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Mutual association of Broad bean 
wilt virus 2 VP37-derived tubules 
and plasmodesmata obtained from 
cytological observation
Li Xie1,2, Weina Shang1, Chengke Liu1, Qinfen Zhang3, Garry Sunter4, Jian Hong1,5 & 
Xueping Zhou1

The movement protein VP37 of broad bean wilt virus 2 (BBWV 2) forms tubules in the plasmodesmata 
(PD) for the transport of virions between cells. This paper reports a mutual association between the 
BBWV 2 VP37-tubule complex and PD at the cytological level as determined by transmission electron 
microscopy. The generation of VP37-tubules within different PD leads to a different occurrence 
frequency as well as different morphology lines of virus-like particles. In addition, the frequency of 
VP37-tubules was different between PD found at different cellular interfaces, as well as between 
single-lined PD and branched PD. VP37-tubule generation also induced structural alterations of PD 
as well as modifications to the cell wall (CW) in the vicinity of the PD. A structural comparison using 
three-dimensional (3D) electron tomography (ET), determined that desmotubule structures found in 
the center of normal PD were absent in PD containing VP37-tubules. Using gold labeling, modification 
of the CW by callose deposition and cellulose reduction was observable on PD containing VP37-tubule. 
These cytological observations provide evidence of a mutual association of MP-derived tubules and PD 
in a natural host, improving our fundamental understanding of interactions between viral MP and PD 
that result in intercellular movement of virus particles.

The surrounding of a plant cell by a cell wall (CW) results in segregation of the symplasm. To maintain a connection 
between the symplasm and allow transport of materials between cells, a size adjustable gateway, plasmodesmata 
(PD), is present on the CW1. The desmotubule (DT) located in the center of PD functions as a symplasm con-
necting bundle, composed of appressed endoplasmic reticulum (ER) and the cytoskeleton2. The remaining spaces 
around the DT (cytoplasmic sleeves) are sustained by several protein spokes, and is used for transportation3,4. These 
structural features place a limit on the size of materials that can be transported, defined as the size exclusion limit 
(SEL)1. The permeability of PD can be adjusted as demonstrated through protein interactions1 along with turnover 
of callose deposition nearby5. In addition, PD can be divided into primary PD (de novo generated), which exhibit a 
single-lined morphology in sink tissue and secondary PD, which show both single-lined and branch morphologies 
in source tissue3,6,7. The biogenesis of secondary PD originates from the primary PD post-cytokinesis8.

Establishment of a plant virus infection requires both intercellular and long distance movement. For inter-
cellular movement, viruses face the CW, which can act as a barrier. To pass through this barrier, viruses encode 
a movement protein (MP) that can interact with other viral or host factors at the PD9–12. As a result, the PD 
undergo structural alterations that result in a larger SEL. Different viruses utilize different movement protein-PD 
interactions for intercellular movement. We can divide the structural alterations of PD into the ‘MP-RNA’ pattern 
(exemplified by tobacco mosaic virus, TMV) and the ‘tubule-guided’ pattern (exemplified by cowpea mosaic 
virus, CPMV)11,13. During TMV movement, in which only the viral genome is transported, MP specifically local-
izes to the secondary PD14. This leads to a slight increase in the SEL without any obvious ultra-structural change13. 
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For CPMV infection, MP induces formation of tubules in the PD, which results in substantial ultra-structural 
changes, including the absence of DT and large increases in the SEL15. The tubule functions as the guide for 
transporting the spherical virion through the PD16,17. In ‘tubule-guided’ virus movement, host factors such as 
Plasmodesmata Located Protein (PDLP) acts as a PD recognition receptor by interacting with viral MP18.

Broad bean wilt virus 2 (BBWV 2) is a member of the Fabavirus genus, family Comoviridae, and employs the 
‘tubule-guided’ pattern for intercellular movement19. Interestingly, there are two types of BBWV 2-associated 
tubular structures that can be observed by transmission electron microscopy (TEM) in infected Chenopodium 
quinoa. One tubule is 50 nm in diameter and distributed within the PD. The 37 kDa viral protein (VP37) encoded 
by RNA220, is the MP of BBWV 221, and was identified as the major component of this tubule19. For this paper, 
we will use the tentative name ‘VP37-tubule’ to describe this kind of tubule. The VP37-tubule guided virus move-
ment of BBWV 2 resembles that of CPMV. The second tubule has a diameter of 80 nm and is composed of virions. 
It is located in the cytoplasm, and exhibits no relationship with the PD19. As observed in the natural host of C. 
quinoa, the VP37-tubule can assemble in both plant protoplasts and insect cells, which revealed that the key fac-
tors for tubule formation are conserved in plants and animals19. So far, the studies on ‘tubule-guided’ intercellular 
movement have mainly focused on the MP-derived tubule with less emphasis on the relationship between the 
tubule and the PD. In this study, we observed that the PD at different cellular interfaces influenced the frequency 
of VP37-tubules, and that the presence of VP37-tubules led to structural alterations of the PD, and CW modifica-
tions. These results increase our fundamental understanding of the interactions between MP-tubules and the PD.

Results
Morphology of VP37-tubules in PD. In C. quinoa leaves inoculated with BBWV 2, VP37-tubules were 
mostly observed in PD (Fig. 1). In the presence of VP37-tubules we observed enlargement of the PD, with a 
diameter of 50–60 nm (Fig. 1A, black arrow), as compared to normal PD (20–30 nm). The typical pattern of a 
VP37-tubule was single stranded with virus-like particles (VLP) packaged inside, whose structure approximately 
matched that of the PD in which it resided (Fig. 1A). Apart from this typical morphology, we also observed some 
tubules that exhibited diverse unusual morphologies, which have not been highlighted in previous reports. Some 
VP37-tubules were observed in a branched configuration (Fig. 1B,C), very similar to the structure of secondary 
PD, or were located in the central cavity of secondary PD (Fig. 1D). Some of the VP37-tubules found within 
the secondary PD were observed to have extensive elongation into the cytoplasm, and in some cases as far as 
the vacuolar membrane (Fig. 1E–G). Elongation of the tubule from the CW to the cytoplasm appeared to cause 
an increase in peripheral CW materials and the cellular membrane that protruded around the tubule (Fig. 1E, 
black arrowhead). Some VP37-tubules located within the PD were wider or more closely associated with the CW. 
Within the tubules, multiple lines of VLPs were packaged in tandem (Fig. 1H,I, white arrowhead).

Distribution and frequency of VP37-tubules in different PD. The study of the relationship between 
VP37-tubules and PD was obtained from systemically infected C. quinoa leaves. In our cytology studies, it was 
observed that not all PD contained VP37-tubules, and that the number of VP37-tubule-PD complexes detected in 
cells varied (Fig. 2). These observations imply that the distribution of VP37-tubules in PD is heterogeneous. What 
was less clear, however, was whether a difference in VP37-tubule frequency or distribution existed. Therefore, we 
compared the frequency of VP37-tubules in PD between different cellular interfaces and between single-lined 
or branched PD. Under TEM, VLP accumulation in cells as well as the generation of VP37-tubules in PD was 
observed, and a total of 155 VP37-tubules were observed in 40 sections prepared from C. quinoa leaves (Table 1).

A difference in the frequency of VP37-tubules associated with different types of cellular interface was observed 
in the leaves of BBWV 2 infected C. quinoa. VP37-tubules were frequently observed in PD at the mesophyll cell 
(MC)-MC interface (Fig. 2A and Table 1), while a small percentage of VP37-tubules (20%) were also observed at 
cellular interfaces different to the MC-MC interface. VP37-tubules were distributed in PD on the CW interfaces 
between epidermal cell (EC)-safe guard cell (SGC) (Fig. 2B,C), phloem parenchyma cell (PPC)-PPC (Fig. 2D,E), 
EC-EC (Fig. 2F–H) and bundle sheath cell (BSC)-BSC (Fig. 2J–L). Analysis of the morphology of VP37-tubules 
resident in the PD of SGC, PPC and BSC revealed a short, narrow structure that contained more condensed mate-
rial (Fig. 2C,E,L). The morphology of VP37-tubules resident in the PD of EC resembled that observed in MC. 
Moreover, in the cytoplasm of EC (Fig. 2H) and BSC (Fig. 2J), we also observed crystal-like structures comprised 
of BBWV 2 virions, which was shown by immuno-gold labeling (Fig. 2I). So far, we have not observed that distri-
bution of VP37-tubules at the cellular interfaces of other kinds of cells.

In addition to assess the distribution of VP37-tubules on different cellular interfaces, we tested whether there 
were any differences in the frequency of VP37-tubules present on the diverse cellular interfaces. To do this we used 
the parameter Occu-Ftubule, which is a measure of the occurrence of VP37-tubules in PD without taking into account 
the frequency of PD (FPD) found in different cell types. A second measurement, Dist-Ftubule, was used to indicate 
the distribution of VP37-tubules on a particular cellular interface, which integrates any differences in FPD. For this 
we classified the cellular interfaces into three major groups, including the mesophyll group (MC-MC interface), 
epidermis group (EC-EC and EC-SGC interface) and phloem group (PPC-PPC and BSC-BSC interface). The fre-
quency of VP37-tubules and PD in these tissues was calculated from the average of 20 randomly selected TEM 
fields. The data for each cellular interface group, in three independent replicates, was compared, and illustrated that 
the frequency of VP37-tubules (both Occu-Ftubule and Dist-Ftubule) was highest in the epidermis group, and lowest in 
the phloem group, with an intermediate VP37-tubule frequency in the mesophyll group (Table 2). Based on these 
results, we conclude that BBWV 2 infection leads to the formation of VP37-derived tubules, which associate with PD 
at different cell interfaces. This suggests that BBWV 2 may utilize VP37-tubules formed within PD as a pathway for 
intercellular transport of the viral genome in leaf epidermis, mesophyll and phloem tissue. Although we observed a 
greater frequency of VP37-tubules associated with PD in the epidermis as compared to mesophyll or phloem, we do 
not know how this correlates with BBWV 2 movement between the various cell interfaces.
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Figure 1. Morphology of VP37-tubules in broad bean wilt virus 2 infected leaves. (A) Size comparison 
between plasmodesmata (PD) containing or lacking VP37-tubules. The tubule is marked with an arrow. 
Bar =  200 nm. (B–D) The VP37-tubule with a branched morphology was observed in the branched PD. 
Bar =  100 nm. (E–G) VP37-tubules elongated from PD to cytoplasm or even attached to vacuole. Cell wall 
(CW) material as well as the cellular membrane (black arrowhead) was expanded and protruded around the 
tubule. Bar =  200 nm. (H,I) The VP37-tubule with a widened morphology is packaged with multiple lines of 
VLPs (white arrowhead), and was observed in PD and CW-adjacent cytoplasm. Bar =  200 nm. Va =  vacuole.
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Figure 2. VP37-tubules are located on different cellular interfaces. (A) Tubules were observed on the 
mesophyll-mesophyll interfaces. Bar =  5μ m. (B,C) Tubule-like structures were observed on the interface of 
epidermal-safe guard cell. Bar =  2μ m. (D–E) Tubule-like structures were observed on the interface of phloem 
parenchyma cell-phloem parenchyma cell. Bar =  1μ m. (F–H) Tubule-like structures were observed on the 
cellular interface of epidermal cells. Bar =  2μ m. In that, (F) was the amplified image of tubule and (H) was 
the amplified image of virus crystal-like structure. (I) Immuno-gold labeling of crystals of broad bean wilt 
virus 2 particles. Bar =  200nm. (J–L) Tubule-like structures were observed on the cellular interface of bundle 
sheath cells. In that, (L) was the amplified image of tubule and (J) was the amplified image of virus crystal-
like structure. Bar =  2μ m. MC =  mesophyll cell, EC =  epidermal cell, SGC =  safe guard cell, PPC =  phloem 
parenchyma cell, BSC =  bundle sheath cell, V =  crystal of virus particles.
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We next tested whether we could detect any differences in the frequency of VP37-tubules present in single-lined 
versus branched PD. For this, the numbers of either single-lined or branched PD present in all cell types were pooled 
based on morphology. Out of a total of 155 VP37-tubules that were detected, 75 were found to be associated with 
single-lined PD, and 80 with branched PD. For the comparison we counted the number of VP37-tubules, number of 
PD, and measured CW length in 20 randomly selected regions that included epidermal, mesophyll and phloem cells. 
This was repeated three times (Table 3). As can be seen, the frequency of single-lined PD was approximately two-fold 
lower than the frequency of branched PD. VP37-tubules were more likely to be associated with single-lined PD than 
branched PD, as indicted by a higher Occu-Ftubule (Table 3). This suggests that VP37-tubules are able to form in both 
single-lined and branched PD but with a higher frequency in single-lined PD.

Structural alteration of PD by VP37-tubules. The presence of VP37-tubules in PD was associated with 
obvious structural alterations of the PD, observable under TEM. However, some of the structural details were 
concealed when we performed a structure overlay of a 2D projection on a conventional TEM image. As this could 
lead to false interpretation22, we performed electron tomography (ET) to generate reconstructed tomograms 
of 3D density map (Fig. 3A–I). By using 3D ET, we made a comparison between the structure of virus-free PD 
(both single-lined and branched PD) and VP37-tubule associated PD. The most prominent difference between 
the two types of PD was the expanded size of the VP37-tubule associated PD and presence of a DT-like structure 
in the center of virus-free PD, which was visible as an electron dense bundle in the XY dimension (Fig. 3K). 
A membrane-like structure that was wrapped around virus-free PD was also detectable (Fig. 3K arrow). The 
DT-like bundle and membrane-like structure could also be observed in the other two dimensions (YZ and XZ) 
(Fig. 3L,M, membrane was marked as arrow). In Fig. 3, the yellow cross represents the identical position in the 
structural model as observed from each of the three dimensions. A similar DT-like structure with a cavity was 
also observed in secondary PD in all three dimensions (Fig. 3N–P). In contrast, the DT-like structure was absent 
in PD containing VP37-tubules (Fig. 3B–F). Observations from all three dimensions confirmed the absence of the 
DT-like structure, with only VLPs present (Fig. 3G–I). A membrane-like structure could also be observed around 
the VP37-tubules. Furthermore, presence of the VP37-tubule correlated with an enlargement of the PD diameter 
as compared to the PD that did not contain tubules. Based on measurements from 30 samples, the diameter of 
virus-free PD was an average of 28.40 nm (Standard deviation of ± 1.19), while the diameter of PD containing 
VP37-tubules was an average of 53.14 nm (Standard deviation of ± 2.68). Using the 3D tomograms, we segmented 
the PD containing VP37-tubules and surface rendered it as a pseudo-colored model to reveal the stereo profile. 
From this model, absence of the DT-like structure and presence of VLPs in PD associated with VP37-tubules 
could easily be distinguished (Fig. 3J).

MC-MC* EC-EC EC-SGC PPC-PPC BSC-BSC

Cellular interface 124/155, 80% 19/155, 12.3% 2/155, 1.3% 7/155, 4.5% 3/155, 1.9%

Tissue Mesophyll 80% Epidermis 14.6% Phloem 6.4%

Table 1. Numbers of VP37-tubules (sum total of 155) observed on different cellular interfaces and in 
different tissues. *MC: mesophyll cell, EC: epidermal cell, SGC: safe guard cell, PPC: phloem parenchyma cell, 
BSC: bundle sheath cell.

LCW (μm)* NPD Ntubule FPD Occu-Ftubule Dist-Ftubule

Epidermis 563 ±  13.748 59.667 ±  5.033 6 ±  1 0.106 ±  0.007 0.100 ±  0.008 0.945 ±  0.017

Mesophyll 2944 ±  30.806 368.333 ±  12.220 15.667 ±  1.155 0.125 ±  0.003 0.042 ±  0.003 0.340 ±  0.016

Phloem 2474.667 ±  41.356 160.667 ±  3.786 1.333 ±  0.577 0.065 ±  0.002 0.008 ±  0.004 0.128 ±  0.056

Table 2. Frequency of VP37-tubules associated with Plasmodesmata (PD) in different tissues. *The 
parameters of cell wall (CW) length (LCW), PD number (NPD) and VP37-tubule number (Ntubule) were measured 
using images obtained by transmission electron microscopy (TEM). PD frequency (FPD) was then calculated 
from NPD/LCW, VP37-tubule occurrence frequency (Occu-Ftubule) from Ntubule/NPD and VP37-tubule distribution 
frequency (Dist-Ftubule) from Occu-Ftubule/FPD. For all tissue types, the average frequency value (F) was calculated 
from three independent experiments.

LCW(μm)* morphology NPD Ntubule FPD FPD ratio Occu-Ftubule

Occu-Ftubule 
ratio

5982 ±  82.245 single-lined 191 ±  16.523 11 ±  1.155 0.032 ±  0.002 1 : 2.062 0.056 ±  0.001 1.806 : 1

Branched 398 ±  8.963 12 ±  1.155 0.066 ±  0.002 0.031 ±  0.004

Table 3. Frequency of VP37-tubules associated with single-lined and branched Plasmodesmata (PD). 
*The parameters of CW length (LCW), PD number (NPD) and VP37-tubule number (Ntubule) were measured 
using images obtained by transmission electron microscopy (TEM). Frequencies were calculated by using PD 
frequency (FPD) derived from NPD/LCW, and VP37-tubule occurrence frequency (Occu-Ftubule) derived from 
Ntubule/NPD. A comparison between single-lined and branched PD is indicated as the FPD ratio (FPD single-lined)/
(FPD branched), or Occu-Ftubule ratio (Occu-Ftubule single-lined)/(Occu-Ftubule branched).
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Alteration of CW components in PD associated with VP37-tubules. Callose (β -1,3-glucan) is a 
CW constituent important for the formation of PD, and plays an important role in alterations of PD structure, 
while cellulose is the major component of the CW not associated with PD5. Through analysis of the tomogram 
digital slices, modifications of the CW around PD that contain VP37-tubules could readily be detected by their 
smooth texture and transparent appearance (Fig. 3B–F, asterisk). By way of contrast, the normal CW was com-
posed of short fibril-like structures with moderate electron density. Based on these observations, we investigated 
whether alteration of the PD induced by VP37-tubules was a result of modification of CW components. Using an 
antibody against callose or an enzyme-gold probe for detecting cellulose, immuno-gold labeling was performed 
on VP37-tubules that either contained or lacked PD. Due to the high amount of callose and cellulose in PD or 
in the CW, a preliminary experiment was performed for obtaining an appropriate antibody dilution. In order to 
observe a clear difference in the concentration of polysaccharide between PD and normal CW, a high dilution 

Figure 3. Structural comparison of plasmodesmata (PD) associated with VP37-tubules and virus-free PD. 
The membrane-like structure attached to the VP37-tubule is marked with an arrow. (A) A projection image of 
broad bean wilt virus 2 VP37-tubules in PD taken by conventional TEM. Bar =  50nm. (B–J) The desmotubule 
(DT)-like structure is absent in the three dimensional (3D) structural model of VP37-tubules. Bar =  50nm. 
(B–F) Digital slices of the structural model (total thickness =  105 nm) at the z height of 60nm, 67nm, 77nm, 
84nm and 93nm respectively. Cell wall (CW) modification observed with PD associated with VP37-tubules is 
marked with a red asterisk. (G–I) The structural model was observed from three dimensions (XY, XZ and YZ). The 
structural detail at the same position from three dimensions was marked with a yellow cross. Bar =  50nm. (J) The 
structural model of PD associated with VP37-tubule was rendered with pseudo color, which was segmented from 
3D density map. (K–M) A DT-like structure was observed in the 3D structural model of virus-free, single-lined 
PD. The DT shown at the same position in each of the three dimensions is marked with a yellow cross. Bar =  50nm. 
(N–P) A DT-like structure is observed in the 3D structural model of virus-free, branched PD. The DT shown at the 
same position in each of the three dimensions is marked with a yellow cross. Bar =  50nm.
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(200 fold) of both the antibody against callose and the cellulose probe was used in this study. Using this dilution 
of callose antibody we observed clusters of colloidal gold particles associated with the CW in the vicinity of PD 
that contained VP37-tubules (Fig. 4A–D). Specific labeling was detected on both single-lined (5 positive in 7 
samples) (Fig. 4A,C) and branched PD (4 positive in 4 samples) (Fig. 4B,D) that contained VP37-tubules. As a 
control, immuno-gold labeling for callose deposition using the same antibody dilution, was also observed on 
PD lacking VP37-tubules. Of 66 single-lined PD, only 4 exhibited positive labeling for callose (6.1% of positive), 
indicating that the majority (93.9%) of single-lined PD lacked callose deposition (Fig. 4E). However, of the 92 
branched PD, 72 exhibited positive labeling (78.3%) on the CW in the vicinity of PD (Fig. 4F). We interpret this 
to indicate that substantial deposition of callose at the CW occurs at branched PD, as opposed to single-lined PD. 
Furthermore, at a 200 fold dilution of the enzyme-gold cellulose probe, no gold labeling was detectable on PD that 
either contained or lacked VP37-tubules (Fig. 4G) and the non-VP37 tubule contained PD (Fig. 4H,I). Together, 
this indicates a reduction in cellulose at those locations. Thus, we can conclude that callosic deposition in PD 
containing VP37-tubules resembles that of branched PD rather than single-lined PD, and that callose deposition 
on the CW that has been structurally altered around PD or VP37-tubules is associated with cellulose reduction.

Discussion
In this study we investigated the relationship between VP37-tubules and PD during BBWV 2 infection, using 
TEM methods, including conventional observation, 3D ET reconstruction and immuno-gold labeling. We 
observed that at the cytological level, association of VP37-tubules with PD brought about differential effects 
on each other. Different types of PD had different effects on the frequency of VP37-tubules on different cellular 
interfaces as well as between primary and secondary PD. In parallel, the association of VP37-tubules with PD 
correlated with structural alterations and CW modification of PD.

Our observation has provided some evidence for the existence of different types of tubules formed by the 
BBWV 2 MP. Elongation of the MP-derived tubule from the PD to the cytoplasm was not only found in BBWV 
2 but also in CPMV23. Although the elongated part of tubule was free from the confines of the PD, the profile 
of the tubule in cytoplasm was the same as that in the PD. The observation that MP-derived tubules can extend 
from the PD into the cytoplasm is consistent with observations that MP-derived tubules can form on the sur-
face of CPMV infected cowpea protoplasts, where the CW and PD do not exist24,25. The CPMV-MP tubule-like 
structure observed on the protoplast surface had a widened morphology and was packaged with multiple lines of 
virions26. Thus, in both BBWV 2 and CPMV MP-tubules containing virions maintain their intrinsic morphology 
with minimal alteration even in the absence of PD restriction. In BBWV 2, a tubule-like structure has also been 
observed on the surface of tobacco BY-2 protoplasts and insect Trichoplusia ni cells, in which only VP37 protein 
was expressed19. These reports imply that MP is the only viral component of the tubule, and that the PD is not 
required for MP-tubule assembly. Apart from tubule elongation, the other morphologies we observed have sel-
dom been reported, in particular the widened tubules packaged with multiple lines of virions.

For ‘tubule-guided’ viral movement, there have been few reports related to the distribution and frequency 
of MP formed tubules. Results on the distribution and frequency of BBWV 2 MP-derived tubules may provide 
important information regarding the movement of viruses in different tissues. For example, the observation that 
MP-derived tubules are found in PD of phloem cells might imply that the long-distance movement of BBWV 
2 occurs through the vascular bundle. In addition, observations that there were differences in the occurrence 
of MP-tubules in different tissues might imply that BBWV 2 moves with different efficiencies in those tissues. 
Moreover, our results show that there appears to be a preference for MP-tubule formation between single-lined 
and branched PD morphology, with a higher frequency in single-lined PD. For TMV, MP is located within sec-
ondary PD14 and functions to increase the SEL of PD only in epidermal cells at the leading edge of the lesions, but 
not in cells within center of the lesion27. From our observations of BBWV 2, it can be concluded that VP37-tubule 
generation can occur in both single-lined and branched PD, and possibly within primary and secondary PD. 
Unlike TMV, our results suggest that BBWV 2 MP can alter PD in systemically infected leaves, including epi-
dermal, mesophyll and phloem tissue. From our results it appears as though expression of BBWV 2 MP results 
in a greater increase in the opening of PD than that observed for TMV MP. The selectivity of PD is continually 
changing with respect to the intercellular transport of different proteins28, but the role of the BBWV 2 MP-tubule 
in altering the SEL of PD for viral movement needs further study.

Our results revealed that the association of BBWV 2 MP-derived tubules with PD results in expansion of the 
PD. The DT-like structure apparent in PD that had no associated MP-derived tubules was lacking in PD that 
were associated with MP-derived tubules, as revealed by 3D ET. Cytoskeletal proteins such as actin and myosin, 
are components of the DT that are necessary for intercellular communication2,29. The disappearance DT in PD 
has also been reported during the formation of MP-tubules15, however without direct 3D structural evidence. 
Our results have confirmed the absence of DT in PD containing BBWV 2 MP-derived tubules. It is formally 
possible that components of the DT participate in the formation of VP37-tubules. However this still needs to be 
determined.

In response to viral infection, plant hosts use callose deposition at PD as a defense strategy to block the ability 
of a virus to move through the plant5,9. Intercellular movement of TMV and SMV, which do not induce tubule 
formation in PD, is however associated with host induced callose deposition30,31. In response to the deposition 
of callose, some viruses cause degradation of the callose to promote spreading of the virus through the plant. 
Transgenic tobacco engineered to silence the enzyme responsible for callose degradation (β -1,3-glucanase), accu-
mulated callose and the SEL of PD was reduced, leading to a reduction in TMV infectivity32. Also, local expres-
sion of β -1,3-glucanase in tobacco enhanced symptoms typical of a TMV infection33. To date, little evidence has 
been provided for the deposition of callose during movement of a tubule-forming virus, such as BBWV 2. Our 
results provide evidence that plants, when infected with a tubule-forming virus, also induce the deposition of 
callose. With regard to callose deposition in PD associated with MP-derived tubules, we believe it has multiple 
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Figure 4. Immuno-gold labeling of the cell wall components callose and cellulose in a broad bean wilt 
virus 2 infected Chenopodium quinoa leaves. (A–D) Specific gold labeling of callose was observed on 
plasmodesmata (PD) associated with VP37-tubules. VLPs associated with the VP37-tubule are marked with an 
arrow. Bar =  100nm. (E) Negative labeling of callose on single-lined PD lacking VP37-tubules. Bar =  100nm. 
(F) Specific gold labeling of callose observed on branched PD lacking VP37-tubules. Bar =  100nm.  
(G) Positive labeling for cellulose location on normal cell wall (CW) and absence of cellulose on VP37-tubules. 
Bar =  200nm. (H,I) Labeling reveals the absence of cellulose on PD exhibiting a complicated and simplified 
structure. Bar =  200nm. The colloid gold particles represent callose localization were of 5 nm in size, while the 
gold particles represent cellulose localization were of 15 nm in size.
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functions. Callose plays an important role in the regulation of PD permeability as it is the material that can alter 
the CW as a result of reduced cellulose content5. During VP37-tubule formation in BBWV 2 infection, PD under-
went obvious structural alterations, and callose deposition was observable. However, in virus-free controls we 
also observed callose deposition around secondary PD that did not contain tubules but exhibited obvious struc-
tural alterations. The pattern of callose deposition in these two cases looked very similar. It is therefore reasonable 
to suggest that callose deposition participates in the alteration of PD. To verify the exact function of callose depo-
sition and reduced cellulose content in the movement of BBWV 2, we must examine whether callose degradation 
and cellulose reduction are associated with VP37-derived tubules. These studies are currently underway.

Materials and Methods
Virus and antibodies. The BBWV 2 virus (isolate PV131) used in this study was obtained from Prof. Vittoria 
Lisa (Istitio Di Fitovirologia Applicata, Italy). Natural host plant of C. quinoa was inoculated with BBWV 2 and 
maintained in at 26 °C in a greenhouse under natural light. The position of each leaf for sampling was coordi-
nated from the source leaf, in which the secondary PD are distributed according to previous work on TMV MP14.  
C. quinoa mature leaves exhibiting symptoms typical of an infection, including crinkle, wilt and mosaic, were col-
lected for investigation at 7 days post inoculation (dpi). Sampling for the TEM studies was performed three times.

For the immuno-gold labeling of cell wall material, a monoclonal antibody against callose (β -1,3-glucan) 
(Biosupplies, Australia) and a 5 nm IgG-gold conjugated secondary antibody (anti-mouse serum, Sigma, St. 
Louis, MO) were purchased. An enzyme-gold probe for detecting cellulose was also used in the labeling experi-
ments, which was kindly provided by Prof. D.W. Hu34. Additionally, for immuno-gold labeling of virus particles, 
a polyclonal antibody against BBWV 2 virions and a 15 nm protein A-gold conjugated secondary antibody have 
been previously described35.

TEM tissue preparation. Tissue preparation including fixing, dehydration and embedding were carried out 
following the described protocol19,36. Systemically infected leaves, and uninfected leaves from the same position, 
were harvested from three cultivar repeats. The symptomatic area of an infected leaf, and a similar area from 
an uninfected leaf were first cut into small pieces (1× 1 mm) to facilitate permeation of the fixing agent. For 
ultra-structural observations, samples were first fixed using 2.5% glutaraldehyde for 4h and then 1% osmium 
tetroxide for 2h at room temperature. For immuno-gold labeling, samples were fixed using a mixture of 4% para-
formaldehyde and 0.1% glutaraldehyde for 1h at 4 °C. Each fixation was followed by a 15 min rinse with 100 mM 
pH 7.0 sodium phosphate buffer (PBS) for three times to remove the fixative. Samples used for ultra-structural 
observations were dehydrated by a graded ethanol series (50%, 70%, 80%, 90%, 95% and 100%) followed by 100% 
acetone for 20 min each at room temperature. Samples were embedded into Epon 812 resin and polymerized by 
heating to obtain solid blocks. Samples used for immuno-gold labeling were dehydrated by graded ethanol series 
(30% and 50% at 4 °C for 0.5h each and 50%, 70%, 90% and 100% at − 20 °C for 1h each). Embedding of these 
samples into K4M resin was achieved by ultra-violet light polymerization at − 20 °C to preserve the immune 
activity. Ultra-thin sections (50–70 nm) of the sample blocks were cut by a Leica UC 6 microtome (Leica, Vienna, 
Austria) with diamond knife (Diatome, Switzerland). For cytopathology, sections were cut from the Epon resin 
blocks and placed onto 200 mesh copper grids. For gold labeling, sections were cut from the K4M and Epon 812 
resin blocks and placed onto 150 mesh nickel grids.

Immuno-gold labeling and TEM observation. Immuno-gold labeling of virus particles was performed 
using sections from K4M resin, which preserved antigenicity of the protein, but poorly preserved the fine struc-
ture of the tissue. Immuno-gold labeling of callose or cellulose was made using sections from Epon812 resin, 
which preserved both the polysaccharide antigenicity and fine structure. Sample grids were pre-treated with 
ddH2O for 5 min, followed by incubation in blocking buffer (EMS, Hatfield, PA) for 30 min at 37 °C. Sample grids 
were then incubated in primary antibody raised against either callose (200×  dilution) or BBWV 2 virus particles 
(50×  dilution) for 2h at 30 °C. Sample grids were washed three times with PBS and three times with ddH2O for 
5 min each to remove excess antibody. Incubation of the sample grids with IgG-gold conjugated secondary anti-
body (100×  dilution) was carried out for 2h at 37 °C. After washing the sample grids three times with PBS and 
three times with ddH2O for 5 min each, the antigen-antibody interaction was fixed in 4% paraformaldehyde for 
5 min. Pre-immune serum was used as a negative control. For enzyme-gold labeling of cellulose sample grids were 
incubated with probe (200×  dilution) for 30 min at 37 °C, followed by washing three times in ddH2O for 5 min 
each. Incubation of gold without probe was used as a negative control. Before labeling of polysaccharide, a prelim-
inary experiment was carried out that demonstrated a 200 fold dilution of the antibody or probe was appropriate 
to distinguish differences in polysaccharide concentration on specific structures.

Before TEM observation, all sample grids were stained with uranyl acetate and lead citrate for 15 min each to 
increase image contrast. Sections for cytopathology and immuno-gold labeling were examined using an H-7650 
TEM (Hitachi, Ibaraki, Japan) at 80kV of accelerating voltage. Regions of the VP37-tubule were photographed 
using a Gatan 830 CCD camera (Gatan, CA, USA).

Frequency study of VP37-tubule occurrence and distribution. No existing method was available 
for the study of VP37-tubule frequency. A PD frequency (FPD) study had been reported37, but FPD could not be 
used to represent tubule frequency because only a portion of the PD contained VP37-tubules. Also, a parameter 
consisting of tubule number per CW length was not comparable because FPD varied between different tissues. 
Therefore, to exclude the variation in PD occurrence we developed the occurrence frequency (Occu-Ftubule) to 
describe the occurrence of VP37-tubules in PD. This is calculated from the tubule number divided by the PD 
number (Ntubule/NPD) and describes the occurrence of VP37-tubules in PD. In addition, we developed the distri-
bution frequency (Dist-Ftubule), which is calculated by Occu-Ftubule/FPD to describe the distribution of VP37-tubule 
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on the CW. The two parameters, Occu-Ftubule and Dist-Ftubule, were used to indicate VP37-tubule frequency. All 
fundamental parameters including CW length, PD number and VP37-tubule number in this study were meas-
ured under TEM. Two kinds of image were photographed. Large field (under 0.7k magnification) images were 
used for measurements of CW length (LCW) and number counting, while high-resolution images (under 50 k 
magnification) were used for ultra-structural details. LCW measuring was performed using the software of pathol-
ogy image digital processing system ‘JD801’ (JEDA company, Nanjing, China). For a VP37-tubule associated 
with PD to be scored as positive, we set the parameter that the tubular structure had to package a string of at least 
two virus particles. A frequency comparison was made between different cellular interfaces as well as between 
single-lined and branched PD. A total of 40 sections from five blocks (eight sections in each block) were made. 
However, the small number of VP37-tubules in one TEM field sometimes led to a zero value for Ntubule, which 
prejudiced the average statistic. Therefore, a larger sample capacity was needed. For the sampling of one section, 
we summed the values from 20 randomly selected TEM fields, which guaranteed that a relatively large number 
of VP37-tubules were counted for statistical analysis. Each sample field consisted on average, of 10–15 mesophyll 
cells (MC) or three to four epidermal cells (accompanied with some MCs) or 30–40 phloem cells (accompanied 
with some MCs). Thus, in total each sampling (20 fields) consisted of approximately 120–140 cells. This was 
repeated three times using different cultivars embedded in different resin blocks, and the frequency values calcu-
lated as an average of these replicates.

Electron tomography (ET). For ET reconstruction, sections (100–120 nm) were cut from the Epon resin 
blocks using a UC6 tomogram and placed onto 100 mesh carbon covered copper grids. 15 nm colloidal gold 
particles (Sigma, St. Louis, MO) were applied to the sample grids for 5 min, and then stained as described above. 
This non-covalent binding of gold particles to sections was used as a fiducial marker for facilitating tomography 
alignments. A four series image of the VP37-tubule and a one series image of normal PD were collected by a 
JEM-2010 TEM (JEOL, Tokyo, Japan) at 200kV of accelerating voltage and recorded by a Gatan 832 CCD (size 
2.7 k ×  4 k) camera (Gatan, CA, USA). For each series, the TEM specimen stage was moved over a ± 60° range of 
tilt angles with 2° intervals38. On tilting, images were consistently photographed with the defocus value of 0.2 μ m 
at 15k magnification under the beam density of 26 e/sÅ2.

Image processing, alignment and reconstruction were operated in the IMOD ‘etomo’ program38 following the 
procedures outlined in the software manual. For fine alignment, twenty gold particles were used as the fiducial 
markers for each tilt series to obtain a ‘residual error’ value of less than 0.3. The final three-dimensional (3D) 
tomograms for each tilt series were generated by combining images using an Å/pix size of 8.74 (compression 
parameter of ‘binning =  2’) in the ‘etomo’ program. Dimension measurements, model segmentation and surface 
rendering were carried out by the command ‘3dmod’ of the IMOD program39. Visualization of the model was 
performed using the ‘Chimera’ program40.
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