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ABSTRACT
The photosynthesis of wheat glumesmakes important contributions to the yield. Stom-
ata play a crucial role in regulating photosynthesis and transpiration in plants. However,
the genetic base of wheat glume stomata is not fully understood. In this study, stomatal
length (SL), stomatal width (SW), stomatal density (SD), potential conductance index
(PCI) of stomata, stomatal area (SA), and stomatal relative area (SRA) were measured
in different parts of wheat glumes from a doubled haploid (DH) population and their
parents. Quantitative trait loci (QTLs) of these traits were anchored on a high-density
genetic linkage map of the DH population. A total of 61 QTLs for stoma-related traits
were mapped onto 16 chromosomes, and each one accounted for 3.63 to 19.02% of
the phenotypic variations. Two QTL hotspots were detected in two marker intervals,
AX-109400932∼AX-110985652 and AX-108972184∼AX-108752564, on chromosome
6A. Five possibly candidate genes (TraesCS6A02G105400, TraesCS6A02G106400,
TraesCS6A02G115100, TraesCS6A02G115400, and TraesCS6A02G116200) for stoma-
related traits ofwheat glumeswere screened out , according to their predicted expression
levels in wheat glumes or spikes. The expression of these genes may be induced by a
variety of abiotic stresses. These findings provide insights for cloning and functional
characterization of stoma-related candidate genes in wheat glumes.

Subjects Agricultural Science, Genetics, Molecular Biology, Plant Science
Keywords Wheat (Triticum aestivum L.), Glume, Stomata, QTL, Candidate gene

INTRODUCTION
Stomata are the main portals for the exchange of gas and water between plants and the
external environment (Li et al., 2017), and they play an extremely important role in the life
activities of plants. Plants optimise their photosynthesis and transpiration rates through
regulating the aperture, density, and distribution of stomata when they are stressed by
biotic or abiotic factors (Doheny-Adams et al., 2012; Franks et al., 2015). In addition to
spreading a large number on the leaves, stomata also exist on the epidermis of certain
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non-foliar organs, such as pods of soybean and oilseed rape, corn bracts, and ears of wheat.
(Wang, Wei & Zheng, 2001; Kong et al., 2010).

Previous studies have reported that leaves are the main organs for plant photosynthesis
to generate energy, and the photosynthesis of wheat flag leaves has always been regarded as
the main source of assimilation during the filling process (Maydup et al., 2010). However,
as scientists continue to deepen the research on plant photosynthesis, more and more
results showed that the photosynthesis of plant non-foliar organs also plays an important
role in the accumulation of carbon assimilates (Sánchez-Díaz et al., 2002; Zhu et al., 2009;
Sánchez-Bragado et al., 2014). Compared with leaves, ear organs have unique advantages:
for example, the photosynthetic products of wheat ears can be directly transported to the
grain, thus avoiding unnecessary energy waste. Wheat ears carry out the C4 metabolic
pathway, which can re-fix the CO2 produced by photorespiration (Knoppik, Selinger &
Ziegler-Jöns, 1986; Araus et al., 1993). Wheat spikes have stronger drought tolerance, higher
osmotic adjustment ability, and water use efficiency (WUE) (Tambussi & Nogues, 2005).
Compared with lower organs such as flag leaves, wheat spikes age more slowly (Tambussi
et al., 2007). Thus, wheat ear photosynthesis also makes an important contribution to the
yield (Araus et al., 1993; Abbad et al., 2004; Zhou et al., 2014).

Glumes are the main photosynthetic organs of the ear and are believed to be an
important source of assimilates for kernel filling in wheat (Araus et al., 1993). Glumes
can recycle the CO2 respired by developing grains during photosynthesis and have higher
ribulose-1,5-bisphosphate carboxylase (RuBPC, EC 4.1.1.39) activity compared with other
ear elements (Gebbing & Schnyder, 2001; Aliyev, 2012; Sánchez-Bragado et al., 2014). It has
been reported that glumes actively participate in the process of CO2 assimilation during
kernel filling (Lopes et al., 2006). In addition, glumes maintain a higher relative water
content and WUE under progressive waterlogging and drought stress than flag leaves,
contributing significantly to grain filling (Rubén et al., 2018; Wardlaw, 2002). Therefore,
compared with other organs, glumes may have a higher ability to resist abiotic stress.

So far, many reports on genetic analysis of stoma-related traits have focused on plant
leaves, especially in rice. Teng et al. (2004) detected one QTL that controls the stomatal
conductance of rice leaves at the peak tillering stage on chromosome 4. Ishimaru et al.
(2001) used a population of crosses between japonica and indica to detect a QTL that
controls the stomatal density on the leaf surface and a QTL that is related to the stomatal
density on the back of the leaf. Ten QTLs for stomatal density and four QTLs for stomatal
size were detected across growth stages and leaf surfaces (adaxial and abaxial) (Laza et
al., 2010). In wheat, twenty QTLs for stomatal density and size of leaves were identified
under drought stress (Wang et al., 2016). However, genetic analysis of stoma-related traits
in wheat glumes is rarely reported.

In this study, stomatal density, length, and width on the top, middle, and base of wheat
glumes were measured and the potential conductance index of stomata, stomatal area, and
stomatal relative area in different parts of glumes were calculated. A high-density linkage
genetic map was used for QTL mapping of stoma-related traits and the candidate genes
related were screened. These QTLs and candidate genes will provide insights for studying
the molecular mechanism of stomatal development of the wheat ear.
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MATERIALS & METHODS
Test material
Awheat double haploid (DH) population (Liu et al., 2013), including 150 lines that derived
from a cross betweenHanxuan 10 and Lumai 14 was used in this study. All the 150 lines and
parents were grown at the experimental farm (37◦25′N, 112◦35′E) of Shanxi Agricultural
University in 2018 and 2019. The field experiments were conducted by randomized
complete block design (RCBD) with three replicates. Each plot consisted of two rows of
2 m in length, with 0.25 m between rows. Water and fertilizer management during the
growth period was complied with the local production practice.

Measurement and calculation of stomata-related traits in glumes
For each DH line and parents, three flowering plants with consistent growth were tagged.
The middle spikes of the three plants were quickly placed into a 2-mL centrifuge tube
with FAA solution (formalin: acetic acid: 70% alcohol = 1:1:18) three days after anthesis,
respectively. The sampling was started at 10 am on the third day after anthesis. The average
temperature at the time of sampling was 13 and 17 ◦C, and the moisture content of topsoil
(0∼30 cm) was approximately 15% and 13% (v/v) in 2018 and 2019, respectively. Stomatal
density (SD), stomatal length (SL), and stomatal width (SW) on the top, middle, and base
of wheat glumes were measured as previously described inWang et al. (2018).

Calculations of other stoma-related traits were as follows:
Potential conductance index (PCI) = SL2 × SD × 10−4 (Nicholas & Richardson, 2009)
Stomatal area (SA) = π×1/2 SL × 1/2 SW (Robert, Gretchen & Richard, 2000)
Stomatal relative area (SRA) = SD × SA × 10−4 (Sun et al., 2021)

Data analysis
The relevant t -test and analysis of variance (ANOVA) were carried out by the statistical
software package SPSS v.17.0; the frequency distribution map was generated by Excel 2007;
and the phenotypic correlation analysis map was created in the R-package corrplot (Wei &
Simko, 2013).

QTL mapping
The genetic map of the DH population was constructed by Jing Ruilian’s team at the
Institute of Crop Science, Chinese Academy of Agricultural Sciences (Li et al., 2019). The
linkage map is 4,082.4 cM in length and contains 1630 SNP and 224 SSR markers, with
2.2 cM per bin on average (Shi et al., 2020). QTL mapping was performed as previously
described in Li et al. (2021) using the IciMapping 4.1 software. The LOD score for declaring
a QTL was 2.5 for each trait.

Prediction of candidate genes
Candidate genes in associated loci were predicted according to the reference genome
sequence of ‘Chinese Spring’ wheat (IWGSC RefSeqv1.1) published by the International
Wheat Genome Sequencing Consortium. Gene annotation was carried out by referring to
the Ensembl Plants database (https://plants.ensembl.org/index.html). We used a publicly
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Figure 1 Distribution of stomata in different parts of wheat glumes observed in 2018 (A) and 2019 (B).
Full-size DOI: 10.7717/peerj.13262/fig-1

available database, WheatOmics (http://wheatomics.sdau.edu.cn/) (Ma et al., 2021), to
obtain the expression profiles of all candidate genes.

RESULTS
Phenotypic variation of glume stoma-related traits in the DH
population and parents
We observed regular rows of stomata on the top, middle, and base of glumes in parents
(Fig. 1). SD of different parts of glumes in Lumai 14 showed significant or highly significant
differences between the two years, while Hanxuan 10 had a significant difference in SD
only at the base of glumes (Table 1). For DH lines, except for SD at the base of glumes,
the phenotypic values of SD of other parts of glumes in 2019 were significantly lower than
those in 2018 (Table 1). These results indicated that SD of glumes is greatly affected by the
environment, and this phenomenon is more obvious in Lumai 14 than Hanxuan 10. In
general, from the top to the base, SD of glumes gradually became less (Table 1).

Except for the middle of glumes in Hanxuan10, differences in SL of the rest parts of
glumes between the two years were not significant in the two parents. Except for the top
of glumes of Lumai 14, differences in SW of the rest parts of glumes between the two years
were not significant in the two parents. For the DH lines, the difference in SL of glumes
was not significant between the two years, but SW in 2019 was highly significantly smaller
than that in 2018 (Table 1). These results indicated that SW of glumes is more affected by
the environment than SL. For the 150 DH lines, there were genetic differences in the same
stoma-related traits among different lines, and this difference varied among different traits.
The coefficient of variation of SD in the DH population was greater than 10 in both 2018
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Table 1 Phenotypic variation of stoma-related traits of wheat glumes in the DH population and parents.

Traitsa Environments Parents Differencec DH lines

Hanxuan10b Lumai14b Min Max Meanb SD Skewness Kurtosis CV

2018 89.79a/A 81.63a/A 8.16∗ 60.21 111.44 85.43a/A 10.50 −0.37 0.81 12.29%SDt
(No./mm2)2019 88.15a/A 74.12b/B 14.03∗∗ 59.41 106.87 78.99b/B 8.95 −0.91 3.67 11.33%

2018 80.27a/A 77.16a/A 3.15 52.03 112.20 78.33a/A 10.42 0.28 0.26 13.30%SDm
(No./mm2)2019 82.17a/A 61.49b/B 20.68∗∗ 50.24 94.47 73.56b/B 9.14 −0.85 2.11 12.42%

2018 75.35b/A 74.01a/A 1.34 43.54 105.46 72.38a/A 10.92 0.16 0.34 15.08%SDb
(No./mm2)2019 82.05a/A 63.13b/A 18.92∗∗ 40.01 103.90 69.17a/A 11.08 −0.31 1.98 16.02%

2018 45.60a/A 47.58a/A −1.98 39.76 50.83 45.71a/A 2.42 −0.17 −0.61 5.29%SLt
(µm) 2019 45.08a/A 45.19a/A −0.11 40.03 50.25 45.67a/A 2.07 −0.16 −0.51 4.53%

2018 48.42a/A 46.85a/A 1.57 39.19 51.76 45.99a/A 2.32 −0.09 −0.23 5.04%SLm
(µm) 2019 44.50b/A 46.75a/A −2.25∗ 40.11 50.97 46.11a/A 2.24 −0.35 −0.13 4.86%

2018 48.73a/A 46.96a/A 1.77 38.33 51.25 45.22a/A 2.59 −0.11 −0.19 5.73%SLb
(µm) 2019 45.15a/A 47.06a/A −1.91∗ 38.63 50.50 44.70a/A 2.40 −0.03 −0.50 5.37%

2018 27.47a/A 34.55a/A −7.08** 24.65 36.50 29.21a/A 2.42 1.06 2.23 8.28%SWt
(µm) 2019 30.18a/A 28.93b/A 1.25 25.10 33.54 27.65b/B 1.29 1.28 3.08 4.67%

2018 30.45a/A 30.80a/A −0.35 25.53 35.54 29.57a/A 2.22 0.86 1.02 7.51%SWm
(µm) 2019 29.03a/A 29.55a/A 0.52 24.72 33.00 27.86b/B 1.58 0.53 0.64 5.67%

2018 30.80a/A 31.53a/A −0.73 24.83 35.91 29.34a/A 2.48 0.79 1.08 8.45%SWb
(µm) 2019 29.45a/A 32.36a/A −2.91∗ 23.82 34.38 27.59b/B 1.88 0.95 1.40 6.81%

2018 19.67a/A 17.91a/A 1.76 9.95 23.49 17.79 a/A 2.20 −0.04 1..01 12.37%
PCIt

2019 17.74a/A 14.88a/A 2.86 5.78 22.31 16.45 a/A 1.89 −0.77 2.78 11.49%
2018 17.82a/A 16.77a/A 1.05 9.55 22.93 16.51 a/A 2.01 0.18 1.20 12.17%

PCIm
2019 16.31a/A 13.22b/B 3.09∗ 5.51 19.93 15.60 a/A 1.96 −0.76 1.97 12.56%
2018 17.79a/A 16.40a/A 1.39 7.63 21.51 14.75 a/A 2.24 0.09 0.62 15.18%

PCIb
2019 16.53a/A 13.75a/A 2.78∗∗ 4.86 23.28 13.79 a/A 2.30 −0.04 1.58 16.68%
2018 1123.29a/A 1032.60a/A 90.69∗ 849.26 1397.99 1050.23 a/A 109.82 0.65 0.65 10.46%SAt

(µm2) 2019 1021.78a/A 986.60a/A 35.18 830.49 1258.00 991.41 a/A 65.37 0.48 1.21 6.59%
2018 944.15a/A 979.19a/A −35.04 861.54 1460.76 1069.71 a/A 102.88 0.50 0.85 9.62%SAm

(µm2) 2019 996.95a/A 1043.27a/A −46.32∗∗ 818.67 1306.33 1009.14 a/A 83.93 0.44 0.84 9.47%
2018 1135.79a/A 1120.20a/A 15.59 799.39 1412.54 1044.39 a/A 119.29 0.61 0.36 8.32%SAb

(µm2) 2019 975.76a/A 1153.63a/A −177.87∗∗ 784.21 1203.87 968.12 b/B 85.79 0.31 −0.40 8.86%

(continued on next page)
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Table 1 (continued)

Traitsa Environments Parents Differencec DH lines

Hanxuan10b Lumai14b Min Max Meanb SD Skewness Kurtosis CV

2018 9.96a/A 8.31a/A 1.65 4.56 12.16 8.94 a/A 1.20 0.01 0.74 13.42%SRAt
(%) 2019 8.89a/A 7.23b/B 1.66 2.77 9.72 7.81 b/B 0.86 −0.96 2.74 11.01%

2018 9.09a/A 6.82a/A 2.27∗ 4.59 12.16 8.36 a/A 1.25 0.44 0.85 14.95%SRAm
(%) 2019 8.08a/A 6.30b/A 1.78 2.62 10.24 7.40 a/A 0.97 −0.58 1.75 13.11%

2018 8.65a/A 8.52a/A 0.13 4.35 12.16 7.54 a/A 1.31 0.48 0.85 17.37%SRAb
(%) 2019 7.96a/A 7.17a/A 0.79 2.34 11.79 6.68 b/A 1.17 0.25 1.91 17.51%

Notes.
aSD, stomatal density; SL, stomatal length; SW, stomatal width; PCI, potential conductance index; SA, stomatal area; SRA, stomatal relative area; t, top of glumes; m, middle of glumes; b, base of glumes.
bDifferent letters after the values in a column indicate significant differences between two years.
cAsterisks (* and **) indicate significance at p-value < 0.05 and p-value < 0.01, respectively.
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and 2019, while the coefficient of variation of both SL and SW was less than 10. This also
showed that different stomatal-related traits are affected differently by the environment. In
addition, SL and SW did not change significantly from the top to the base of wheat glumes.

Except for the middle of glumes of Lumai 14, differences in stomatal PCI of the rest
parts of glumes between the two years were not significant in the two parents. Differences
in stomatal PCI of all parts between the two years were not significant for the DH lines
neither. Differences in SA of all parts between the two years were not significant in the two
parents. Except for the top and middle of glumes of Lumai 14, differences in SRA of the
rest parts of glumes between the two years were not significant in the two parents (Table 1).

Stoma-related traits of the DH lines showed continuous transgressive segregation with
skewness and kurtosis values close to zero, suggesting normal distribution. All target traits
were thus quantitatively controlled by multiple genes and were suitable for QTL mapping
(Table 1) (Fig. S1).

Correlation between glume stoma-related traits
For all parts of glumes, SD showed a highly significantly negative correlation with SL in
2018 and 2019; however, the correlation between SD and SWwas not significant. There was
a significantly positive correlation between SL and SW in 2018, but such correlation was
not significant in 2019. In addition, SD showed a highly significant and positive correlation
with PCI and SRA in 2018 and 2019. SL showed a significantly positive correlation with
SA in both years. SW showed a significantly positive correlation with SA and SRA in both
years. In 2018, any two of PCI, SA, and SRA were significantly positively correlated, while
the degree of correlation was weakened in 2019 (Fig. 2 Table S1).

QTL mapping for traits related to stomata in wheat glumes
A total of 61 QTLs for traits related to stomata of wheat glumes were detected in the two
years. The phenotypic variation of these QTLs ranged from 3.63 to 19.02%. The LOD score
ranged from 2.51 to 22.12, and the QTLs were distributed on 16 chromosomes including
1A, 1D, 2A, 2B 2D, 3A, 3D, 4B, 5A, 5B, 5D, 6A, 6B, 7A, 7B, and 7D, respectively (Fig. 3
Table 2). A total of nine QTLs were detected in both years.

A total of 10 QTLs corresponding to SD of glumes were detected in the two years. The
phenotypic variation of these QTLs ranged from 6.78 to 11.41%. Among these QTLs,
QSDt-2A was detected in both years; QSDt-5A and QSDm-5A were detected in the same
interval in 2018. Twenty-one QTLs were associated with stomatal size and detected in both
years. Among these QTLs, QSLt-2D, QSLm-7A, and QSLb-6A-1 were detected in both
years. QSLb-6A-2 and QSWb-6A were detected in the same interval in 2019. A total of
30 QTLs associated with PCI, SA, and SRA were detected in the two years. Among these
QTLs,QPCIb-6A-1,QSAt-2D,QSAm-3A, andQSRAb-6A-2 were detected in the two years.
Among all QTLs, QSRAb-6A-1 had the largest LOD value (22.12) (Fig. 3 Table 2).

Among all QTLs, two QTL hotspots were found on chromosome 6A. One was in the
interval AX-109400932∼AX-110985652, which contained fourQTLs related to SL, SD, PCI,
and SRA in the two years. The other was in the interval AX-108972184∼AX-108752564,
which contained four QTLs related to SW, SD, PCI, and SRA in the two years (Fig. 3
Table 2).
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Figure 2 Correlation of stoma-related traits in 2018 (A) and 2019 (B). Red and blue colors indicate sig-
nificantly positive and negative correlations, respectively, whereas white color indicates no significant cor-
relation. SD, stomatal density; SL, stomatal length; SW, stomatal width; PCI, potential conductance index;
SA, stomatal area; SRA, stomatal relative area; t, top of glumes; m, middle of glumes; b, base of glumes.

Full-size DOI: 10.7717/peerj.13262/fig-2
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Figure 3 Distribution of QTLs for stoma-related traits on a high-density linkage map. To better display
the QTLs, the high-density linkage maps show only markers near the QTL intervals. The QTLs with un-
derscore indicate that they were detected in both years.

Full-size DOI: 10.7717/peerj.13262/fig-3

The prediction of candidate genes
For the first QTL hotspot, the physical positions of the two markers AX-109400932 and
AX-110985652 were 73571398 and 76990896 bp, respectively. According to the reference
genome sequence of ‘Chinese Spring’ wheat (IWGSC RefSeqv1.1), a total of 33 genes were
found between the two markers, and gene annotation was carried out by referring to the
Ensembl Plants database (Table S2). For the other QTL hotspot, the physical positions
of the two markers AX-108972184 and AX-108752564 were 83931623 and 86272494 bp,
respectively, covering a total of 24 genes (Table S2). Using WheatOmics, the expression
levels of these 57 genes in wheat glumes and spikes were predicted (The International
Wheat Genome Sequencing Consortium IWGSC, 2018). The results showed that there

Li et al. (2022), PeerJ, DOI 10.7717/peerj.13262 9/21

https://peerj.com
https://doi.org/10.7717/peerj.13262/fig-3
http://dx.doi.org/10.7717/peerj.13262#supp-3
http://dx.doi.org/10.7717/peerj.13262#supp-3
http://dx.doi.org/10.7717/peerj.13262


were five genes (TraesCS6A01G105400, TraesCS6A01G106400, TraesCS6A01G115100,
TraesCS6A01G115400, and TraesCS6A01G116200) with higher expression levels in wheat
glumes or spikes (Fig. 4 Table 3).

Then, the expression levels of these five genes under different abiotic stresses were
predicted (Oono et al., 2013; Liu et al., 2015; Nazanin et al., 2019). The results showed that
the expression of these genes was induced by different abiotic stresses, and the expression
patterns of different genes under the same abiotic stress were also different (Fig. 5). For
example, the expression of TraesCS6A01G105400 was significantly reduced after being
subjected to low phosphorus stress in wheat shoots and roots. The expression levels of
TraesCS6A01G115100 and TraesCS6A01G116200 both increased after being subjected to
low phosphorus stress in shoots and roots. The expression of TraesCS6A01G106400 was
only significantly increased in the root after being subjected to low phosphorus stress.
The expression level of TraesCS6A01G105400 was significantly reduced in wheat seedling
leaves subjected to drought stress, heat stress, and their combination. The expression levels
of TraesCS6A01G106400 and TraesCS6A01G116200 were significantly increased after six
hours of drought stress, heat stress, and their combination. Among these five genes, only the
expression level of TraesCS6A01G115400 was significantly decreased after being exposed
to salt stress (Fig. 5).

DISCUSSION
Phenotypic correlation of stoma-related traits in wheat glumes
Stomata are the channel for water and gas exchange in the process of wheat photosynthesis
and respiration, which indirectly affect the yield of wheat (Berger & Altmann, 2000).
Studies have shown that a variety of environmental factors at different growth and
developmental stages of plants can affect the formation of stomata, such as water (Stephens
& Waugh, 2017), temperature (Qi & Torii, 2018), light (Boccalandro et al., 2009), and CO2

concentration (Hu et al., 2010). Aasamaa, Sober & Rahi (2001) reported that the stomatal
length of forest tree species decreased with increasing drought. For some light-loving crops,
the formation of stomata can be promoted by increasing the light intensity. In the present
study, stomatal density and stomatal width of wheat glumes showed significant differences
between the two years, but stomatal length showed no significant differences (Table 1).
These results suggest that stomatal length may have higher stability in response to different
environmental conditions than stomatal density and width. In addition, we also compared
the differences of the same traits in different parts of wheat glumes, and the results showed
that from the top to the base of glumes, the stomatal density gradually decreased, but the
stomatal length and width did not change significantly. Moreover, four of the nine stable
QTLs mapped were associated with stoma-related traits at the base of wheat glumes. It is
speculated that this may be because the stomatal properties at the base of the glume are the
most stable compared with other parts.

Franks & Beerling (2009) have reported that the negative correlation between stomatal
size and stomatal density helps to adjust the plasticity of stomata, thereby regulating the
maximal stomatal conductance of wheat. There was a significantly negative correlation
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Table 2 Quantitative trait loci (QTLs) for stoma-related traits of wheat glumes in DH populationa.

Traitb Locationc QTLd Chr Left marker Right marker 2018 2019

LOD PVE (%) Add LOD PVE (%) Add

QSDt-2A 2A AX-95631506 AX-94664024 3.57 9.60 2.73 2.63 6.92 2.28
QSDt-5A 5A AX-111662464 AX-95683796 2.66 8.10 −2.94Top

QSDt-5D 5D Xgwm205.2 AX-89390905 2.57 6.78 −2.25
QSDm-1A 1A AX-111105973 AX-94402739 2.82 8.89 2.66
QSDm-5A 5A AX-111662464 AX-95683796 3.77 8.74 3.37
QSDm-6B 6B AX-109288494 AX-94816765 2.56 7.87 −2.47

Middle

QSDm-7B 7B AX-108729691 AX-94485866 3.02 6.92 −2.97
QSDb-3A 3A AX-111635376 AX-110400859 3.44 8.66 −3.37
QSDb-5A 5A AX-95630256 Xgwm291 3.84 11.41 3.76

SD

Base

QSDb-6A 6A AX-109400932 AX-110985652 7.27 8.98 3.22
QSLt-1A 1A AX-111105973 AX-94402739 5.60 11.33 −0.90
QSLt-1D 1D AX-109929813 AX-94979481 3.70 7.31 −0.70
QSLt-2D 2D AX-109879970 AX-111066402 5.22 11.06 0.76 4.49 9.26 −0.69
QSLt-3A 3A AX-95148936 AX-95658831 4.50 8.93 0.79
QSLt-5A 5A AX-95152679 AX-94406985 3.36 6.55 −0.66

Top

QSLt-5D 5D Xgwm205.2 AX-89390905 2.54 5.45 0.53
QSLm-5A 5A AX-95152679 AX-94406985 2.79 5.07 −0.62
QSLm-5D 5D AX-111117089 AX-108782785 2.88 8.68 0.65Middle

QSLm-7A 7A AX-95075884 AX-86176614 5.61 10.57 0.96 3.31 6.05 −0.70
QSLb-5A 5A AX-108938187 AX-95152679 3.26 9.53 −0.81
QSLb-5D 5D AX-111464164 Xgwm205.2 2.94 9.18 0.70
QSLb-6A-1 6A AX-109400932 AX-110985652 6.42 9.64 1.17 5.31 8.97 1.01

SL

Base

QSLb-6A-2 6A AX-108972184 AX-108752564 6.97 9.59 −1.19
QSWt-1D 1D AX-95141814 AX-95661009 2.83 7.89 −0.69
QSWt-2D 2D AX-108832290 AX-110274295 3.86 11.31 −0.43Top

QSWt-4B 4B AX-109464953 Xwmc47 2.58 7.40 −0.67
Middle QSWm-3D 3D AX-108735265 AX-108745742 2.99 8.91 −0.47

QSWb-3A 3A AX-95659792 AX-111167455 2.84 6.94 −0.52
QSWb-3D 3D AX-108735265 AX-108745742 2.63 10.59 −0.69
QSWb-5A 5A AX-95659236 AX-109921026 3.32 8.19 −0.57

SW

Base

QSWb-6A 6A AX-108972184 AX-108752564 3.47 8.74 −0.77 4.29 9.75 −0.77

(continued on next page)
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Table 2 (continued)

Traitb Locationc QTLd Chr Left marker Right marker 2018 2019

LOD PVE (%) Add LOD PVE (%) Add

QPCIm-1D 1D AX-110935476 AX-95630666 2.65 3.63 −0.44
QPCIm-2B 2B AX-109283083 AX-95101397 4.15 5.82 0.57
QPCIm-5B 5B AX-95652462 Xgwm67 11.52 19.02 −1.03
QPCIm-7B 7B AX-108768422 AX-108922344 3.72 5.19 −0.53

Middle

QPCIm-7D 7D AX-89474682 AX-89589386 5.26 7.52 −0.64
QPCIb-1D 1D AX-95141814 AX-95661009 2.71 4.56 −0.59
QPCIb-6A-1 6A AX-109400932 AX-110985652 18.42 13.64 3.55 21.79 14.06 3.15

PCI

Base

QPCIb-6A-2 6A AX-108972184 AX-108752564 17.81 8.65 −2.47
QSAt-1D 1D AX-94979481 AX-109507293 3.86 6.87 −42.97
QSAt-2A 2A Xcwm138.2 AX-110686688 4.12 9.25 −50.09
QSAt-5A 5A AX-95202017 AX-110976396 5.14 9.28 −50.40
QSAt-2D 2D AX-109879970 AX-111066402 5.24 8.73 31.24 8.40 13.96 −38.91

Top

QSAt-5D 5D AX-109464956 AX-109537966 2.92 4.45 −22.28
QSAm-1D 1D AX-94979481 AX-109507293 4.36 10.99 −43.05
QSAm-3A 3A AX-95653062 AX-95235020 3.68 9.18 −39.55 3.01 7.42 −35.62
QSAm-3D 3D AX-94381228 AX-111161196 3.16 9.18 −31.81

Middle

QSAm-5D 5D AX-108877411 AX-109725899 2.71 7.88 28.75
QSAb-5A-1 5A AX-95659825 AX-111799065 7.45 13.27 −46.15
QSAb-2A 2A Xcwm138.2 AX-110686688 6.14 12.89 −44.81
QSAb-5A-2 5A AX-111789373 Xwmc340 2.61 7.88 −42.04

SA

Base

QSAb-5B 5B Xgwm499 AX-95241032 3.81 6.65 −32.36
QSRAt-3A 3A AX-95659792 AX-111167455 3.20 8.56 −0.35Top
QSRAt-5A 5A AX-111662464 AX-95683796 3.94 11.30 −0.40
QSRAm-3A 3A AX-95659792 AX-111167455 2.66 10.30 −0.35
QSRAm-5B 5B Xgwm335 Xgwm540 5.15 12.63 −0.36Middle

QSRAm-7D 7D AX-89589386 AX-110969291 3.97 9.51 −0.31
QSRAb-1A 1A AX-111764211 AX-111262687 2.51 7.15 −0.35
QSRAb-3A 3A AX-111635376 AX-110400859 4.58 13.48 −0.46
QSRAb-6A-1 6A AX-109400932 AX-110985652 22.12 10.74 1.68

SRA

Base

QSRAb-6A-2 6A AX-108972184 AX-108752564 15.31 8.89 −1.39 18.38 6.82 −1.34

Notes.
aLOD, LOD value of each QTL; PVE, phenotypic variance explained by QTL; Add, a positive sign means increased effect contributed by Hanxuan 10; a negative sign indicates increased effect contributed
by Lumai 14.

bSD, stomatal density; SL, stomatal length; SW, stomatal width; PCI, potential conductance index; SA, stomatal area; SRA, stomatal relative area.
cTop, top of glumes; Middle, middle of glumes; Base, base of glumes.
dUnderlined QTLs indicate that they were detected in two years.
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Figure 4 The locations of two QTL hotspots on chromosome and the candidate genes contained in the
two regions. (A) LOD value of each traits. The line indicates the position where LOD is equal to 2.5. SD,
stomatal density; SL, stomatal length; SW, stomatal width; PCI, potential conductance index; SRA, stom-
atal relative area; b, base of glumes. (B) Heat maps of expression of candidate genes contained in the two
regions in wheat spikelets and glumes. The five genes below the black arrow are candidate genes that were
screened out in this study.

Full-size DOI: 10.7717/peerj.13262/fig-4

Table 3 Candidate genes screened fromQTL regions in this study.

Gene ID Gene annotation

TraesCS6A02G105400 50S ribosomal protein L3
TraesCS6A02G106400 Stress-associated endoplasmic reticulum protein 2
TraesCS6A02G115100 Purple acid phosphatase
TraesCS6A02G115400 Calcium-dependent lipid-binding (CaLB domain) family
TraesCS6A02G116200 ATP-dependent RNA helicase

between stomatal density and stomatal size in wheat leaves (Wang et al., 2016). In addition,
similar phenomena have been observed in other crops. (Ishimaru et al., 2001; Ohsumi
et al., 2007). The present results showed that stomatal density was negatively correlated
with stomatal length in each part of wheat glumes in the two years. However, there
was no significant correlation between stomatal density and stomatal width. Previous
studies found that stomatal length and stomatal width in wheat leaves were significantly
positively correlated (Wang et al., 2016). The present results showed that stomatal length
and stomatal width were significantly positively correlated in 2018 (Fig. 2 Table S1).
Therefore, wheat glumes can improve their adaptability to different environmental
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Figure 5 Expression of candidate genes under various abiotic stresses. (A) Low phosphorus stress; (B)
drought and heat stress; (C) salt stress.

Full-size DOI: 10.7717/peerj.13262/fig-5

conditions by coordinating the relationship among stomatal density, stomatal length,
and stomatal width.

Pleiotropy of QTLs for stoma-related traits in wheat
Various studies have found that QTLs of closely related traits may be located on the
same or nearby positions on the chromosomes (Fracheboud et al., 2002; Tuberosa et al.,
2002). In the present study, QSLb-6A-1 corresponding to stomatal length at the base of
glumes, QSDb-6A for stomatal density at the base of glumes, QPCIb-6A-1 for stomatal
PCI at the base of glumes, and QSRAd-6A-1 for stomatal relative area at the base of
glumes were detected in the interval of AX-109400932∼AX-110985652 on chromosome
6A in 2018 and 2019. In the vicinity of this interval, QSWb-6A, QSLb-6A-2, QPCIb-
6A-2, and QSRAb-6A-2 were detected in the interval AX-108972184∼AX-108752564 on
chromosome 6A in the two years. QSDt-5A, QSDm-5A, and QSRAt-5A were all located
in the interval AX-111662464∼AX-95683796. QSDt-5D and QSLt-5D were located in the
interval Xgwm205.2∼AX-89390905. QSDm-1A and QSLt-1A were located in the interval
AX-111105973∼AX-94402739 (Fig. 3 Table 2).

In addition, compared with previous studies, we found a QTL QSWt-4B in this study
was located within the region of QAGsw4B in the previous study (Wang et al., 2018).
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QSAb-5A-2 was located within the region ofQAGsd5A,QMGsd5A-2, andQAGsl5A. (Wang
et al., 2018). QSRAm-5B was located close to the region of QPsd5B, and QSDd-5A was
located within the region of QSD5A-2 (Wang et al., 2016).

Therefore, the QTLs for above-mentioned stoma-related traits, which were detected
in different parts of wheat, different growth periods, and various environments, were
significant markers for stoma-related traits in wheat. Furthermore, these findings implied
stomatal density and size of wheat leaves and glumes may be controlled by the same or
pleiotropic genes. The markers that were localized within a QTL interval associated with
stoma-related traits not only validated the QTL but also provided more closely linked
markers. These markers will be useful to reveal advanced wheat varieties in wheat breeding
programs based on marker-assisted selection approaches.

Prediction of candidate genes related to stomata in wheat glumes
In this study, 57 genes were found in two intervals, AX-109400932∼AX-110985652
(physical range 73571398-76990896 bp) and AX-108972184∼AX-108752564
(physical range 83931623-86272494 bp), on chromosome 6A, and five candidate
genes (i.e., TraesCS6A01G105400, TraesCS6A01G106400, TraesCS6A02G115100,
TraesCS6A02G115400, and TraesCS6A02G116200) were screened out, according to their
expression levels in wheat glumes or spikes (Fig. 4 Table 3).

The expression level of TraesCS6A01G105400 in wheat glumes and spikes was the
highest among all candidate genes (Fig. 4), and its functional annotation was 50S ribosomal
protein L3 (Table 3). The TraesCS6A01G105400 expression decreased significantly under
low phosphorus, drought, and heat stress conditions (Fig. 5). The functional annotation of
the candidate gene TraesCS6A01G106400 is stress-associated endoplasmic reticulum (ER)
protein (Table 3). The ER plays a crucial role in the maintenance of cellular homeostasis.
ER stress is a widely existed stress mechanism to external stimuli in plants and animals. This
pathway maintains the ER homeostasis and alleviates stress damage through regulation of
a series of gene expressions (Park & Park, 2019). The expression of TraesCS6A01G106400
was significantly increased under salt stress (Fig. 5). The functional annotation of the
candidate gene TraesCS6A01G115100 is purple acid phosphatase (PAP) (Table 3), and
its expression was significantly increased under low phosphorus stress (Fig. 5). PAPs
are members of the metallo-phosphoesterase family identified from a wide range of
plants. PAPs have mostly been studied for their potential involvement in phosphorus
acquisition and redistribution because of their ability to catalyze the hydrolysis of activated
phosphate esters and anhydrides under acidic conditions (Olczak, Morawiecka & Watorek,
2003). Recent studies also showed that PAPs play important roles in modulating plant
carbon metabolism, cell wall synthesis, pathogen resistance, etc (Kaida et al., 2009; Sun
et al., 2012; Zhang et al., 2014). TraesCS6A01G115400 was specifically expressed in wheat
glumes, and its functional annotation is calcium-dependent lipid-binding family protein
(Table 3). Ca2+ is a secondary messenger in plants that regulates virtually all aspects
of plant development and responses to environmental stimuli. Ca2+ tends to rapidly
rise under abiotic stresses (Bartels & Sunkar, 2005). Several proteins have been reported
to be activated or translocated in the presence of Ca2+ including Calcium-dependent
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lipid-binding protein (Hurley & Misra, 2000). The expression of TRAESCS6A01G115400
in roots of wheat seedlings was significantly decreased under salt stress (Fig. 5). The
functional annotation of the candidate gene TraesCS6A01G116200 is ATP-dependent RNA
helicase (Table 3). ATP-dependent RNA helicase can be found in many organisms, which
is involved in the multi-dimensional metabolism of RNA and plays an important role in
plant growth and development, especially in abiotic stress response (Kim et al., 2008). The
expression of TraesCS6A01G116200 was significantly increased under low phosphorus,
drought, and heat stress (Fig. 5).

The above five candidate genes not only had high expression levels in wheat glumes
or spikes, but are also induced by a variety of abiotic stresses. Studies have shown that
when plants are subjected to abiotic stress, they can change their photosynthetic rate and
transpiration rate by adjusting the stomata size, stomata density, and stomata distribution
to deal with bad external environments (Doheny-Adams et al., 2012; Franks et al., 2015).
Therefore, it will be greatly helpful to analyze whether these five genes affect the formation
of wheat stomata through transgenic experiments in future research, and to explore the
mechanism of their functions.

CONCLUSION
In this study, a total of 61 QTLs for traits related to stomata of wheat glumes were identified
in the two years, whichwere distributed across 16 chromosomes and explained 3.63–19.02%
of phenotypic variation. Among them, two QTL hotspots were found in 6A, including
four and four QTLs, respectively. Subsequently, five candidate genes were screened out,
according to their expression levels in wheat glumes or spikes. The expression of these genes
could be induced by a variety of abiotic stresses. Our results provide insights for cloning
and functional characterization of stoma-related candidate genes in wheat glumes.
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