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Systems biology approaches are used as strategy to uncover tissue-specific
perturbations and regulatory genes related to complex phenotypes. We applied this
approach to study feed efficiency (FE) in beef cattle, an important trait both economically
and environmentally. Poly-A selected RNA of five tissues (adrenal gland, hypothalamus,
liver, skeletal muscle and pituitary) of eighteen young bulls, selected for high and low
FE, were sequenced (Illumina HiSeq 2500, 100 bp, pared-end). From the 17,354
expressed genes considering all tissues, 1,335 were prioritized by five selection
categories (differentially expressed, harboring SNPs associated with FE, tissue-specific,
secreted in plasma and key regulators) and used for network construction. NR2F6 and
TGFB1 were identified and validated by motif discovery as key regulators of hepatic
inflammatory response and muscle tissue development, respectively, two biological
processes demonstrated to be associated with FE. Moreover, we indicated potential
biomarkers of FE, which are related to hormonal control of metabolism and sexual
maturity. By using robust methodologies and validation strategies, we confirmed the
main biological processes related to FE in Bos indicus and indicated candidate genes
as regulators or biomarkers of superior animals.

Keywords: feed efficiency, residual feed intake, Nellore (Zebu), Bos indicus, inflammation, muscle development,
motif discovery, regulatory gene network

INTRODUCTION

Since the domestication of the first species, animal selection aims to meet human needs and
their changes over time. The current main selection goals in livestock production are increase of
productivity, reduction of the environmental impact and reduction of competition for grains for
human nutrition (Hayes et al., 2013). Thus, feed efficiency (FE) has become a relevant trait of study,
as animals considered of high feed efficiency are those presenting reduced feed intake and lower
production of methane and manure without compromising animal’s weight gain (Gerber et al.,
2013). However, the incorporation of FE as selection criteria in animal breeding programs is costly
and time consuming. Daily feed intake and weight gain for a large number of animals need to be
recorded for at least 70 days to obtain accurate estimates of FE (Archer et al., 1997).

In the past years, several studies have been carried out with the aim to identify molecular
markers associated with FE to enable a faster and cost-effective identification of superior animals
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(Rolf et al., 2011; Oliveira et al., 2014; Santana et al., 2014; Seabury
et al., 2017). However, for each population, different biological
processes seem to be identified (Rolf et al., 2011; Oliveira et al.,
2014; Santana et al., 2014; Seabury et al., 2017). Probably, that is
because FE is a multifactorial trait and many different biological
mechanisms seems to be involved in its regulation (Herd et al.,
2004; Herd and Arthur, 2009). It has been demonstrated that high
FE animals present increased mitochondrial function (Connor
et al., 2010; Lancaster et al., 2014), less oxygen consumption
(Gonano et al., 2014) and delayed puberty (Shaffer et al., 2011;
Randel and Welsh, 2013; Fontoura et al., 2016). On the other
hand, low FE animals have increased physical activity, ingestion
frequency and stress level (Kelly et al., 2010; Cafe et al., 2011;
Chen et al., 2014; Francisco et al., 2015), increased leptin and
cholesterol levels (Nkrumah et al., 2007; Alexandre et al., 2015;
Foote et al., 2016; Mota et al., 2017), higher subcutaneous and
visceral fat (Mader et al., 2009; Gomes et al., 2012; Santana
et al., 2012), higher energy wastage as heat (Archer et al.,
1999; Montanholi et al., 2009, 2010) and more hepatic lesions
associated with inflammatory response (Alexandre et al., 2015;
Paradis et al., 2015).

In the context of such a complex trait, we perform a multiple-
tissue transcriptomic analysis of high (HFE) and low (LFE)
feed efficient Nellore cattle across tissues related to endocrine
control of hunger/satiety, hydric and energy homeostasis, stress
and immune response, physical and sexual activity, as is the
case of hypothalamus-pituitary-adrenal axis and organs as liver
and skeletal muscle. Using gene co-expression across tissues and
conditions, we derived a regulatory network revealing NR2F6
and TGFB1 signaling as key regulators of hepatic inflammatory
response and muscle tissue development, respectively. Next, we
applied advanced motif discovery methods which (i) validate that
co-expressed genes are enriched for NR2F6 and TGFB1 signaling
effector molecule SMAD3 binding sites in their 10 kb upstream
regions and (ii) predict direct transcription factor (TF) – Target
gene (TG) interactions at the sequence level. These binding
interactions were experimentally validated with public TF ChIP-
seq from ENCODE (Encode Project Consortium, 2012; Sloan
et al., 2016). Regulatory activity in the tissues of interest was
also confirmed by performing an enrichment analysis on open
chromatin tracks and histone chromatin marks across cell types
and tissues in the human and cow genome. Moreover, we propose
a hormonal control of differences in metabolism and sexual
maturity between HFE and LFE animals, indicating potential
biomarkers for further validation such as adrenomedullin, FSH,
oxytocin, somatostatin and TSH.

RESULTS

Multi-Tissue Transcriptomic Data Reveal
Differences Between High and Low Feed
Efficient Animals
Feed efficiency is a complex trait characterized by multiple
distinct biological processes including metabolism, ingestion,
digestion, physical activity and thermoregulation (Herd et al.,

2004; Herd and Arthur, 2009). To study FE at transcriptional
level we performed RNAseq of five tissues (i.e., adrenal gland,
hypothalamus, liver, muscle and pituitary) from nine male
bovines of high feed efficiency [HFE, characterized by low
residual feed intake (RFI) (Koch et al., 1963)] and nine of low
FE (LFE, characterized by high RFI). In total, we analyzed 18
samples of liver, hypothalamus and pituitary; 17 of muscle and 15
of adrenal gland, yielding 13 million reads per sample on average
(Supplementary Table 1). Gene expression was estimated for
24,616 genes present in the reference genome (UMD 3.1) and
after quality control (refer to Section “Materials and Methods”),
17,354 genes were identified as being expressed in at least one of
the five tissues analyzed.

Differential expression (DE) analysis between HFE and LFE
animals resulted in 471 DE genes across tissues (P < 0.001,
Supplementary Image 1), namely, 111 in adrenal gland,
125 in hypothalamus, 91 in liver, 104 in muscle and 98 in
pituitary (Supplementary Tables 2A–E). Although no significant
functional enrichment was found for the 281 genes up-regulated
in HFE group, the 248 genes down-regulated presented a
significant enrichment of GO terms such as response to
hormone (Padj = 5.43 × 10−6), regulation of hormone levels
(Padj = 3.48 × 10−6), cell communication (Padj = 3.18 × 10−4),
regulation of signaling receptor activity (Padj = 3.20 × 10−4),
hormone metabolic process (Padj = 5.86 × 10−4), response
to corticosteroid (Padj = 6.28 × 10−4), regulation of
secretion (Padj = 7.2 × 10−4), response to lipopolysaccharide
(Padj = 7.9 × 10−4) and regulation of cell proliferation
(Padj = 1.86 × 10−3). Refer to Supplementary Image 2 to see
all enriched terms.

Overlap Between Gene Selection Criteria
Prioritizes Genes Associated With Feed
Efficiency
The genetic architecture behind complex traits involves a large
variety of genes with coordinated expression patterns, which can
be represented by gene regulatory networks as a blueprint to
study their relationships and to identify central regulatory genes
(Swami, 2009). Therefore, it is important to select relevant genes
and gene families according to the phenotype of interest to be
used for network analysis. We defined five categories of genes
(see Section “Materials and Methods” for further information) for
inclusion in co-expression analysis: (1) differentially expressed
(DE), (2) genes harboring SNPs previously associated with FE
(harboring SNP), (3) tissue specific (TS), (4) genes coding
proteins secreted in plasma by any of the five tissues analyzed
(secreted) and (5) key regulators.

As reported before, we have identified 471 DE genes
between HFE and LFE animals (Figure 1A and Supplementary
Table 3A). In addition, 267 genes were selected for harboring
SNPs previously associated with FE, as not only differences
in expression levels can influence the phenotype but also
polymorphism in the DNA sequence that can alter the translated
protein behavior (Supplementary Table 3B). Moreover,
396 were selected for being tissue specific (refer to Section
“Materials and Methods” for definition); 22 in adrenal gland,
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FIGURE 1 | Genes selected for co-expression network construction. (A) Heatmap of normalized mean expression (NME) of 471 differentially expressed (DE) genes
between high (HFE) and low (LFE) feed efficient animals in adrenal gland (ADR), hypothalamus (HYP), liver (LIV), muscle (MUS) and pituitary (PIT). Genes (rows) and
samples (columns) are organized by hierarchical clustering based on Euclidean distances. (B) NME heatmap of all 1,335 genes selected for network construction.
Genes (columns) and samples (rows) are organized by hierarchical clustering based on Euclidean distances. (C) Venn diagram of 1,335 genes selected for network
construction. The inclusion criteria for selecting genes were divided into five categories: differentially expressed genes (DE), tissue specific genes (TS), genes
harboring SNPs reported in literature as being associated with feed efficiency in beef cattle (SNP), genes encoding proteins secreted by at least one of the tissues in
plasma (SEC) and key regulators (REG). Numbers between brackets indicate the total number of genes in each category.

32 in hypothalamus, 215 in liver, 118 in muscle and 9 in
pituitary (Supplementary Table 3C). A total of 244 genes
coding proteins secreted in plasma were selected because
of their potential as biomarkers of FE (Supplementary
Table 3D). From those, 135 had liver as the tissue of maximum
expression and were functionally enriched for GO terms such
as complement activation (Padj = 1.82 × 10−19), regulation
of acute inflammatory response (Padj = 1.89 × 10−14),
innate immune response (Padj = 9.71 × 10−12), negative
regulation of endopeptidase activity (Padj = 2.35 × 10−10),
platelet degranulation (Padj = 1.08 × 10−10), regulation of
coagulation (Padj = 3.39 × 10−9), triglyceride homeostasis
(Padj = 1.23 × 10−6), cholesterol efflux (Padj = 1.03 × 10−5)
(Supplementary Image 3). Finally, from 1570 potential
regulators in publicly available Animal TFdb, 78 were identified
as key regulators of the genes selected by all the other categories,
i.e., 78 genes presented a coordinated expression level with many
of the genes in the network reflecting a tight control of expression
patterns across tissues (Supplementary Table 3E).

Considering all the inclusion criteria, 1,335 genes were
selected to be included in co-expression network analysis

(Figure 1B and Supplementary Table 4), some of them
selected in more than one category (Figure 1C). Regarding
DE genes, six of them were also reported before as harboring
SNPs associated with the phenotype (LUZP2, MAOB, SFRS5,
SLC24A2, SOCS3 and WIF1) (Bolormaa et al., 2011; Saatchi
et al., 2014; Ramayo-Caldas et al., 2018) and 13 of them were
key regulators (HOPX, PITX1, CRYM, PLCD1, ND6, CYTB,
ND1, MT-ND4L, ND5, ATP8, ND4, ENSBTAG00000046711 and
ENSBTAG00000048135). Many of the genes that are both DE
and regulators are involved in respiratory chain (ND6, CYTB,
ND1, MT-ND4L, ND5, ATP8 and ND4) and were all up-
regulated in HFE group.

Considering both DE and secreted genes, 18 were identified
(NOV, SPP1, CTGF, OXT, PTX3, VGF, CCL21, COL1A2,
PGF, SOD3, SERPINE1, PRL, PON1, SST, JCHAIN, PCOLCE,
IGFBP6 and SCG2). In addition, four genes were DE, secreted
and tissue specific, two from liver (CXCL3 and IGFBP1) and
two from pituitary (NPY and CYP17A1). Genes RARRES2
and PENK (proenkephalin) were DE, secreted and had
been previously reported as harboring SNP associated with
FE (RARRES2:AnimalQTLdb Release 35 – QTL:20671,
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rs133399845; PENK: Bolormaa et al. (2011)- rs136198266,
rs134428213, rs137492938, rs132881564). Other DE genes
worthy to highlight, due to their well-known role in metabolic
processes, are AMH (anti-mullerian hormone), TSHB (thyroid
stimulating hormone beta), FGF21 (Fibroblast growth
factor 21) and FST (follistatin), up-regulated in HFE group,
and PMCH (pro-melanin concentrating hormone), ADM
(adrenomedullin) and FSHB (follicle stimulating hormone beta),
up-regulated in LFE group.

Co-expression Network Reveals
Regulatory Genes and Biological
Processes Related to Feed Efficiency
The co-expression network (Figure 2) was composed of 1,317
significant genes and 91,932 connections, with a mean of 70
connections per gene (considering only genes with significant
expression correlation ≥ |0.90| ). Most of the connections (51%)
involved a DE gene and 23% of those were between two DE
genes. Tissue specific (TS) genes were involved in 49% of the
connections with 119 connections per gene on average, which
was higher than the overall network mean and reflects the close
relationship among genes involved in tissue specific functions.
Key regulators were the least represented category in the network
(only 78 genes) but accounted for 11% of the connections in the
network with the highest value of mean connections per gene,
131 connections, which is in accordance with their regulatory
role. Regarding the connections within tissues, when we ranked
all the genes in the network by the number of connections
and looked at the top 50 genes, 29 were from liver, 15 were
from muscle and 3, 2 and 1 were from pituitary, adrenal gland
and hypothalamus, respectively. These results indicate very well-
coordinated expression patterns in liver and muscle that could be
a reflection of the number of TS genes in those tissues and the
presence of central regulatory genes coordinating the expression
of many other genes.

In the network (Figure 2), genes were grouped together by
tissue which was mostly driven by TS genes. As mentioned
before, most of the secreted protein-coding genes were located
in the liver. Most of the key regulators were located peripherally
in relation to the clusters which could be reflecting their
regulatory nature independent of tissue specificity. Despite
that, some regulators draw attention because of their high
number of connections.

The top five most connected regulators were EPC1, NR2F6,
MED21, ENSBTAG00000031687 and CTBP1, varying from 317
to 284 connections. They were all first neighbors of each other
and were connected mainly to genes with higher expression in
liver and essentially enriched for acute inflammatory response
(Padj = 4.5 × 10−13, Supplementary Image 4). The next
most connected regulator is TGFB1 with 217 connections. It
is mainly connected to genes from muscle that are primarily
enriched for muscle organ development (Padj = 6.87× 10−5) and
striated muscle contraction (Padj = 1.39× 10−5, Supplementary
Image 5). Besides indicating main regulator genes, the gene co-
expression networks approach can be useful to access the role of
specific genes. For instance, gene FGF21, a hormone up-regulated

FIGURE 2 | Gene co-expression network constructed using PCIT algorithm
on 1,335 selected genes (see Section “Materials and Methods”). Only
significant correlations above | 0.9| and their respective genes were
considered, totaling to 1,317 genes and 91,932 connections. Nodes with
diamond shape correspond to genes coding for proteins secreted in plasma
and triangles correspond to key regulators; all the other genes are
represented by ellipses. Nodes with black borders are differentially expressed
between high and low feed efficiency groups. Colors are relative to the tissue
of maximum expression: blue represents liver, red represents muscle, yellow
represents pituitary, green represents hypothalamus and orange represents
adrenal gland. The size of the nodes is relative to the normalized mean
expression values in all samples.

in liver of HFE animals, is directly connected to genes enriched
for plasma lipoprotein particle remodeling, regulation of
lipoprotein oxidation and cholesterol efflux (Padj = 5.64 × 10−3,
Supplementary Image 6). Indeed, according to the literature,
this gene is associated with decrease in body weight, blood
triglycerides and LDL-cholesterol (Cheung and Deng, 2014).

Motif Discovery Confirms NR2F6 as a
Key Regulator of Liver Transcriptional
Changes Between High and Low Feed
Efficiency
By means of the power-law theory, co-expression networks
present many nodes with few connections and few central
nodes with many connections (de la Fuente, 2010), being the
last ones indicated as central regulatory genes responsible for
the transcriptional changes between the divergent phenotypes
analyzed. In our study, the most connected regulators were
indicated, together with their target genes, i.e., their first
neighbors in the network. Those genes are a mixture of direct
and indirect regulator targets. In order to validate the regulatory
role of the most connected regulators in the network and
identify their core direct targets, we performed motif discovery
in their co-expressed target genes. It is noteworthy that motif
discovery should confirm the presence of DNA motifs of a
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TF in the regulatory regions of co-expressed genes. From
the top five most connected regulators from our previous
co-expression analysis, only NR2F6 has the ability to bind
DNA. In contrast, the other four regulators act mainly as
cofactors (corepressor, i.e., CTBP1; coactivator, i.e., MED21; or
histones modifier, i.e., EPC1), that is co-binding through protein–
protein interactions.

The analysis of 313 co-expressed genes with NR2F6
(Figure 3A) yield the Nuclear Factor motif HNF4-NR2F2
(transfac_pro-M01031) as the second motif most enriched out
of 9732 PWMs (position weight matrices) with a Normalized
Enrichment Score (NES) of 7.98 (Figure 3B). In addition, a
total of 19 motifs associated with HNF4-NR2F2 were enriched
in the dataset, associating HNF4-NR2F2 to 168 direct target
genes (Figure 3C). Due to motif redundancy or highly similarity
between a plethora of TFs, these motifs can be associated with
multiple TFs from HNF4 (direct) to several nuclear factors such
as NR2F6 (motif similarity score FDR 1.414 × 10−5). However,
our co-expression analysis strongly indicates that NR2F6 is the
key TF, since it was the TF with the highest number of nodes
in the co-expression network (Figure 3C) and neither HNF4
nor NR2F2 were prioritized by any selection category to be
included in the network.

Each of the NR2F6 inferred direct target genes contain one
or more predicted enhancers, i.e., regions with high-scoring
motif binding sites for NR2F6 or TFs with highly similar motifs.
To validate the binding of these genomic regions by NR2F6
or TFs with highly similar motifs to NR2F6, we performed a
region enrichment analysis of our predicted NR2F6 binding
sequences against public TF ChiP-seq bound regions in human
cell lines from the ENCODE consortium (1394 TF binding site
tracks, Encode Project Consortium, 2012; Sloan et al., 2016).
This analysis confirms the experimental binding of TFs with
similar binding as NR2F6 in HepG2 cells. In particular, HNF4A
on human HepG2 (ENCFF001UGH, GSM803460, NES = 9.57),
HNF4G (ENCFF001UGI, GSM803404, NES = 7.83), RXRA
(ENCFF001UHJ, GSM803404, NES = 6.85), and NR2F2
(ENCFF001UGV, GSM1010810, NES = 4.45,) as the most
enriched tracks (Supplementary Data Sheet 1). Recent
NR2F6 ChIP-seq data on HepG2 (ENCODE experiment
ENCSR518WPL, GSE96210) also confirms an enrichment
for NR2F6, indicating predicted NR2F6 binding regions
are experimentally bound by NR2F6 in hepatocyte cell
lines (Figure 3D).

Next, to validate that the NR2F6 binding in those
regions is functional in liver we performed an enrichment
analysis for open-chromatin (tracks = 655) and histone
modifications (tracks = 2450) related to active regulatory
elements (Supplementary Table 5). This analysis yielded
DNA-seq on human hepatocytes (ENCFF001SOV, GSM816663,
NES = 4.10), and H3K29ac and H3K4me3 in adult liver
(Roadmap Epigenomics Consortium et al., 2015; GSM621630,
GSM537709, respectively) as the most enriched tracks,
respectively, strongly indicating that not only predicted
target enhancers are bound by NR2F6 in Hepatocyte cell lines,
but these regulatory regions are functionally active in hepatocytes
and human liver (Figure 3D).

Regarding the cow genome, a recent open-chromatin study
(Villar et al., 2015) has mapped active promoters and enhancers
by H3K4me3 and H3K27ac ChIP-seq in cow liver resulting
in 13,796 promoter and 45,786 enhancers. We performed an
enrichment analysis of predicted NR2F6 enhancers converted
to cow coordinates (n = 779, Supplementary Table 6, Array
Express Accession number E-MTAB-2633) resulting in 446
regions being identified as functional regulatory regions in cow
liver. This number is significantly higher compared to the only
43 regions expected to overlap by random (1000 permutation
tests) (Figure 3E).

Finally, in addition to NR2F6 motif, HNF1A motif was found
as a potential co-regulator in liver, in particular swissregulon-
HNF1A.p2 with a NES = 10.17 and in total 20 enriched motifs and
170 direct targets were associated to HNF1A (Figure 3B). HNF1
is a master regulator of liver gene expression (Tronche and Yaniv,
1992), thus making its finding justified.

Motif Discovery Validates TGFB1
Signaling Through SMAD3/MYOD1
Binding as Drivers of Transcriptional
Differences in Muscle of Divergent Feed
Efficient Cattle
The analysis of the 217 genes co-expressed with TGFB1
(Figure 4A) showed that most target genes motifs were enriched
for master regulators of muscle differentiation, namely, MEF2
(NES = 10.42), a MADS box Transcription factor with 148
target genes, and MYOD1 (NES = 5.09), a bHLH transcription
factor (CANNTG) with 136 direct target genes (Figure 4B
and Supplementary Data Sheet 2). To evaluate the precision
of our predicted MYOD1 (bHLH) target genes, we assessed
how many of these TF-TG relationships had been previously
experimentally reported. Based on MYOD1 ChIP-seq binding
in mouse myotubules, 86 genes had already been associated
with MYOD1 resulting in a 63% success rate (hypergeometric
test 1.72 × 10−22). SMAD3, the effector molecule of TGFB1
signaling, is known to recruit MYOD1 to drive transcriptional
changes during muscle differentiation (Mullen et al., 2011).
Thus, we evaluated whether predicted MYOD1 target genes were
enriched for known SMAD3 target genes resulting in 21 out of
135 MYOD1 predicted target genes presenting SMAD3 ChIP-seq
binding in myotubes, thus indicating that there is a statistically
significant association between MYOD1 target genes and SMAD3
target genes in myotubes (hypergeometric test 1.98 × 10−6)
(Figure 4C) (Mullen et al., 2011). By contrast, no significant
association was found between predicted MYOD1 target genes
in this study and SMAD3 target genes in other cell lines, such
as pro-B and ES cell (hypergeometric test 0.056 and 0.076,
respectively) (Mullen et al., 2011). That is in agreement with
the fact that the effect of TGFB1 signaling driven by SMAD3
DNA binding is tissue-specific (Liu et al., 2001). Our analysis
predicted 621 potential MYOD1 binding sites, of which 114 (18%,
Supplementary Tables 7, 8) and 152 (24.5%, Supplementary
Table 9) present a MYOD1 ChIP-seq signal in mouse C2C12
myotubes cells (Mullen et al., 2011) and in primary myotubes
(Cao et al., 2009), respectively.
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FIGURE 3 | Mapping of NR2F6 direct targets. (A) Heatmap of the 313 genes co-expressed with NR2F6 across all samples (derived from the co-expression
analysis), (B) i-Regulon motif discovery results on the genes shown in panel (A), (C) Predicted NR2F6 targetome. A red node indicates genes known to be targeted
by NR2F6 in human Hepatocytes. (D) Example of predicted NR2F6 target regions for SERPINA1 gene. The predicted enhancer overlaps the exact position for
NR2F6 and NR2F2 binding in HepG sites from the ENCODE dataset as well as histone chromatin marks related to active regulatory regions, namely H3K27ac, and
promoters, H3K4me3 in human primary tissue from RoadMap Epigenetics (E) The enhancer prediction in cow coordinates (bosTau6) overlaps a region marked with
H3K4me3 in cow liver (Villar et al., 2015).
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FIGURE 4 | Mapping the downstream network of TGFB1 signaling through SMAD3/MyoD1 DNA binding. (A) Heatmap of the 217 genes co-expressed with TGFB1
(derived from the co-expression analysis). (B) i-Regulon motif discovery results on the genes shown in panel (A), (C) Predicted MyoD targetome. A red node
indicates genes know to be targeted my MyoD1 in murine myotubes (Mullen et al., 2011). Blue nodes indicate genes to be targeted by SMAD3, the effector DNA
binding molecular of TGFB1 signaling, in murine myotubes (Mullen et al., 2011). (D) Example of predicted MyoD1 target regions for ACTA1 gene. The predicted
enhancer overlaps the exact position for SMAD3 and MyoD1 ChIP-seq binding in murine myotubes (Mullen et al., 2011). (E) The enhancer prediction in cow
coordinates (bosTau6) overlaps a promoter region marked with H3K4me3 in muscle tissue in cow (Zhao et al., 2015).
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Finally, we evaluate whether predicted MYOD1 binding
regions were regulatory regions active in muscle cells across
different species, namely human, mouse and cow. To tackle this
issue we performed an enrichment analysis across 2113 open-
chromatin ENCODE tracks (Encode Project Consortium, 2012;
Sloan et al., 2016). This analysis resulted in a clear enrichment
of our predicted MYOD1 binding regions with H3K27ac
(NES = 15.98) and H3K9ac (NES = 8.78) regions in the skeletal
muscle (Figure 4D). Both chromatin marks are associated with
active transcription, H3K27ac related to active enhancers and
H3K9ac related to active gene transcription (Shin et al., 2012),
thus validating most of our enhancer predictions that MYOD1 in
human is active in the skeletal muscles. In cow, we assessed the
overlap of predicted MYOD1 enhancers and promoter regions in
cow muscle experimentally detected with H3K4me3 (Zhao et al.,
2015). This resulted in 275 regions out of 653 (42%) overlap
when only 11 regions are expected to overlap by random 1000
permutation test) (Figure 4E, Supplementary Table 10).

Differential Co-expression
Although the general co-expression network provides important
insights about regulatory genes and their behavior, by creating
specific networks for HFE and LFE and comparing the
connectivity of the genes in each one, we can identify genes
that change their behavior depending on the situation, moving
from highly connected to lowly connected and vice-versa. We
were able to identify 87 differentially connected genes between
HFE and LFE (P < 0.05); 63 mainly expressed in liver, 19 in
muscle and 3, 1 and 1 in hypothalamus, adrenal gland and

pituitary, respectively (Supplementary Table 11). Those genes
were enriched for terms such as regulation of blood coagulation
(Padj = 3.14 × 10−10), fibrinolysis (Padj = 7.71 × 10−7),
platelet degranulation (Padj = 7.49 × 10−6), regulation of
peptidase activity (Padj = 6.16 × 10−4), antimicrobial humoral
response (Padj = 2.49 × 10−3), acute inflammatory response
(Padj = 2.18 × 10−4) and induction of bacterial agglutination
(Padj = 3.58 × 10−2) (Supplementary Image 7). It is important
to highlight that 20 of the differentially connected genes were
also differentially expressed (Table 1) and three of them, i.e., SST,
JCHAIN and IGFBP1, were secreted in plasma as well, which
make them very promising potential biomarkers.

DISCUSSION

Feed efficiency is a complex trait, regulated by several biological
processes. Thus, the identification of genomic regions associated
with this phenotype, as well as regulators genes and biomarkers
to select superior animals and to direct management decisions,
is still a great challenge. In this work, multi-tissue transcriptomic
data of high and low feed efficient Nellore bulls were analyzed
through robust co-expression network methodologies in order
to uncover some of the biology that governs these traits and put
forward candidate genes to be the focus of further research. In this
sense, the validation of target genes of main transcription factors
(key regulators) in the network by motif search proves the efficacy
of the methodology for network construction and prioritizes
some transcription factors as central regulators (Aerts et al., 2010;

TABLE 1 | Differentially connected and differentially expressed genes between high and low feed efficiency.

Gene name Number of connections Category∗ Tissue of maximum
expression

Tissue of differential
expression

Low feed efficiency High feed efficiency

SST 0 45 DE, SEC Hypothalamus Hypothalamus

SNORA73 41 108 DE Liver Liver

ENSBTAG00000047700 56 111 DE Liver Liver

ENSBTAG00000047121 62 111 DE Liver Liver

ENSBTAG00000047816 53 96 DE Liver Liver

ENSBTAG00000039928 50 89 DE Liver Liver

ANXA13 115 63 DE Liver Liver

FST 113 56 DE Liver Liver

PBLD 115 55 DE Liver Liver

ENSBTAG00000021368 95 0 DE Liver Liver

JCHAIN 52 113 DE, SEC Liver Liver

IGFBP1 55 0 DE, TS, SEC Liver Liver

SBK2 0 70 DE Muscle Muscle

ACTC1 54 0 DE Muscle Muscle

MYH1 0 47 DE, TS Muscle Muscle

HR 119 50 DE Pituitary Muscle

TAGLN 83 31 DE Adrenal Muscle, Pituitary

SFRP2 41 91 DE Hypothalamus Pituitary

FN1 119 69 DE Liver Pituitary

CAV1 98 50 DE Muscle Pituitary

∗Differentially expressed genes between high and low feed efficiency (DE), tissue specific genes (TS) and genes encoding proteins secreted in plasma (SEC).
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Naval-Sańchez et al., 2013; Potier et al., 2014). Moreover, the
addition of a category of genes coding proteins secreted in plasma
in the co-expression analysis highlights the genes with potential
to be explored as biomarkers of feed efficiency. We were able to
identify genes related to main biological processes associated with
feed efficiency and indicate key regulators.

Firstly, it is important to state that the 98 animals used
to select the HFE and LFE groups in this study have been
previously analyzed with regard to several phenotypic and
molecular measures (Alexandre et al., 2015; Mota et al., 2017;
Novais et al., 2019). It was observed that HFE and LFE
groups had similar body weight gain, carcass yield and loin
eye area but LFE animals had higher feed intake, greater fat
deposition, higher serum cholesterol levels, as well as hepatic
inflammatory response, indicated by transcriptome analysis of
liver biopsy and proved by the higher number of periportal
mononuclear infiltrate (histopathology) and increased serum
gamma-glutamyl-transferase (GGT, a biomarker of liver injury)
in this group (Alexandre et al., 2015). In the present study,
the simultaneous analysis of five distinct tissues revealed the
importance of hepatic tissue. Liver presented the most connected
genes in the network, the largest number of differentially
connected genes and the largest number of secreted genes, which,
although can be explained by its biological function, are enriched
mostly for terms related to lipid homeostasis and inflammatory
response. Moreover, the top five most connected regulators in the
network are co-expressed mainly with genes highly expressed in
liver and also enriched for inflammatory response.

The relationship between FE and genes or pathways related
to immune response and lipid metabolism is becoming more
evident, as recent studies also reported in beef cattle (Karisa
et al., 2014; Paradis et al., 2015; Weber et al., 2016; Zarek
et al., 2017; Mukiibi et al., 2018) and pigs (Gondret et al., 2017;
Ramayo-Caldas et al., 2018). In our previous work (Alexandre
et al., 2015), we proposed that increased liver lesions associated
with higher inflammatory response in the liver of LFE animals
could be due to increased lipogenesis and/or higher bacterial
infection in the liver. While further evidence is needed to test
these hypotheses, the enrichment of terms such as induction of
bacterial agglutination and response to lipopolysaccharide makes
bacterial infection a strong possibility. Indeed, pigs with low FE
were reported to have a increased risk of intestinal inflammation,
higher neutrophil infiltration biomarkers and increased serum
endotoxin (lipopolysaccharide and other bacterial products)
which could be related to increased bacterial infection or to
decreased capacity to neutralize endotoxins (Mani et al., 2013).
The authors hypothesized that differences in bacterial population
could partially explain the increase in circulating endotoxins,
which could also be true for cattle given that differences in
intestinal and ruminal bacterial population between high and low
FE animals have already been reported (Myer et al., 2015, 2016).
Furthermore, the literature reports lipopolysaccharides (LPS)
may cause up-regulation of adrenomedullin (ADM) hormone
(Shindo et al., 1998), an up-regulated gene in LFE individuals as
showed here. It was also demonstrated in rats that intravenous
infusion of LPS caused up-regulation of ADM in ileum, liver,
lung, aorta, skeletal muscle and blood vessels (Shoji et al., 1995)

whereas in our study, ADM presented differential expression in
muscle, but not in liver.

Against pathogen invasion, a tightly regulated adaptive
immune response must be triggered in order to allow T
lymphocytes to produce cytokines or chemokines and B cells
to differentiate and produce antibodies (Hermann-Kleiter and
Baier, 2014). This regulation is known to be strongly influenced
by the expression level and transcriptional activity of several
nuclear receptors, including the NR2F-family, which consists of
three orphan receptors: NR2F1, NR2F2 and NR2F6 (Hermann-
Kleiter and Baier, 2014). Those receptors present highly
conserved DNA and ligand binding domains among each other
and across species (Pereira et al., 2000), and all three are expressed
in adaptive and immune cells (Hermann-Kleiter and Baier, 2014).
In our study, NR2F6 appeared as the second most connected
regulator gene in the network while the other family members,
although present in our expression data, were not selected by
any of our inclusion criteria, thus indicating they might not
be so relevant in our conditions. Indeed, NR2F6 appears to be
a critical regulatory factor in the adaptive immune system by
directly repressing the transcription of key cytokine genes in
T effector cells (Hermann-Kleiter et al., 2008; Klepsch et al.,
2016). The role of NR2F6 as a key regulator of inflammatory
response in our network was validated at gene level by the
identification of the binding motif HNF4-NR2F2 (transfac_pro-
M01031) as one of the most enriched in NR2F6 target genes, due
to the high similarity between NR2F2 and NR2F6 binding sites.
Furthermore, using open chromatin data publicly available, we
provided experimental evidence of the binding of TFs with highly
similar binding motifs as NR2F6 in hepatocyte cells in humans
and in cattle, thus, indicating that predicted target enhancers are
functional in this tissue.

Another regulator prioritized in our analysis is TGFB1, the
sixth most connected gene in the co-expression network, and
a potential driver of transcriptional changes between high and
low FE cattle in muscle. This gene has been previously described
as a master regulator of FE in beef cattle, using genomics
and metabolomics data (Widmann et al., 2015). Moreover, our
motif discovery analysis showed that TGFB1 co-expressed genes
are mostly enriched for binding sites of master regulators of
muscle differentiation such as MEF2 and MYOD. Indeed, public
available data show many of TGFB1 target genes were associated
with MYOD (Mullen et al., 2011). As it is known, signaling
pathways are an effective mechanism for cells to respond
to environmental cues by regulating gene expression. TGFB1
signaling triggers the phosphorylation of SMAD2/3 transcription
factors, which co-bind with cell-type master regulators at the
nuclear level allowing/triggering/leading to cell-type specific
transcriptional changes (Schmierer and Hill, 2007; Mullen et al.,
2011). In skeletal muscle cells, myoblasts and myotubes, SMAD3
co-binds with MYOD1 (Mullen et al., 2011). The overlap
between MYOD1 and SMAD3 target genes demonstrate the
significant association between both genes in skeletal muscle,
in agreement with the tissue-specific TGFB1 signaling response
(Mullen et al., 2011). The overlap percentage between our
predicted binding sites and MYOD1 Chip-seq data (18 and
24.5%) confirms previous analyses in mice where they reported
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only 20% of experimental validated distal enhancers in mouse
myotubes with a bHLH (MyoD1) binding were actually bound by
MYOD1 ChIP-seq data (Blum et al., 2012). Thus, suggesting that
additional transcription-factors and/or histone modifications
have a key role in MYOD1 binding. The SMAD3/MYOD1 co-
bound regions for known target genes are also captured, such
as the promoter regions of ACTA1 and ANKRD1, both genes
involved in skeletal muscle differentiation. We also demonstrated
predicted MYOD1 binding regions are enriched for muscle
regulatory regions across species (human, mouse and cow).

Altogether, we showed that co-expressed genes with TGFB1
are enriched for SMAD3/MYOD1 binding sites, which we
validated at the gene and enhancer level by proving not only
MYOD1 and SMAD3 binding, but also their accessibility, in
human, mouse and cow. In pigs, increased feed efficiency is
associated with stimulation of muscle growth by TGFB1 signaling
pathway (Jing et al., 2015). Finally, although not directly co-
expressed with TGFB1, oxytocin (OXT) was DE in muscle and
despite the lack of knowledge about its role in this tissue, previous
work in cattle showed a massive increase of OXT expression in
the muscle of bovines chronically exposed to anabolic steroids
(De Jager et al., 2011). It is not known yet if oxytocin alone has
an anabolic activity, but in a context where muscle growth seems
to be associated with high FE animals, this hormone should be
the focus of further investigation.

From the 13 regulator genes that are DE between groups, six
are involved in respiratory chain and are up-regulated in HFE
group. Genes ND1, ND4, ND4L, ND5, ND6 and also ND2 (which
is DE but not identified as a regulator) are core subunits of
the mitochondrial membrane respiratory chain Complex I (CI)
which functions in the transfer of electrons from NADH to the
respiratory chain, while ATP8 is part of Complex V and produces
ATP from ADP in the presence of the proton gradient across
the membrane. Interestingly, greater quantities of mitochondrial
CI protein were associated with high FE cattle by Ramos and
Kerley (2013) whereas Davis et al. (2016) found higher CI-CII and
CI-CIII concentration ratios for the same group. Other studies
demonstrated that HFE animals consume less oxygen (Chaves
et al., 2015) and present lower plasma CO2 concentrations, which
suggests a decreased oxidation process (Gonano et al., 2014). In
general, the literature suggests mitochondrial ADP has greater
control of oxidative phosphorylation in high FE individuals
(Lancaster et al., 2014) and their increased mitochondrial
function may contribute to feed efficiency (Connor et al., 2010).
In pigs, differences in mitochondrial function were reported
when analyzing muscle (Vincent et al., 2015), blood (Liu et al.,
2016) and adipose tissue transcriptomes (Louveau et al., 2016).
Differences in metabolic rate associated with FE have long been
discussed (Herd and Arthur, 2009) and here the hypothesis is
corroborated by the up-regulation of TSHB in HFE animals,
which stimulates production of T3 and T4 in thyroid, thus
increasing metabolism. Metabolism is inhibited by SST, a down-
regulated hormone in this group which was also found to be
differentially connected between HFE and LFE.

Examining the DE genes, many hormones can be identified.
Hormones are signaling proteins that are transported by the
circulatory system to target distant organs in order to regulate

physiology. Regarding the relationship between FE and other
production traits of economic importance, FSHB, responsible for
spermatozoa production by activating Sertoli cells in the testicles
(Walker and Cheng, 2005), is up-regulated in LFE group and is
inhibited by follistatin (FST), a gene found to be down-regulated
in the same group. Moreover, in rats, it has been demonstrated
that FSH secretion is stimulated by somatostatin expression,
which is up-regulated in LFE animals (Kitaoka et al., 1989). In
this scenario, one could argue that selection for high FE delay
reproduction traits, something that could be related to the lower
fat deposition in this group, as previously observed (Gomes
et al., 2012; Santana et al., 2012; Alexandre et al., 2015). Indeed,
differences in body composition and in intermediary metabolism
can impact on reproductive traits (Shaffer et al., 2011) and it has
been observed before that feed efficient bulls present features of
delayed sexual maturity, i.e., decreased progressive motility of
the sperm and higher abundance of tail abnormalities (Fontoura
et al., 2016; Montanholi et al., 2016). Moreover, high FE heifers
presented lower fat deposition and later sexual maturity which
results in calving later in the calving season than their low FE
counterparts (Shaffer et al., 2011; Randel and Welsh, 2013). LFE
animals also exhibit down-regulation of AMH and the decrease
of this hormone in serum is an excellent marker of Sertoli cells
pubertal development (Rey et al., 1993).

Concerning the differences in lipid metabolism in divergent
FE phenotypes, FGF21, a hormone up-regulated in liver
of HFE animals, is associated in humans to decrease in
body weight, blood triglycerides and LDL-cholesterol, with
improvement in insulin sensitivity (Cheung and Deng, 2014).
It is an hepatokine released to the bloodstream and an
important regulator of lipid and glucose metabolism (Giralt
et al., 2015). When we performed an enrichment analysis
of co-expressed genes with FGF21, we indeed found terms
related to plasma lipoprotein particle remodeling, regulation
of lipoprotein oxidation and cholesterol efflux mostly due to
FGF21 co-expression with the apolipoproteins APOA4, APOC3
and APOM. In the same context, pro-melanin-concentrating
hormone (PMCH) encodes three neuropeptides: neuropeptide-
glycine-glutamic acid, neuropeptide-glutamic acid-isoleucine
and melanin-concentrating hormone (MCH), the last one being
the most extensively studied (Helgeson and Schmutz, 2008).
MCH up-regulation has been related to obesity and insulin
resistance, as well as increased appetite and reduced metabolism
in murine models (Ludwig et al., 2001; Ito et al., 2003). The
PMCH gene is up-regulated in LFE animals and harbors SNPs
found to be associated with higher carcass fat levels and marbling
score (Helgeson and Schmutz, 2008; Walter et al., 2014).

In this work, we were able to identify several biological
processes known to be related to feed efficiency, which together
with the validation of the main transcription factors of the
network, demonstrate the quality of the data and the robustness
of the analyses, giving us the confidence to identify candidate
genes as regulators or biomarkers of superior animals for this
trait. The regulatory genes NR2F6 and TGFB1 play central roles
in liver and muscle, respectively, by regulating genes related to
inflammatory response and muscle development and growth,
two main biological mechanisms associated to feed efficiency.
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Likewise, hormones and other proteins secreted in plasma as
oxytocin, adrenomedulin, TSH, somatostatin, follistatin and
AMH are interesting molecules to be explored as potential
biomarkers of feed efficiency.

MATERIALS AND METHODS

Phenotypic Data and Biological Sample
Collection
All animal protocols were approved by the Institutional Animal
Care and Use Committee of Faculty of Food Engineering and
Animal Sciences, University of São Paulo (FZEA-USP – protocol
number 14.1.636.74.1). All procedures to collect phenotypes and
biological samples were carried out at FZEA-USP, Pirassununga,
State of São Paulo, Brazil. Ninety-eight Nellore bulls (16 to
20 months old and 376 ± 29 kg BW) were evaluated in a
feeding trial comprised of 21 days of adaptation to feedlot
diet and place and a 70-day period of data collection. Total
mixed ration was offered ad libitum and daily dry matter
intake (DMI) was individually measured. Animals were weighed
at the beginning, at the end and every 2 weeks during the
experimental period. Feed efficiency was estimated by RFI
which is the residual of the linear regression that estimates
DMI based on average daily gain and mid-test metabolic body
weight (Koch et al., 1963). 40 animals selected either as high
feed efficiency (HFE) or low feed efficiency (LFE) groups were
slaughtered on 2 days with a 6-day interval. Adrenal gland
(longitudinal section), hypothalamus, liver (lateral portion of
the left lobe), skeletal muscle (medial portion of Longissimus
lumborum, close to 12th rib) and pituitary samples were
collected from each animal, rapidly frozen in liquid nitrogen and
stored at –80◦C. Further information about management and
phenotypic measures of the animals used in this study can be
found in Alexandre et al. (2015).

RNAseq Data Generation
Samples of nine animals from each feed efficiency group (high
and low) were selected for RNAseq using RFI measure. For
hypothalamus and pituitary, the nitrogen frozen tissue was
macerated with crucibles and pistils to ensure all portions of the
tissue were represented, and stored in aliquots at –80◦C. Then,
RNA was extracted using AllPrep DNA/RNA/Protein Mini kit
(QIAGEN, Crawley, United Kingdom). For liver, muscle and
adrenal gland, a cut was made in the frozen tissue and the
RNA was extracted using RNeasy Mini Kit (QIAGEN, Crawley,
United Kingdom). RNA quality and quantity were assessed using
automated capillary gel electrophoresis on a Bioanalyzer 2100
with RNA 6000 Nano Labchips according to the manufacturer’s
instructions (Agilent Technologies Ireland, Dublin, Ireland).
Samples that presented an RNA integrity number (RIN) of less
than 8.0 were discarded.

RNA libraries were constructed using the TruSeqTM Stranded
mRNA LT Sample Prep Protocol and sequenced on Illumina
HiSeq 2500 equipment in a HiSeq Flow Cell v4 using the HiSeq
SBS Kit V4 (2×100 pb). Liver, pituitary and hypothalamus
were sequenced on the same run, each one in a different lane.

Muscle and adrenal gland were sequenced in a second run, in
different lanes.

Gene Expression Estimation
The quality of the sequencing was evaluated using the software
FastQC Version 31. Sequence alignment against the bovine
reference genome (UMD3.1) was performed using STAR Version
2.2.1 (Dobin et al., 2013), according to the standard parameters
and including the annotation file (Ensembl release 89) and
secondary alignments, duplicated reads and reads failing vendor
quality checks were removed using Samtools Version 1.9 (Li
et al., 2009). Then, HTseq Version 0.6.0 (Anders et al., 2014) was
used to generate gene read counts and expression values were
estimated by fragments per kilobase of gene per million mapped
reads (FPKM). Genes with average value lower than 0.2 FPKM
across all samples and tissues were discarded.

Gene expression normalization was performed using the
following mixed effect model (Reverter et al., 2005):

Yijkl = µ+ Li + Gj + GTjk + GPjl + eijkl

where, the log2-transformed FPKM value for i-th library (86
levels), j-th gene (17,354 levels), k-th tissue (5 levels), l-th RFI
phenotype (2 levels), corresponding to Yijkl, was modeled as a
function of the fixed effect of library (Li) and the random effects
of gene (Gj), gene by tissue (GTjk) and gene by RFI phenotype
(GPjl). Random residual (eijkl) was assumed to be independent
and identically distributed. Variance component estimates and
solutions to the model were obtained using VCE6 (Groeneveld
et al., 2010). Normalized mean expression (NME) values for each
gene were defined as the linear combination of the solutions
for random effects.

The mixed model used to normalize the expression data
explained 96% of the variation in gene expression, of which
the largest proportion (0.30) was due to tissue-specificity.
Contrariwise, differences between HFE and LFE represented no
variation (0.27 × 10−11). For that reason, normalized mean
expression (NME) was only used to identify tissue specific genes
and the raw FPKM values were used for differential expression
and co-expression analysis.

Gene Selection for Network Construction
In order to select a set of relevant genes for network analysis, we
defined five categories based on the following inclusion criteria:

Differential Expression (DE)
The mean expression value of each gene, for each group (HFE
and LFE) and each tissue was calculated and then the expression
of LFE group was subtracted from the expression in HFE group.
Next, genes were ranked according to their mean expression in
all samples for each tissue and divided into five bins. Genes were
considered differentially expressed when the difference between
the expression in HFE and LFE groups were greater than 3.1 or
smaller than – 3.1 standard deviation from the mean in each bin,
corresponding to a t-test P < 0.001 (Weber et al., 2016).

1http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Harboring SNPs
Genes harboring SNPs associated with feed efficiency, mainly
indicated by GWAS, were identified using the PubMed database2

and the AnimalQTL database – Release 353 and only bovine data
were considered regardless of breed.

Tissue Specific (TS)
A gene was considered as tissue specific when the average NME
in that tissue was greater than one standard deviation from the
mean of all genes and the average NME in all the other four tissues
was smaller than zero.

Secreted
The human secretome database4 (Uhlén et al., 2005; Uhlen
et al., 2015) was used to select genes encoding proteins secreted
in plasma by any of the analyzed tissues (adrenal gland,
hypothalamus, liver, muscle and pituitary).

Key Regulators
In order to identify key regulatory genes to be included in the
co-expression network, a list of genes were obtained from the
Animal Transcription Factor Database 2.05 (Zhang et al., 2015)
and it was compared to a set of potential target genes in each
tissue, composed of the categories: TS, DE, harboring SNPs and
secreted. The analysis was based on regulatory impact factor
metrics (Reverter et al., 2010), which comprises a set of two
metrics designed to assign scores to regulator genes consistently
differentially co-expressed with target genes and to those with
the most altered ability to predict the abundance of target genes.
Those scores deviating± 1.96 standard deviation from the mean
(corresponding to P < 0.05) were considered significant. Genes
presenting mean expression value less than the mean of all genes
expressed were not considered in this analysis.

Some of the genes selected by the categories above were
represented by more than one Ensembl ID. Those duplications
were removed for further analysis, keeping only the expression
value of the most meaningful Ensembl ID. Additionally, genes
with mean expression across the samples equal to zero were also
removed from further analysis.

Co-expression Network Analysis
For gene network inference, genes selected using the five
categories described previously were used as nodes and
significant connections (edges) between them were identified
using the Partial Correlation and Information Theory (PCIT)
algorithm (Reverter and Chan, 2008), considering all animals and
all tissues. PCIT determinates the significance of the correlation
between two nodes after accounting for all the other nodes in the
network. Connections between gene nodes were accepted when
the partial correlation was greater than two standard deviations
from the mean (P < 0.01). The output of PCIT was visualized on
Cytoscape Version 3.6.1 (Shannon et al., 2003).

2www.ncbi.nlm.nih.gov/pubmed/
3www.animalgenome.org/cgi-bin/QTLdb/index
4www.proteinatlas.org/humanproteome/secretome
5http://bioinfo.life.hust.edu.cn/AnimalTFDB/#!/

Network Validation Through
Transcription Factor Biding Motifs
Analysis
Using the regulatory impact factor metric (RIF) we prioritized key
regulator genes from gene expression data and predicted target
genes based on co-expression network. In order to assess whether
those target genes were enriched for motifs associated with the
top most connected regulators in the network with a DNA
binding domain (transcription factors – TF), we performed motif
discovery analysis in the set of co-expressed target genes (first
neighbors of the TF) using the i-cistarget method (Herrmann
et al., 2012) and i-Regulon v1.3, a Cytoscape plug-in (Janky
et al., 2014). These tools use humans (hg19) as the reference
species, therefore only genes with human orthology are assessed.
Then, to validate the binding of the identified genomic regions
by the TFs, we performed a region enrichment analysis across
experimentally available TF bound regions from ChiP-seq in
cell lines from the ENCODE consortium (1,394 TF binding site
tracks, Encode Project Consortium, 2012; Sloan et al., 2016).
Briefly, the tools evaluate whether there is an over-representation
of motifs in the set of co-expressed genes and across evolution.
We examined 10 kb upstream of the gene transcription start site
and their conservation in 7 vertebrate species, including cow.
Thus, the tools provide over-represented motifs across evolution,
allowing us to predict regulatory interactions TF to target gene
in cow. In our analysis, we performed motif discovery using
i-Regulon v1.3 (Janky et al., 2014) and i-cistarget database 3
(Herrmann et al., 2012), that is using their 9713 motif collection.
Both methods result in highly similar enrichments. Whereas
i-Regulon is a user-friendly method to deliver a regulatory
network, i-cistarget also yields the genomic position of the TF
binding in the genome. Both i-Regulon and i-cistarget can be
used to validate the TF binding on predicted genomic regions
in the human genome. The tool contains a collection of TF
ChIP-seq data in cell lines mostly from the ENCODE consortium
(1,394 TF binding tracks), 2003 Histone modifications from
the ENCODE consortium and Epigenomics roadmap and 908
Histone modification and open-chromatin. The tool allows
to perform an enrichment of the different human tracks at
the region level.

Finally, we converted identified enhancer regions into cow
coordinates and searched for regions of open-chromatin using
data from publicly available studies in cow tissues. Namely, cow
liver promoters and enhancer from Villar et al. (2015) (Array
Express Accession number E-MTAB-2633) and skeletal muscle
cow promoters from Zhao et al. (2015) (GSE61936). For MYOD1
and SMAD3 binding in myotubes and pro-B cells, data from
Mullen et al. (2011) was used (GEO: GSE21621); and for MYOD1
binding in primary myotubes, data from Cao et al. (2010) (GEO:
GSE20059) was used.

Differential Connectivity
In order to explore differentially connected genes between HFE
and LFE, two networks were created, one for each condition,
using the same methodology described before. Then, the number
of connections of each gene in each condition was computed and
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scaled so that connectivity varied from 0 to 1, making it possible
to compare the same gene in the two networks. The connectivity
in LFE group was subtracted from the connectivity in HFE group
and results deviating ± 1.96 standard deviation from the mean
were considered significant (P < 0.05).

Functional Enrichment
Functional enrichment analysis was performed on the online
platform GOrilla (Gene Ontology enRIchment anaLysis and
visuaLizAtion tool6), using all genes that passed FPKM filter as
background, hypergeometric test and multiple test correction
(FDR – false discovery rate). The human database was used
to take advantage of a more comprehensive knowledgebase
regarding gene functions. GO terms were considered significant
when Padj < 0.05. For genes in co-expression networks,
visualized using Cytoscape (Shannon et al., 2003), the functional
enrichment was performed with BiNGO plug-in (Maere et al.,
2005) using the same background genes and statistical test.
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