species (ROS). Additionally, they can form neutrophil
extracellular traps (NETs), in which parts of the nucleus
together with granules are actively released (25). These
mechanisms are differentially active in the above mentioned
neutrophil subsets. Phagocytosis capacity as well as ROS
production increase with maturation stage (6, 12). Aging of
neutrophils during circulation leads to a gradual degranulation
that decreases their capacity for NET formation (15).

Neutrophils perform their effector activities after migration
into peripheral tissues. Circulating CXCR1+CXCR2+ mature
neutrophils are orchestrated to tissues by gradients of CXCL1,
CXCL2, CXCL8, CCL3, and CCL2 (26). Binding of these
chemokines does not only guide the localization, but also
activates them as demonstrated by CXCL8 that can elicit ROS
production and induce L-Selectin shedding (27). Other
important inflammatory mediators such as the complement
component C5a contribute to the recruitment of neutrophils
to sites of infection (28) and to the activation of NET
formation when primed by interferons (29). Additionally, a
growing body of evidence shows a link between neutrophils
and activated platelets that guide their migration into
inflamed tissue and induce NET formation (30, 31). Together,
neutrophils and activated platelets can elicit a process termed
immunothrombosis in blood vessels where they contribute to the
formation of a fibrin mesh that can trap pathogens (32), but
more importantly intravascular NET formation by itself can lead
to the fibrin-independent occlusion of microvessels causing
massive cell death in affected areas (33).

At the location of infection, neutrophils can exert their
antimicrobial activities. Here, the HIF-NFkB axis represents an
additional checkpoint to prevent unwanted effector functions.
HIF-1a is expressed at low levels in circulating neutrophils, but
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upregulated in hypoxic conditions of inflamed tissue (34). The
HIF pathway has been described to increase the expression of
antimicrobial peptides and promote degranulation, but on the
other hand might inhibit ROS production and NET formation
(35). Moreover, HIF signaling inhibits apoptosis of neutrophils
prolonging their lifetime in inflamed tissue (36).

The neutrophil defense mechanisms can come at the high
price of collateral damage. Apart from the common utilization of
their granules and produced ROS to clear pathogens upon
phagocytosis, these effector molecules can be released and
target the surrounding tissue (37). In acute respiratory distress
syndrome for instance, excessive neutrophil activation can lead
to an increased permeability of blood vessels due to released
defensins and neutrophil elastase (NE) (38, 39). In addition, NET
formation may not only activate alveolar macrophages for
clearance (40), but also largely contributes to the activation of
endothelial cells exacerbating the inflammatory circuit (37) or
can actively damage endothelial tissue (41).

The functional capacity and extravasation behaviour of
neutrophils is tightly coupled to a cell-intrinsic circadian
process (15, 18). This homeostatic program ensures protection
from excessive inflammation and vascular damage by the gradual
loss of granule proteins that reduces the neutrophils’ toxic
activities (15). Further, aged neutrophils exhibit declined ability
to enter inflammatory sites and favor homeostatic clearance into
non-inflamed tissues (18, 23). Neutrophils may not only damage
host tissue, but they can also suppress the fine-tuned adaptive
immune response. So-called granulocytic myeloid-derived
suppressor cells (MDSC), originally identified in cancer (42,
43), have now additionally been described in multiple viral
chronic infections, such as HCV (44) and HIV (45–47), to
inhibit lymphocyte proliferation via depletion of arginine by
Arginase-1 (48) or through the expression of PD-L1 (46).
Neutrophils with suppressive features have further been found
in several mostly chronic non-communicable diseases, including
systemic lupus erythematosus and rheumatoid arthritis patients.
This type of neutrophil co‐segregates with mononuclear cells
after density gradient centrifugation of blood, thus termed low-
density neutrophils (LDNs) (49). Interestingly, also LDNs with a
pro-inflammatory phenotype were reported in systemic
autoimmune diseases and are characterized by enhanced levels
of cytokine secretion (e.g. type I interferon) and NET formation
(23, 50). The distinction between immunosuppressive and pro-
inflammatory LDNs is still solely based on functional assays
since no cellular markers were identified to distinguish the two
subsets, underlining the need for further studies to fully
understand their origin and function (23).

Besides activating the circulating pool of mature neutrophils,
severe insults such as sepsis, trauma and viral infections can
induce emergency granulopoiesis, a hematopoietic response
program that rapidly increases the de novo production of
neutrophils to cope with increasing demands. This mechanism
results in the presence of both immature neutrophils and mature
populations in the peripheral blood, that can act either
immunosuppressive or pro-inflammatory (11, 51). Despite the
limited knowledge about the respective contribution of mature
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and immature neutrophils to the immune response and their
distinct features, the clinical interest in these cells is growing due
to their increasingly apparent correlation with disease severity
and/or response to treatment in many pathologies, such as sepsis
and severe influenza (11, 52–54). The phenomenon of
emergency granulopoiesis and the availability of many freshly
generated neutrophils may increase their destructive capacity.
NEUTROPHILS IN COVID-19

Pathophysiology of severe COVID-19 is marked by altered
neutrophil abundance, phenotype and functionality. Upon
SARS-CoV-2 infection, elevated numbers of neutrophils have
been observed in the nasopharyngeal epithelium (55) and later in
the more distal parts of the lung (56). Increased neutrophil
counts have also been detected in the clinics as a feature of
COVID-19 in the blood (2–4) and neutrophil activation
signatures are a prominent feature of blood transcriptomes of
severe cases (57, 58). Further analysis of granulocyte samples
attributed this alteration to gene expression changes in these
cells, opposed to a mere change in abundance in circulation, with
prominent features of pre-/immature neutrophil markers
upregulated in severe vs. mild COVID-19 patients (58). In
addition, plasma levels of RETN, HGF, and LCN2, typically
produced by neutrophils, were recently proposed as predictive
for critical illness and mortality (57).

Single-cell RNA sequencing (scRNA-seq) analysis of whole
blood samples after erythrocyte lysis allowed a comprehensive
investigation of the transcriptional regulation of the neutrophil
compartment in the blood of COVID-19 patients (13).
Subclustering and marker-based cell annotation revealed extensive
heterogeneity with transcriptionally distinct pro- and pre-Neu and
sevenmature neutrophil clusters. The mature clusters show a strong
shift towards more ISG-related neutrophils correlating with disease
severity. The appearance of pro- and pre-Neu specifically in the
circulation of severe COVID-19 patients at later stages of the disease
is a clear indicator of emergencymyelopoiesis (13, 59). The pro-Neu
are characterized by genes involved in NET formation including
MPO, ELANE, PRTN3 whereas the pre-Neu present with CD177,
CD24, OLFM4, LCN2 and BPI expression, genes which have been
associated with poor outcome in sepsis (60, 61). Interestingly, these
markers can already be found by whole blood bulk RNA-
sequencing differentiating severe from mild patients (58).
Moreover, two mature neutrophil clusters were found to be
specific for severe disease course and resemble phenotypes of
granulocytic MDSCs (62) and PD-L1+ neutrophils after LPS
challenge in vivo (63). Later studies were able to isolate MDSC-
like neutrophils fromCOVID-19 patients and provided evidence for
their capacity to inhibit T cell proliferation and IFNg production
(64, 65). As lower levels of IFNg production by lymphocytes have
been reported early on (66), these immunosuppressive neutrophils
may contribute to this phenotype.

Unsupervised clustering analysis of mass cytometry data of
whole blood samples of COVID-19 patients confirmed the
heterogeneity among neutrophils observed in single-cell
Frontiers in Immunology | www.frontiersin.org 4
transcriptomics data and corroborated disease-specific
alterations in COVID-19 on protein level (13). Severe COVID-
19 is associated with a striking increase in immature neutrophil
populations defined by their expression of CD11b, CD16, CD24,
CD34 and CD38 and showing features of recent activation, such
as amplified surface expression of CD64, RANK and RANKL
and reduced CD62L expression. Spectral flow cytometry
furthermore confirmed the substantial increase in immature/
pre-Neu, here defined by CD10loCD101- expression, in patients
with severe COVID-19 (59). In addition, elevated PD-L1 surface
expression and CD62L downregulation in neutrophils supports
the transcriptional signature of a suppressive phenotype of
neutrophils in severe COVID-19 (13).

scRNA-seq analysis of the low density cell fraction derived
from blood samples of COVID-19 patients by density gradient
centrifugation revealed the presence of LDN typical for chronic
infectious diseases also in the circulation in severe cases of
COVID-19 (13). Another study reported lower granularity of
neutrophils from COVID-19 patients that might explain the
lower density (67). Detailed analysis of LDN partially reflected
the transcriptional heterogeneity observed in whole blood
neutrophil samples with distinct pro-, pre- and mature
neutrophil clusters. COVID-19-relevant expression patterns
such as expression of genes involved in NET formation as well
as of ISG (ISG15, IFITM1/3, and RSAD2) were identified in LDN.
While all LDN expressed high levels of S100A8 and S100A9,
alarmins described to have predictive functions for COVID-19
severity (59, 68), CD274 (PD-L1) and ARG1 were also expressed
in distinct LDN subsets. These findings showed that LDNs are
not transcriptionally uniform, but rather present different
subsets of neutrophils that are similar in their density profiles.

Functional analysis did not show an alteration of the
phagocytosis capacity of neutrophils from peripheral blood from
mild and severe COVID-19 patients (13). However, ROS
production upon co-cultivation with Escherichia coli or
stimulation with Phorbol-12-myristat-13-acetate was significantly
reduced in neutrophils from severe as compared to mild COVID-
19 patients or controls (13). Interestingly, the degranulation of
primary granules as depicted by increased levels of cell surface
CD63 was shown to be elevated in severe COVID-19 patients
which is probably the cause for their increased serum levels of
MPO and NE (69). Markers for the gelatinase granules (CD11b)
and secondary granules (CD66b) did not change on the surface of
neutrophils from healthy and diseased patients (69).

A heightened capacity for NET formation was also
functionally validated. Not only were increased levels of NETs
reported in plasma of COVID-19 patients, which positively
correlated with disease severity, but autopsies revealed clear
enrichment of NETs in patients’ lungs (67, 70). The increased
capacity for NET formation in COVID-19 can be due to
inherently different neutrophil subsets (13) or by inflammatory
mediators in the circulation. Indeed, serum from severe COVID-
19 patients induces NET formation (67, 71), which might at least
in part be explained by autoantibodies as the incubation of the
IgG antibody fraction from severe COVID-19 patients was
sufficient to induce NET formation in neutrophils from healthy
March 2021 | Volume 12 | Article 652470
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patients (72). At least 50% of the patients in this study were
positive for anti-phospholipid autoantibodies that may explain
this effect (72). NET formation in the lungs may additionally be
triggered by direct contact of neutrophils with SARS-CoV-2 as in
vitro stimulations with the virus induced NET formation likely
via TLR7 signalling (70, 71, 73). NETs were also suggested to kill
lung epithelial cells (70). Another pathophysiological mechanism
linked to neutrophils in severe COVID-19 is the increase in
platelet-neutrophil aggregates that contribute to increased levels
of NET formation (67, 74, 75). Immunothrombosis can lead to
an occlusion of microvessels in the lung causing cell death in
affected areas contributing to worsened respiratory function of
the organ. The risk of immunothrombosis is further increased by
vasoconstriction caused by the cytokine release syndrome
observed in severe COVID-19 (76) or by hypoxic pulmonary
vasoconstriction which is possibly dysregulated in severe
COVID-19 (77, 78). As mentioned above, hypoxia can
contribute to the activation of neutrophils further promoting
the vicious cycle of neutrophil reactivity in damaged lung tissue.
Moreover, the decreased oxygen saturation in blood of severe
COVID-19 patients might activate HIF-1a signaling in circulation
and contribute to excessive neutrophil function in COVID-19
patients. As proposed by others, the role of HIF-1a in COVID-19
needs further attention (79, 80). Extensive immunothrombosis can
also be the cause of severe cardiovascular events seen in severe
COVID-19 (67, 81–86). Since NET formation was not yet
functionally linked to the different subsets of neutrophils that
were described by scRNA-seq it will be interesting to study which
role each subset plays.

Further scRNA-seq studies have identified an increase in tissue-
infiltrating neutrophils in COVID-19 in the upper airways (55) and
the bronchoalveolar space (56, 87) that correlate with disease
severity. The neutrophils in the bronchoalveolar space present as
a heterogeneous population with very few pre-/pro-Neu and three
mature subsets. These were differentiated into S100A12hi

neutrophils (specifically up in critical COVID-19), CXCL8hi

neutrophils and CD74hi neutrophils. In contrast, a study based on
flow cytometry data did not find increased neutrophil counts in
severe COVID-19 patients in bronchoalveolar lavage as compared
to other ICU patients (either non-pneumonia or pneumonia) (88).
However, a separation between early and late sampling reveals a
strong increase in neutrophils at later time points of COVID-19 in
the lung indicating a possible bias due to sampling time.
TREATMENT OF NEUTROPHIL-
ASSOCIATED DAMAGE IN COVID-19

In light of the key role of neutrophil-induced tissue damage in
the pathology of COVID-19, targeting the effector functions or
the extravasation of neutrophils in the lungs constitutes a
promising opportunity for pharmacological intervention (89).
Beyond the current SARS-CoV-2 pandemic, a number of
ongoing pharmacological studies aim to manipulate neutrophil
activity in several pulmonary diseases characterized by an
excessive neutrophil-mediated tissue damage (e.g. COPD and
Frontiers in Immunology | www.frontiersin.org 5
bronchiectasis) (90–92). These studies mostly target the process
of neutrophil recruitment and chemotaxis by inhibiting the
chemokine receptor CXCR2. An example is Navarixin (MK-
7123/SCH 527123) which showed the potential to improve lung
function in COPD patients (90).

Due to the current need of additional therapeutic options for
severe COVID-19 patients, several strategies are under clinical
investigation targeting different aspects of the host response to
SARS-CoV-2 infection (89). NE is an enzyme which contributes to
SARS-CoV-2 infectivity by proteolytic priming of the viral
glycoproteins enabling membrane fusion in the host and
mediating the damage to the infected lungs (93). Furthermore,
NE activity was found to be increased in the plasma of COVID-19
patients having a pro-inflammatory and prothrombotic effect,
exemplified by the occlusion of the pulmonary microvasculature
(75, 94). Thus, targeting this enzyme presents a valuable option as
therapeutic intervention, especially by pulmonary administration of
the developed NE inhibitors, helping to achieve a broader
therapeutic window by avoiding excessive side effects. The
CXCL8/CXCR2 axis, involved in neutrophil migration, is also
under exploration and a CXCL8 blocking antibody (MS-986253)
is currently tested in clinical trials in COVID-19 patients. Further,
the aforementioned Navarixin, together with other CXCR2
inhibitors, has been proposed as treatment for COVID-19 (95).
Another opportunity to block neutrophil hyperactivation is acting
on IL-1b/IL-1R interaction; anakinra (IL-1R inhibitor) is currently
under clinical investigation showing promising preliminary results
(96–99), whereas canakinumab (IL-1b inhibitor) failed to
ameliorate the outcome of severe COVID-19 patients (https://
www.novartis.com/news/media-releases/novartis-provides-update-
can-covid-trial-hospitalized-patients-covid-19-pneumonia-and-
cytokine-release-syndrome-crs). The complement C5a-C5aR1
interaction also appears to be a candidate in the modulation of
neutrophil-induced tissue damage (100). The C5a molecule was
found to increase proportionally with COVID-19 severity (101) and
is known to induce neutrophil recruitment as well as activation by
binding the C5aR1 receptor (28). Preliminary clinical studies for
IFX-1 (vilobelimab), a monoclonal antibody against C5a, and Solris
(eculizumab), a C5 blocking antibody, showed promising results in
the management of severe COVID-19 (102, 103).

Corticosteroids are a currently recommended treatment for
severe COVID-19 (104) shown to reduce neutrophils’ respiratory
burst and recruitment to the inflamed tissue at system level (105)
and inhaled glucocorticoids have been shown to reduce NET
formation in asthma patients (106). Additionally, they might have
a pro-inflammatory and anti-apoptotic effect on neutrophils by
reducing the levels of both, the secreted IL-1 receptor antagonist
(IL-1RA) and the membrane-exposed Fas (105).
OUTLOOK

The recent surge of deciphering neutrophil heterogeneity has
started to elucidate the exciting biology of this far less simplistic
cell population than previously believed. Especially in the context
of diseases such as COVID-19, it has become clear that
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knowledge about the different neutrophil subpopulations is
needed to understand pathology. Clearly, much more work is
necessary to comprehensively connect the transcriptionally
described subpopulations to cellular functions as well as their
role in etiologies and disease outcomes.
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