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Abstract: Autophagy is ubiquitously present in eukaryotes. During this process, intracellular proteins
and some waste organelles are transported into lysosomes or vacuoles for degradation, which can be
reused by the cell to guarantee normal cellular metabolism. However, the function of autophagy-
related (ATG) proteins in oomycetes is rarely known. In this study, we identified an autophagy-
related gene, PlATG6a, encoding a 514-amino-acid protein in Peronophythora litchii, which is the most
destructive pathogen of litchi. The transcriptional level of PlATG6a was relatively higher in mycelium,
sporangia, zoospores and cysts. We generated PlATG6a knockout mutants using CRISPR/Cas9
technology. The P. litchii ∆platg6a mutants were significantly impaired in autophagy and vegetative
growth. We further found that the ∆platg6a mutants displayed decreased branches of sporangiophore,
leading to impaired sporangium production. PlATG6a is also involved in resistance to oxidative and
salt stresses, but not in sexual reproduction. The transcription of peroxidase-encoding genes was
down-regulated in ∆platg6a mutants, which is likely responsible for hypersensitivity to oxidative
stress. Compared with the wild-type strain, the ∆platg6a mutants showed reduced virulence when
inoculated on the litchi leaves using mycelia plugs. Overall, these results suggest a critical role for
PlATG6a in autophagy, vegetative growth, sporangium production, sporangiophore development,
zoospore release, pathogenesis and tolerance to salt and oxidative stresses in P. litchii.

Keywords: autophagy-related gene; ATG6; Peronophythora litchii; sporangium production; mycelial
growth; pathogenicity; oxidative stress

1. Introduction

Oomycetes are a class of ubiquitous filamentous eukaryotic microorganisms, which
are evolutionarily close to photosynthetic algae [1]. Many oomycetes are economically
significant pathogens affecting agriculture, forestry and the ecosystem. For example,
Phytophthora infestans, P. sojae, P. capsici and Peronophythora litchii severely damage potato,
soybean, cucurbits, and litchi, respectively [2,3]. Among them, litchi downy blight caused
by P. litchii is the most destructive disease of litchi, leading to 30% to 80% yield losses
annually [3]. However, the molecular mechanisms of P. litchii growth, development and
pathogenesis are largely unknown [4].

Autophagy is a conserved cellular process and is essential for cell survival under
various stressful conditions (e.g., starvation), in which cytoplasmic contents are degraded
within a lysosome or vacuole, and the resulting micromolecular constituents are recy-
cled [5–7]. Recent studies have revealed a wide variety of physiological roles for autophagy
involved in pathogens and plants [8]. In many eukaryotic plant pathogens, such as Magna-
porthe oryzae, P. sojae, Ustilago maydis and Fusarium graminearum, autophagy is associated
with sporulation, virulence and development [9–16].
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As a key regulator of autophagy, Atg6/Vps30 (VPS, vacuolar protein sorting) is a
subunit of different phosphatidylinositol 3-kinase (PI3K) complexes involved in either au-
tophagy or the vacuolar protein sorting pathway [17]. In yeast, Atg6 can form two different
PI3K complexes, type I and type II, which function in autophagy and vacuolar protein
sorting, respectively [18]. In Cryptococcus neoformans, Atg6 was found to be involved in
thermotolerance, oxidative stress tolerance and laccase activity [19]. In M. oryzae, deletion
of MoATG6 severely impaired sporulation and pathogenicity [20]. MoAtg6 is recruited by
Vps34 to the pre-autophagosomal structure (PAS) and thus promotes autophagy activity in
M. oryzae [21]. In oomycetes, the autophagy process is required for P. infestans during asex-
ual development [22]. Twenty-six autophagy-related (ATG) genes were identified in P. sojae.
It has been shown that silencing of PsATG6a impaired sporangium (or zoosporangium)
production and pathogenesis [15]. However, the mechanisms of the ATG genes involved in
the growth, development and pathogenesis of oomycetes are largely unclear.

In this study, we identified and functionally characterized a P. litchii ATG gene,
PlATG6a, which is up-regulated in zoospores and cysts. We deleted PlATG6a and found
the impairment of autophagy in ∆platg6a mutants. To investigate the potential function
of autophagy in P. litchii, we evaluated the phenotype and found that ∆platg6a mutants
showed defects in vegetative growth, sporangium production and tolerance to salt stress.
Furthermore, we found that the sporangiophore of the ∆platg6a mutant produced fewer
branches, leading to decreased sporangium production. The virulence of ∆platg6a mu-
tants was reduced when inoculated on litchi leaves using mycelium plugs. We also found
that PlATG6a could be induced by H2O2. Correspondingly, the ∆platg6a mutants showed
impaired resistance to H2O2, and the transcriptional level of peroxidase-encoding genes
were relatively lower in the ∆platg6a mutants. This study provided new insight into the
functions of PlATG6a in autophagy, growth, development, pathogenesis and tolerance to
salt and oxidative stresses in P. litchii.

2. Results
2.1. PlATG6a and Its Orthologs Are Widespread in Oomycetes, and PlATG6 Is Up-Regulated in
Zoospores and Cysts in Peronophythora litchii

By BLAST searching using PsAtg6a sequence as a bait, we identified an Atg6a ortholog
in P. litchii, hereinafter named PlAtg6. We searched the orthologs of PlATG6a in oomycete
species, including P. sojae, P. capsici, Pythium ultimum and Hyaloperonospora parasitica. Or-
thologs of PlATG6a could be found in all these species (Supplementary Table S2), indicating
that PlATG6a orthologs are widespread in oomycetes (Figure 1A).

Transcriptional analysis showed that the PlATG6a transcripts were significantly up-
regulated in zoospores (ZOs) and cysts (CYs), and down-regulated during infection com-
pared with mycelium (MY) (Figure 1B). The expression profile of PlATG6a was dramatically
different from that of PsATG6a, which was up-regulated during infection. These results
suggest that PlATG6a might function in the growth and asexual development stages. In
this study, we focused on the function of PlATG6a.
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Figure 1. PlATG6a is conserved in oomycetes and up-regulated in the asexual stage of Perono-
phythora litchii. (A) Amino acid sequence alignment of PlATG6a and its orthologs from Phytophthora 
sojae (Ps), P. capsici (Pc), Hyaloperonospora parasitica (Hp), Pythium ultimum (Pu), and Saccharomyces 
cerevisiae (Sc). (B) Expression pattern of PlATG6a during the asexual life cycle and infection stages 
was analyzed by quantitative reverse transcription PCR (qRT-PCR). MY: mycelia; SP: sporangia; 
ZO: zoospore; CY: cyst; GC: germination of cyst; hpi: hours post inoculation. Relative expression 
levels were calculated using the 2−ΔΔCT method [23] with PlActin gene as the internal control. The 
MY value was set as “1”. Asterisks indicate significant difference compared with MY (** p < 0.01, t-
test). These experiments were repeated three times. 
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Figure 1. PlATG6a is conserved in oomycetes and up-regulated in the asexual stage of Peronophythora
litchii. (A) Amino acid sequence alignment of PlATG6a and its orthologs from Phytophthora sojae (Ps),
P. capsici (Pc), Hyaloperonospora parasitica (Hp), Pythium ultimum (Pu), and Saccharomyces cerevisiae (Sc).
(B) Expression pattern of PlATG6a during the asexual life cycle and infection stages was analyzed by
quantitative reverse transcription PCR (qRT-PCR). MY: mycelia; SP: sporangia; ZO: zoospore; CY:
cyst; GC: germination of cyst; hpi: hours post inoculation. Relative expression levels were calculated
using the 2−∆∆CT method [23] with PlActin gene as the internal control. The MY value was set as “1”.
Asterisks indicate significant difference compared with MY (** p < 0.01, t-test). These experiments
were repeated three times.

2.2. Deletion of PlATG6a Affected Autophagy in P. litchii

To investigate the function of PlATG6a, we generated a deletion mutant of PlATG6a
in P. litchii using CRISPR/Cas9 technology. Two single-guide RNAs were designed to
disrupt the PlATG6a coding region (Figure 2A). The transformants were screened by
G418 resistance and then verified by genomic PCR and sequencing (Figure 2B,C). Finally,
two ∆platg6a mutants (T32, T47) were obtained, and a transformant that failed to delete
the PlATG6a gene was selected as the control (CK). We also found that transcription of
PlATG6a was undetected in T32 and T47, while it was detectable in the WT (wild-type
strain, SHS3) and CK strains (Figure 2D), confirming successful deletion of this gene in
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T32 and T47 strains. In P. litchii, we observed more fluorescence in starved mycelia using
monodansylcadaverine (MDC) staining (Figure S1), suggesting that autophagy occurred
under starvation. Compared to WT, the ∆platg6a mutants showed a decreased accumulation
of autophagosomes, as visualized by MDC staining, in hyphal cells (Figure 2E). Deletion
of PlATG6a also resulted in a significant transcriptional change of more than half the ATG
genes (Figure S2). These results suggest that the autophagy pathway was affected in the
∆platg6a mutants.
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Figure 2. CRISPR/Cas9-mediated deletion of PlATG6a in Peronophythora litchii. (A) Schematic
representation of the strategy of CRISPR/Cas9-mediated mutagenesis of PlATG6a. Two single-guide
RNAs targeted the PlATG6a gene sequence (indicated by black arrows). The ∆platg6a mutants were
identified by genomic PCR (B) and sequencing (C) with primers F1 and R1 (Supplementary Table S1).
(D) Transcription of PlATG6a was analyzed by qRT-PCR in wild-type (WT) WT, CK and ∆platg6a
mutants (T32 and T47). “***” indicates significant difference compared with WT (p < 0.001, t-test).
These experiments were repeated three times. (E) Visualization of autophagosome by MDC staining.
The WT and ∆platg6a mutants were incubated in carrot juice agar (CJA) medium for 3 days. After
3 washes and incubation with sterile distilled water for 4 h, hyphae samples were stained with MDC
and analyzed by microscopy. Bars = 10 µm. WT: wild-type strain; CK: the transformant failed to
acquire PlATG6a mutation (control).
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2.3. PlATG6a Is Required for Normal Hyphal Growth, Sporangium Production and
Zoospore Release

To characterize the function of PlATG6a in P. litchii growth and differentiation, we first
inoculated WT, CK and the ∆platg6a mutants on CJA medium and analyzed their colony
morphology and hyphal growth at 5 days post inoculation (dpi). The ∆platg6a mutants
showed significantly reduced growth rate on the CJA medium compared with that of WT
(Figure 3A,B). This result indicates that PlATG6a is associated with vegetative growth in
P. litchii.
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Figure 3. Growth rates of the wild-type (WT), CK (control; the transformant failed to acquire PlATG6a
mutation), and the ∆platg6a mutants (T32 and T47). (A) The photographs were taken at 5 dpi.
(B) The growth rate was measured and calculated. Bar chart depicts the mean ± SD. Asterisks
represent significant difference compared with WT (** p < 0.01, n = 9, t-test).

In its asexual life cycle, P. litchii produces sporangia, which then release zoospores.
Sporangia and zoospores play essential roles in both the initial stage of infection and the
spread of oomycetes from host to host [4,24]. To investigate the function of PlATG6a in
asexual development, we collected and calculated the number of sporangia of the ∆platg6a
mutants, CK and WT grown on CJA medium at 25 ◦C for 5 days. We found that loss of
PlATG6a significantly impaired the production of sporangia (Figure 4A,B), but did not
affect sporangia morphology (Figure 4C,D). Zoospore release occurred when incubating
the sporangia in water, and the rate was measured at 1 and 2 h post incubation. Our results
showed that ∆platg6a mutants released more zoospores compared with WT, especially at
1 h after incubation (Figure 4E,F). Deletion of PlATG6a did not affect cyst germination rate
(Figure 4G). These results indicate that PlATG6a affected the sporangium production and
zoospore release.
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Figure 4. Knockout of PlATG6a impaired the sporangium production of Peronophythora litchii and
promoted zoospore release. ∆platg6a mutants (T32 and T47) and WT were cultured on CJA medium
for 5 days and sporangia were collected and used for releasing zoospores. (A) Photographs were
taken after collecting sporangia from CJA medium. Scale bar = 400 µm. (B) The sporangia number
was calculated. (C,D) The sporangia length and width were measured. (E,F) The zoospore release
rates of ∆platg6a mutants, CK and WT were calculated at 1 and 2 h post incubation of the sporangia
in water. (G) Cyst germination rate. The bar charts depict the means ± SDs. Asterisks indicate
significant difference vs. WT (* p < 0.05, ** p < 0.01, t-test). These experiments were repeated
three times.

2.4. PlATG6a Was Involved in the Morphology of Sporangiophore

To further investigate the mechanism of PlATG6a’s involvement in sporangium pro-
duction, we next assessed the morphological characteristic of the ∆platg6a mutants. We
found that each sporangiophore of the ∆platg6a mutants produced fewer branches, as
compared with WT and CK strains (Figure 5). The result suggests that PlATG6a affects spo-
rangium production, likely via contributing to the formation of sporangiophore branches.
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Figure 5. PlATG6a regulates sporangiophore morphology. (A–C) Microscopic images showing
branches of sporangiophore. T32 and T47 are ∆platg6a mutants. (D) Number of branches per
sporangiophore were calculated. Mean ± SD, derived from three independent biological repeats, for
each strain. Asterisks represent a significant difference vs. WT (* p < 0.05) based on t-test.

2.5. Virulence of ∆platg6a Mutants

We next tested the virulence of the ∆platg6a mutants, CK and WT using detached
litchi leaves. There was no significant difference in virulence between the ∆platg6a mutants
and WT or CK strains when litchi leaves were inoculated with zoospores of these strains
(Figure 6A,B). In fungi, laccases participate in the oxidation of antibiotics such as flavonoids
and phytoalexins, and thus contribute to the virulence of pathogens [25]. In oomycetes,
laccase activity is also associated with plant infection [26–28]. Here we also tested the
laccase activity of the ∆platg6a mutants T32 and T47 and found that they showed similar
laccase activity as compared with WT and CK (Figure S3). Therefore, we conclude that
loss of PlATG6a did not affect the virulence of P. litchii zoospores, which displayed normal
laccase activity.
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Figure 6. Virulence assessment. The virulence of ∆platg6a mutants was tested on litchi leaves, with
WT and CK as controls. Zoospores (A) or mycelial plugs (C) were inoculated on the litchi leaves.
Photographs were taken at 48 hpi. (B,D) The lesion length was measured at 48 hpi, corresponding to
(A,C), respectively. CK: control; the transformant failed to acquire the PIATG6a mutation. Asterisks
indicate significant difference vs. WT (* p < 0.05, t-test). These experiments were repeated three times,
each containing 3 leaves for each strain.

However, the ∆platg6a mutants produced fewer sporangia, which are reported to
be important for initial infection [24]. Reduced virulence could be expected if we were
to inoculate litchi leaves with mycelial plugs, because the ∆platg6a mycelial plugs car-
ried fewer sporangia. Our results showed that the lesion length caused by the ∆platg6a
mycelial plugs was reduced, compared with those caused by WT or CK mycelial plugs
(Figure 6C,D). Therefore, PlATG6a is involved in plant infection, likely via regulating
asexual development.

2.6. PlATG6a Is Involved in Tolerance to Salt and H2O2 Stress

To investigate whether PlATG6a is related to tolerance to salt stress in P. litchii, the
∆platg6a mutants, WT and CK strains were grown on Plich medium supplemented with
0.05 M NaCl or 0.1 M CaCl2 for 7 days, before measurement of the colony diameter. The
growth inhibition rates of the ∆platg6a mutants were significantly (p < 0.01) higher than
those of WT or CK strains (Figure 7A,B), suggesting that PlATG6a may function in tolerance
to salt stress.

In C. neoformans, the atg6∆ mutant was more sensitive to H2O2 treatment [19]. Per-
oxides are the signature products of the earliest defense responses of plants and play an
important role in plant immunity against pathogens [29]. Here, we tested the sensitivity of
the ∆platg6a mutants, using the CK and WT strains as the control. The results (Figure 8A,B)
showed that the ∆platg6a mutants were significantly hypersensitive to the oxidative stress
caused by H2O2 treatment, as compared to the WT or CK strains.
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Figure 7. PlATG6a is involved in salt stress tolerance. (A) Mycelial of WT, CK and the ∆platg6a
mutants (T32 and T47) grown on Plich medium with or without salt (0.05 M NaCl or 0.1 M CaCl2)
supplement. Images were taken at 7 dpi. (B) Colony diameter was measured at 7 dpi. Growth
inhibition rate (%) was calculated. Mean ± SD (n = 9 for each strain). Asterisks denote significant
differences vs. WT (* p < 0.05; ** p < 0.01; t-test).
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Figure 8. PlATG6a regulates response to oxidative stress in Peronophythora litchii. (A) WT, CK and
the ∆platg6a mutants were allowed to grow on Plich medium with or without 2 mM H2O2 at 25 ◦C.
Images were taken at 7 dpi. (B) The colony diameters were measured at 7 dpi. Growth inhibition
rate (%) was calculated. WT and CK strains were used as controls. (C) Transcriptional analysis of
the PlATG6a gene under oxidative stress (5 mM H2O2, for 0, 5, 15, 55 min). Expression levels were
normalized using the values at 0 min as ‘1′. (D) qRT-PCR analysis of P. litchii putative peroxidase-
encoding genes in ∆platg6a mutants and WT strain under oxidative stress conditions (5 mM H2O2,
for 5 min). Data are mean ± SD (n = 9). Asterisks represent significant differences vs. WT (** p < 0.01)
based on t-test.
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We next assessed the expression level of PlATG6a under oxidative stress, at different
time points post exposure to H2O2, following the established method [15,30,31]. The result
showed that transcription of PlATG6a was significantly up-regulated at 5 to 55 min after
H2O2 treatment (Figure 8C), implying that this gene plays a role in response to oxidative
stress. Furthermore, we examined the expression level of five selected peroxidase-encoding
genes [31] in the WT strain and the ∆platg6a mutant. Four out of the five tested genes
displayed a higher expression level in the WT strain than that in the mutant upon exposure
to H2O2 for 5 min (Figure 8D). These results suggest that PlATG6a is involved in the
oxidative stress response.

2.7. Knockout of PlATG6a Did Not Affect the Oospore Production of P. litchii

To investigate the function of PlATG6a in the sexual stage, we examined the oospore
production of WT and ∆platg6a mutants on CJA medium and found no significant difference
between the ∆platg6a mutants and WT (Figure 9). In addition, we also found that the
oospore size and morphological characteristics of the ∆platg6a mutant were not significantly
different from WT. On the basis of these results, we infer that PlATG6a is not required for
oospore formation.
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indicate the representative oospores. (B) Oospore number was calculated. Data are mean ± SD
(n = 9). There was no significant difference in oospore number between WT and the ∆platg6a mutant,
T32 or T47 (p > 0.5; t-test).

3. Discussion

As in other eukaryotes, autophagy-related (ATG) genes are conserved and play im-
portant roles in growth, development and pathogenicity in filamentous fungi [21]. Their
specific roles need to be investigated in different organisms, considering the influence of
evolutionary forces on autophagic processes [19]. In this study, we generated deletion mu-
tants of the PlATG6a gene using CRISPR/Cas9 technology, for functional characterization.
Our results suggest that PlATG6a is involved in autophagy and contributes to growth,
asexual development and tolerance to oxidative stress in P. litchii.

PlAGT6a was up-regulated in zoospores and cysts, and therefore might be critical for
asexual development, but not in the infection stage, which is different from the report that
PsATG6a in P. sojae was up-regulated during the infection of a host plant [15]. We infer that
this different transcriptional profile may reflect the different function of these two oomycete
ATG6a proteins in growth and plant infection, although they share 84% similarity with
each other [15].

The formation of the sporangiophore and its branches is very important for the asexual
reproduction of many oomycetes, such as P. litchii, Peronosporaceae species and some Phy-
tophthora species. The sporangiophore and branches determine the production of sporangia
and zoospores, which is important for the spread of pathogens from host to host [24]. In this
study, we found that knockout of PlATG6a impaired sporangium production. Our results
are consistent with previous studies which found that ATG6a is involved in sporangium
production in P. sojae and conidia formation in M. oryzae [15,20]. Here, we further revealed
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that the branches of the sporangiophore were reduced in the ∆platg6a mutants, likely ac-
counting for impairment of sporangium production. However, the mechanism of ATG6a’s
regulation of sporangium production may be not entirely the same in P. litchii and P. sojae,
because there are hardly any sporangiophore branches produced by wild-type P. sojae. The
mechanism of sporangiophore formation is not comprehensively known. A previous study
reported that PlBZP32 negatively regulated the branch formation of sporangiophores [28].
Here, we reported that PlATG6 is a positive regulator in sporangiophore branch formation.
Further study on the relationship between PlATG6a and PlBZP32 might provide a more
detailed mechanism of asexual reproduction.

In C. neoformans, deletion of ATG6 affected laccase production, indicating that the
Atg6-containing PI3K complex regulates laccase production [19]. It has also been shown
that the C. neoformans atg6∆ mutant is sensitive to 10 mM H2O2 treatment [19]. It has not
been reported whether the oomycete ATG genes play a role in regulating laccase activity
or tolerance to oxidative stress. In this study, we reported for the first time that PlATG6 is
involved in P. litchii’s response to oxidative stress. However, the deletion of PlATG6a did
not affect laccase activity in P. litchii. These results indicate the functional differentiation of
ATG6 orthologs in oomycetes and fungi.

M. oryzae ATG6 and P. sojae ATG6a are reported to be required for host plant in-
fection [15,20]. Unlike PsATG6a, PlATG6a is not required for the virulence of P. litchii
zoospores, although they share high similarity. Overall, our results display a functional
differentiation of ATG6a orthologs in P. sojae and P. litchii during plant infection. When
we inoculated litchi leaves with mycelial plugs, the lesion length caused by the ∆platg6a
mutants was significantly reduced compared with WT and CK strains. We inferred that the
reduced pathogenicity of the ∆platg6a mycelial plugs might be due to fewer sporangia being
produced by the mutant. Meanwhile, the functional difference of PlATG6a and PsATG6a
during lesion expansion should also be associated with the different transcriptional profiles
of these two genes.

In P. litchii, PlATG6b (the ortholog of PsATG6b in P. litchii) shared 22% identity and
34% similarity with PlATG6a. Further study is required for the function of PlATG6b, and
for the relationship between PlATG6a and PlATG6b.

This study adds new evidence that the autophagy process is required for the pathogenic
development of oomycetous pathogens, besides the limited research on P. infestans and
P. sojae that has previously been reported [15,22]. Further studies are needed to reveal
how the autophagy process participates in the development and pathogenesis of oomycete
pathogens.

In summary, we identified an ATG gene, PlATG6a, in P. litchii and demonstrated
that PlATG6a is involved in growth, development, pathogenesis and tolerance to salt
and oxidative stress. Furthermore, for the first time we reveal that PlATG6a is a positive
regulator of sporangiophore branch formation. This study provides new insight into the
mechanism of PlATG6a’s involvement in growth, development and oxidative stress in
P. litchii.

4. Materials and Methods
4.1. Strains and Sequence

The P. litchii wild-type strain SHS3 (WT) was isolated and identified in this laboratory.
P. litchii WT, CK and ∆platg6a mutants were maintained on carrot juice agar (CJA) medium
(juice from 300 g carrot for 1 L medium, 15 g agar/L for solid media) at 25 ◦C in the
dark. The control (CK) strain was a transformant that failed to knockout PlATG6a. The
genome sequence and gene annotations of P. litchii were obtained from NCBI (BioPro-
ject ID: PRJNA290406) [32], other sequences were obtained from the JGI genome portal
(https://genome.jgi.doe.gov/portal/ accessed on 24 January 2022) and previous study [15].
The amino acid sequence alignment was generated and adjusted in BioEdit (version 7.0.9.1).

https://genome.jgi.doe.gov/portal/
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4.2. Transcriptional Level Analysis

The total RNA of P. litchii was extracted using the All-In-One DNA/RNA Mini-preps
Kit (Bio Basic, Shanghai, China). The FastKing RT Kit (TIANGEN, Beijing, China) was used
for the first-strand cDNA synthesis. The transcriptional levels of PlATG6a were analyzed
with quantitative reverse transcription PCR (qRT-PCR) using SYBR® Premix Ex TaqTM II
(TaKaRa, Shiga, Japan). The P. litchii actin gene (PlActin) was used as a loading control [33],
and the relative fold change was calculated using the 2−∆∆CT method [23]. The primers
used for these analyses are listed in Supplementary Table S1.

4.3. Growth and Development Analysis

To test growth rate, P. litchii WT, CK and ∆platg6a mutants were inoculated on plates
(diameter = 9 cm) containing 15 mL CJA medium and cultured at 25 ◦C in the dark. The
colony diameter size was measured and the growth rate was calculated and photographed
5 days after inoculation. Statistical analysis was performed by t-test. The experiments were
repeated three times.

For asexual development assays, the methods were described previously [31]. Five
9 mm diameter mycelial plugs were flushed with 2.5 mL double-sterilized water to obtain
the sporangia suspension. Then the sporangia were purified using a 100 µm mesh filter.
The sporangia were incubated at 16 ◦C for one hour for release of zoospores. Zoospores
were encysted by shaking the suspension for 30 s on an oscillator. Cysts were incubated
at 25 ◦C, 60 rpm for 1 or 2 h for germination. The number of oospores was measured as
previously described [33].

4.4. CRISPR/Cas9 Gene Editing for PlATG6a

Two sgRNAs were designed and inserted into the sgRNA vector pYF2.3G-Ribo-sgRNA
as previously described [34,35]. To generate gene-replacement constructs, 1 kb long up-
stream/downstream arms of the PlATG6a coding region were inserted into pBluescript
II KS vector (Figure 3A). The pYF2.3G-RibosgRNA (PlATG6a) vector, the hSPCas9 vector
pYF2-PsNLS-hSpCas9 and the pBluescript II KS (PlATG6a) vector were co-transformed
into protoplasts of P. litchii by PEG-mediated protoplast transformation technology [34].
Preliminary transformants were screened by CJA medium containing 50 µg/mL G418.
These transformants were further verified by genomic PCR and subsequent sequencing.
These primers are listed in Supplementary Table S1.

4.5. Pathogenicity Assays

P. litchii WT, CK and mutants were inoculated on litchi leaves with 6 mm mycelial
plugs or 100 zoospores. Then, the inoculated leaves were maintained at 25 ◦C in the
dark. The diameter of the lesions was measured and calculated 48 h after inoculation.
The significant differences were analyzed with t-tests. These experiments were repeated
three times.

4.6. Sensitivity to Various Stress

To investigate the sensitivity of ∆platg6a mutants under different stress conditions, the
mycelial plugs (diameter = 9 mm) of ∆platg6a mutants were inoculated in the center of the
Plich medium [36]. The Plich media were supplemented with 0.05 mM NaCl or 0.1 mM
CaCl2. The growth inhibition rate was calculated 7 days after inoculation at 25 ◦C in the
dark. WT and CK strains were used as controls. Growth inhibition rate (%) = (growth
diameter on stress-free plates—growth diameter on stress plates)/growth diameter on
stress-free plates × 100%.

To analyze the expression levels of PlATG6a under oxidative stress, the WT strain
was cultured in liquid Plich medium for 3 days at 25 ◦C in the dark. Then, the mycelia
were immersed in the liquid medium supplemented with 5 mM H2O2 for 0, 5, 15 or
55 min. All samples were harvested and the expressional levels of PlATG6a were evaluated
by qRT-PCR.
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4.7. Microscopic Observation and Monodansylcadaverine (MDC) Staining

The microscopic observation was conducted with an Olympus BX53F microscope.
MDC staining was performed as previously described [5].
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