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Abstract

We prospectively studied the consequences of extensive antibiotic treatment on faecal car-

riage of antibiotic-resistant enterobacteria in a cohort of children with cystic fibrosis (CF)

and a cohort of children with cancer compared to healthy children with no or low antibiotic

exposure. The study was conducted in Norway in a low resistance prevalence setting. Sixty

longitudinally collected faecal samples from children with CF (n = 32), 88 samples from chil-

dren with cancer (n = 45) and 127 samples from healthy children (n = 70) were examined.

A direct MIC-gradient strip method was used to detect resistant Enterobacteriaceae by

applying Etest strips directly onto agar-plates swabbed with faecal samples. Whole genome

sequencing (WGS) data were analysed to identify resistance mechanisms in 28 multidrug-

resistant Escherichia coli isolates. The prevalence of resistance to third-generation cephalo-

sporins, gentamicin and ciprofloxacin was low in all the study groups. At inclusion the preva-

lence of ampicillin-resistant E. coli and trimethoprim-sulfamethoxazole-resistant E. coli in

the CF group compared to healthy controls was 58.6% vs. 28.4% (p = 0.005) and 48.3% vs.

14.9% (p = 0.001), respectively, with a similar prevalence at the end of the study. The preva-

lence of resistant enterobacteria was not significantly different in the children with cancer

compared to the healthy children, not even at the end of the study when the children with

cancer had been treated with repeated courses of broad-spectrum antibiotics. Children with

cancer were mainly treated with intravenous antibiotics, while the CF group mainly received

peroral treatment. Our observations indicate that the mode of administration of antibiotics
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and the general level of antimicrobial resistance in the community may have an impact on

emergence of resistance in intestinal enterobacteria during antibiotic treatment. The WGS

analyses detected acquired resistance genes and/or chromosomal mutations that explained

the observed phenotypic resistance in all 28 multidrug-resistant E. coli isolates examined.

Introduction

The worldwide increasing prevalence of antimicrobial resistance with decreased access to

effective antimicrobials has become one of the biggest health care challenges of our time [1, 2].

Use and overuse of antibiotics in humans is one of the main drivers of antibiotic resistance

although the relationship between human antimicrobial usage and resistance is complex [3, 4].

Several studies have documented an association between antibiotic use in humans and the

development of resistance both at a population level and in individuals [5–7].

During antibiotic treatment both pathogens and commensals are exposed to antibiotics.

Several studies have shown effects of antibiotic treatment on the human gut flora [8–10],

including selection of antibiotic-resistant enterobacteria [11]. Resistant endogenous entero-

bacteria may cause infections that are difficult to treat, and the gut microbiota may serve as a

reservoir for antibiotic resistance genes [12, 13]. These resistance genes may spread between

bacterial strains and species within the microbiome [14–16], between individuals, and to the

environment [17, 18].

The studies on effects of antibiotic treatment on intestinal bacteria have mainly revealed an

increased level of resistance during and after single courses of treatment [8, 11]. The studies

show that after antibiotic treatment, the susceptibility either returns to baseline levels shortly

after the cessation of therapy [11, 19], or there is a prolonged effect even after single courses

[20–22]. Given the fact that systematic, longitudinal studies of the consequences of long-time

extensive antibiotic exposure in infants and children are lacking, we have investigated the fae-

cal flora in children with cystic fibrosis (CF) and cancer, two patient groups known to receive

much antibiotic treatment. Healthy children were included as a control group. The prevalence

of antibiotic resistance was low in Norway during the study period [23].

CF is an inherited disease caused by mutations in the cystic fibrosis transmembrane conduc-

tance regulator (CFTR) gene leading to altered ion and water transport across apical cell mem-

branes in exocrine glands [24]. Viscous airway secretions and reduced mucociliary clearance

lead to frequent and chronic lung infections. Consequently, CF patients are repeatedly treated

with antibiotics from early childhood [25, 26]. Children with cancer are often treated with che-

motherapy that causes immunosuppression including neutropenia. This entails an increased

risk of severe invasive infections requiring repeated courses with broad-spectrum antibiotics.

The primary aim of this study was to investigate whether the prevalence of faecal carriage of

antibiotic-resistant enterobacteria is higher in children with CF or cancer compared to healthy

children with low antibiotic exposure in Norway. The secondary aim was to explore the

genetic determinants conferring antibiotic resistance in intestinal enterobacteria isolated from

these children.

Materials and methods

Study design, participants and clinical information

Serial faecal samples were collected from children with CF (n = 32, 2004–2007) and children

with cancer (n = 45, 1999–2000 and 2003–2005) treated at Oslo University Hospital, Oslo,
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Norway and from 70 healthy children in day-care centres and schools in Oslo (2000–2001 and

2006–2008). Age and gender distributions are shown in Table 1. CF patients were consecu-

tively included at regular outpatient visits, and the faecal samples were collected regardless of

clinical condition or on-going antibiotic treatment. Cancer patients were consecutively

included within one week after cancer was diagnosed. The first faecal sample was collected

regardless of prior or on-going antibiotic treatment, since such treatment often was initiated

prior to or shortly after admission to the hospital.

Inclusion criteria were children diagnosed with CF based on clinical symptoms and a posi-

tive sweat test and/or two identified CFTR mutations, children with newly diagnosed cancer

who received treatment with at least one course of anticancer chemotherapy, and healthy chil-

dren with no underlying chronic disease. The cancer diagnoses comprised 19 acute lympho-

blastic leukaemias, six acute myeloblastic leukaemias, six non-Hodgkin lymphomas, four

Wilms tumours, two primitive nevroectodermal tumours, and one each of ependymoma,

Ewing sarcoma, germinal cell tumour, Hodgkin lymphoma, opticus glioma, rhabdomyosar-

coma, rhabdoid kidney tumour and spindle-celled sarcoma.

For children with CF and cancer, the medical records were reviewed for antibiotic treat-

ment during the study period. In addition, parents in all three study groups were asked about

previous antibiotic treatment. Written, informed consent was obtained from the participants’

parents and from the participants themselves when 12 years or older. The study was approved

by the Regional Committee for Medical and Health Research Ethics–South East (“REK sør-

øst”) (reference number 581-06-03092).

Detection of resistant Enterobacteriaceae in faecal samples

The faecal samples were directly mixed with Carey-Blair transport medium and either sent by

mail or personally delivered to the laboratory. The samples were then plated out on lactose

agar plates and incubated at 35˚C (0–5 days after sampling). Bacterial growth (mainly Entero-
bacteriaceae) was noted, and morphologically different colonies were selected and identified.

Both primary growth and the identity of the selected bacteria were recorded for each sample.

Furthermore, the pure cultures and the faecal samples, mixed with Greaves‘freezing medium,

were frozen consecutively at -80˚C. For the present study a direct MIC-gradient strip method,

recently described by Gammelsrud et al. [27], was used to detect resistant Enterobacteriaceae
in the faecal samples. In short, the stool sample suspensions were thawed and swabbed directly

onto two 14 cm diameter Mueller-Hinton agar plates (Becton Dickinson, Sparks, MD, USA).

Six MIC-gradient strips (Etest, bioMeriéux, Marcy L’Étoile, France) were subsequently applied

directly onto each plate. The following 12 antibiotics were used; ampicillin, aztreonam, cefo-

taxime, cefoxitin, ceftazidime, ciprofloxacin, colistin, gentamicin, imipenem, tetracycline,

Table 1. Background information and faecal sample information on the children with cystic fibrosis, the children with cancer and the healthy

children.

Cystic fibrosis (n = 32) Cancer (n = 45) Healthy controls (n = 70) p-values

CF vs. HC C vs. HC

Age (year) [median (range) ] 5.9 (0.9–16.3) 4.3 (0.3–14.1) 5.5 (0.5–15.5) 0.91 0.23

Female gender [n (%)] 15 (46.9) 23 (51.1) 38 (54.3) 0.49 0.74

Months between first and last sample [median (range)] 9.1 (4.2–22.1) 8.0 (1.5–16.4) 13.4 (3.0–26.0) 0.02 <0.001

Individuals with two samplesa [n (%)] 28 (87.5) 43 (95.6) 57 (81.4) 0.45 0.03

CF, cystic fibrosis; C, cancer; HC, healthy controls.
a One sample obtained from the remaining individuals.

https://doi.org/10.1371/journal.pone.0187618.t001
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tobramycin and trimethoprim-sulfamethoxazole. All samples were also plated on a lactose

agar plate as growth control for comparison with the initial growth prior to the freezing. All

plates were incubated for 18–24 h at 35˚C in ambient air. Only Gram-negative bacteria were

further studied. In the case of growth within the Etest ellipses (due to assumingly more resis-

tant organisms than the dominant bacterial populations), 1–2 colonies of each morphotype

were selected from the ellipse area for species identification and further susceptibility testing.

To assess the dominant bacterial populations with confluent growth along the Etests, a loop-

full of growth next to the strip at the highest MIC value was inoculated onto a lactose agar

plate. One colony of each morphotype from this growth was also subsequently selected for spe-

cies identification and susceptibility testing. Species identification was done by the three-tube

fermentation method [28] or by MALDI-TOF MS (Bruker Daltonics, Bremen, Germany).

All selected isolates were tested against nine antibiotics (ampicillin, cefotaxime, ceftazidime,

ciprofloxacin, gentamicin, imipenem, meropenem, tetracycline and trimethoprim-sulfameth-

oxazole) by disk diffusion according to EUCAST (v 6.0 2016, www.eucast.org). For isolates

classified as intermediately susceptible, the final susceptibility category was confirmed using

Etest.

Whole genome sequencing (WGS) and assembling

To explore genetic determinants responsible for antibiotic resistance, WGS was applied on 28

Escherichia coli isolates. These were the E. coli isolates from the CF group (n = 10), the cancer

group (n = 5) and the control group (n = 2) displaying phenotypic resistance to one or more of

the following antibiotics: cefotaxime, ceftazidime, ciprofloxacin and gentamicin, and all other

E. coli isolates from the CF group (n = 11) simultaneously resistant to antibiotics from at least

three antimicrobial categories [29].

Genomic DNA was extracted using MagNa Pure 96 (Roche Diagnostics, Mannheim, Ger-

many) according to the manufacturer’s instructions. DNA concentrations were measured

using a Qubit fluorometer (Thermo Fisher Scientific, MA, USA) to determine DNA input for

each isolate. Libraries were prepared using KAPA HyperPlus Library Preparation Kit (Kapa

Biosystems, MA, USA). WGS was performed on the Illumina MiSeq platform using v 2 reagent

kits generating 2x250 bp paired-end reads (Illumina, San Diego, CA, USA). All isolates were

quality corrected and assembled using BayesHammer/SPAdes v 3.6.0. [30]. Assembly informa-

tion about the different isolates can be found in S1 Table.

Identification of genetic resistance determinants and multilocus

sequence typing (MLST) of E. coli

The assembled genomes were submitted to the web-based ResFinder service v 2.1 (Center

for Genomic Epidemiology, DTU, Denmark) to identify acquired resistance genes [31]. Hits

were accepted for matches with� 99% nucleotide identity and length of the query sequence

covering� 95% of the length of the gene in the database. If acquired resistance genes associ-

ated with the phenotypic resistance of the isolate were not found by ResFinder, Python scripts

were written to extract gyrA, gyrB, parC, parE and ampC genes. The quinolone resistance-

determining regions (QRDRs) of the gyrA, gyrB, parC and parE genes or the promoter and

attenuator regions of the ampC gene, as appropriate, were analysed to identify chromosomal

structural gene mutations by alignment using Seaview v 4.6.1. [32].

MLST of all the sequenced E. coli isolates was performed from WGS data by the web-based

MLST v 1.8 service (Center for Genomic Epidemiology, DTU, Denmark) [33], using two dif-

ferent E. coli MLST schemes [34, 35].
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Identification of resistance mechanisms in Enterobacteriaceae species

other than E. coli

Non-E. coli isolates with reduced susceptibility to third-generation cephalosporins were inves-

tigated for the phenotypic expression of extended-spectrum β-lactamases (ESBLs) and AmpC

using Etest combination gradient-strips (bioMeriéux, Marcy L’Étoile, France), combination

discs (AmpC confirm ID kit, Rosco Diagnostica, Taastrup, Denmark) and BD ESBL discs (BD

Diagnostic Systems, Sparks, USA).

Statistics

Pearson’s chi-square test was used when comparing categorical data in two groups, but

Fischer’s exact test was used when the overall sample size was <40 and the smallest expected

number was<5 in the 2x2 table analysis. Independent samples t-test was used when compar-

ing normally distributed continuous data in two groups (SPSS software, v 22.0). The signifi-

cance level was set to 5%.

Results

Faecal samples and enterobacterial species distribution

The total number of faecal samples collected from each participant differed from one to 15

(median three). From some of the samples there was no growth of Gram-negative enterobacte-

ria despite several attempts to inoculate the faecal specimens on different agars, possibly due to

recent or on-going antibiotic exposure. For this study, the first and the last faecal sample that

showed growth of Enterobacteriaceae from each participant were included. From four children

with CF, two children with cancer and 13 healthy controls, we either received only one faecal

sample or only one of the submitted samples showed enterobacterial growth. In all, 29 CF

patients, 44 cancer patients and 67 healthy controls submitted samples with growth of entero-

bacteria at the time of inclusion (first sample), whereas 31 CF patients, 44 cancer patients and

60 controls submitted samples with enterobacterial growth at the end of the study period (last

sample). Sample information is presented in Table 1.

The observed growth of enterobacteria on the lactose agar after storage of the faecal samples

was in high agreement with the primary growth before freezing of the samples.

From each sample, 0–5 phenotypically different isolates of Enterobacteriaceae species were

detected. The proportions of the faecal samples from the three study groups with growth of dif-

ferent enterobacterial species are shown in Table 2.

Antibiotic consumption

Children with CF or cancer. Children in both patient groups received numerous antibi-

otic courses during the study period, but the treatment pattern differed significantly between

these two groups, as shown in Fig 1. For detailed information, see S2 Table. Aminopenicillin

was almost exclusively administered intravenously (ampicillin) to the cancer patients, whilst

given orally (amoxicillin) to the CF patients. Seventy percent of the cancer patients received

prophylaxis against Pneumocystis jirovecii with trimethoprim-sulfamethoxazole 2–3 days per

week. Prophylactic treatment was not given to any CF patient. Five of the CF patients were

treated with inhaled tobramycin while six received inhaled colistin during the study period.

No cancer patient received inhaled antibiotics. Parents of cancer patients reported antibiotic

treatment before the cancer diagnosis for 26 of the 45 children (58%). Eight of them were

treated within two months prior to inclusion in the study, and 33 cancer patients received anti-

biotics after study inclusion, but prior to the first faecal sample. This treatment is included in
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Fig 1 and S2 Table. All the CF patients had received multiple courses of antibiotics prior to the

study, but this is not included in Fig 1 and S2 Table.

Healthy controls. According to parental information, a total of 37 of the 70 healthy chil-

dren (53%) had never been treated with antibiotics prior to or during the study period. The

remaining 33 children had received mainly a single course or a few courses of peroral

Table 2. Growth of different Enterobacteriaceae species in faecal samples from 32 children with cystic fibrosis, 45 children with cancer and 70

healthy childrena.

CF, n/N (%) Cancer, n/N (%) Healthy controls, n/N (%) p-values

CF vs. HC C vs. HC

E.coli

First sample 26/29 (89.7) 41/44 (93.2) 63/67 (94.0) 0.45 0.86

Last sample 30/31 (96.8) 37/44 (84.1) 58/60 (96.7) 0.98 0.02

Klebsiella spp.

First sample 17/29 (58.6) 15/44 (34.1) 14/67 (20.9) <0.001 0.12

Last sample 16/31 (51.6) 13/44 (29.5) 9/60 (15.0) <0.001 0.07

Enterobacter spp.

First sample 9/29 (31.0) 10/44 (22.7) 8/67 (11.9) 0.02 0.13

Last sample 8/31 (25.8) 12/44 (27.3) 10/60 (16.7) 0.30 0.19

Citrobacter spp.

First sample 5/29 (17.2) 5/44 (11.4) 11/67 (16.4) 0.92 0.46

Last sample 8/31 (25.8) 6/44 (13.6) 9/60 (15.0) 0.21 0.85

Other Enterobacteriaceae spp.b

First sample 9/29 (31.0) 3/44 (6.8) 8/67 (11.9) 0.02 0.38

Last sample 9/31 (29.0) 6/44 (13.6) 2/60 (3.3) <0.001 0.05

CF, cystic fibrosis; C, cancer; HC, healthy controls.
a The total number (N) of first samples and last samples differ within each study group because some individuals submitted only one faecal sample with

enterobacterial growth, either at the inclusion or at the end of the study period.
b Hafnia alvei, Proteus spp., Morganella morganii, Yersinia enterocolitica, Kluyvera intermedia

https://doi.org/10.1371/journal.pone.0187618.t002

Fig 1. Antibiotic treatment in 31 children with cystic fibrosis (CF) and 44 children with cancer. (A)

Median (range, shown inside the columns) number of days per calendar year with antibiotic treatment in the

study period among patients who received at least one course of treatment. For some antibiotics, median

number of days is not shown (NS) due to no or only one or two patients treated. (B) Number of patients (%) in

each patient group treated with at least one course of the antibiotic. For one of the 32 CF patients and for one

of the 45 cancer patients included in the study no antibiotic treatment was registered since a faecal sample

was provided only at the time of inclusion into the study. ^Amoxicillin was only administered orally and

ampicillin was only administered intravenously. *Prophylactic treatment given to cancer patients is not

included.

https://doi.org/10.1371/journal.pone.0187618.g001
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phenoxymethylpenicillin, amoxicillin or erythromycin. The antibiotic treatment in each of the

healthy children is shown in S3 Table. Nine (13%) of the healthy children had received antibi-

otic treatment within a year before the first study sample, including four treated during the last

two months. Five children (7.1%) received antibiotics during the study period including four

less than one year but only one less than two months prior to the last sample.

Prevalence of antibiotic resistance

Table 3 shows the prevalence of E. coli and all enterobacterial species combined (including E.

coli) resistant to the antibiotics tested in the two faecal samples from our three study groups.

No significant difference between the first and the last sample was observed for any of the

tested antibiotics in any of the three groups.

Children with cancer. The prevalence of E. coli and all Enterobacteriaceae species com-

bined, resistant to the antibiotics tested was not significantly different in the children with can-

cer compared to the healthy children in any of the two samples (Table 3).

Children with CF. The prevalence of ampicillin-resistant and trimethoprim-sulfamethox-

azole-resistant E. coli and Enterobacteriaceae species combined was significantly higher in the

CF group compared to the healthy children (Table 3).

Within the CF group the relative risk (RR) of harbouring trimethoprim-sulfamethoxazole-

resistant Enterobacteriaceae in the last faecal sample was 1.83 (95%CI 1.11–3.02) in those

treated with trimethoprim-sulfamethoxazole during the last 60 days compared to those not

treated. Other statistically significant correlations between antibiotic exposure and antibiotic

resistance were not found for any antibiotics in any of the two patient groups.

Healthy controls. Enterobacteria with resistance to the same type of antibiotic that the

children had been treated with, were detected in only three of the 13 samples that were col-

lected from the healthy children less than one year after the antibiotic treatment. These were

ampicillin-resistant E. coli isolates detected in samples from children that had received

amoxicillin.

No carbapenem-resistant E. coli or other Enterobacteriaceae species were found in any of

the three study groups.

The prevalence of E. coli resistant to ampicillin and trimethoprim-sulfamethoxazole was

not significantly different in children younger than four years compared to children older than

four years in any of the three study groups (Table 4). A shift in ampicillin and trimethoprim-

sulfamethoxazole susceptibility in E. coli between the first and the last sample (resistant isolates

detected in the last sample but not in the first sample or vice versa) was observed in children

from all the study groups (Table 5).

Antibiotic resistance mechanisms

To investigate the mechanisms behind the observed resistance in E. coli isolates, 28 isolates

were genome sequenced and WGS data were analysed for acquired resistance genes and spe-

cific chromosomal mutations (Table 6, S4 Table). Resistance to ampicillin and third-genera-

tion cephalosporins was mainly due to the presence of narrow-spectrum β-lactamases (blaTEM-

1), ESBLs (blaCTX-M-1 and blaSHV-2) or plasmid-mediated AmpC (blaCMY-7) [36]. In two iso-

lates resistant to third-generation cephalosporins, but devoid of acquired ESBLs, previously

described blaAmpC promoter mutations (-42:C->T and -18:G->A) [37] were identified. One

or two dfrA genes in combination with one or two sul genes were found in all isolates resistant

to trimethoprim-sulfamethoxazole [38] and at least one of the tetracycline efflux genes tet(A),
tet(B) or tet(D) were found in all tetracycline-resistant isolates [39]. Two gyrA mutations (Ser-

83-Leu and Asp-87-Asn) and at least one parC mutation (Ser-80-Ile or Glu-84-Val) were
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Table 3. Prevalence of antibiotic-resistant isolates of Escherichia coli and all Enterobacteriaceae species combined (including E. coli) in the first

and the last faecal sample from children with cystic fibrosis, cancer and healthy controls (one or more resistant isolates per sample)a.

CF, n/N (%) Cancer, n/N (%) Healthy controls, n/N (%) p-values

CF vs. HC C vs. HC

Ampicillin

E. coli

First sample 17/29 (58.6) 12/44 (27.3) 19/67 (28.4) 0.005 0.90

Last sample 19/31 (61.3) 17/44 (38.6) 20/60 (33.3) 0.01 0.58

All Enterobacteriaceae spp.

First sample 24/29 (82.8) 27/44 (61.4) 36/67 (53.7) 0.007 0.43

Last sample 28/31 (90.3) 29/44 (65.9) 34/60 (56.7) 0.001 0.34

Trimethoprim-sulfamethoxazole

E. coli

First sample 14/29 (48.3) 8/44 (18.2) 10/67 (14.9) 0.001 0.65

Last sample 14/31 (45.2) 12/44 (27.3) 11/60 (18.3) 0.007 0.28

All Enterobacteriaceae spp.

First sample 15/29 (51.7) 9/44 (20.5) 10/67 (14.9) <0.001 0.45

Last sample 18/31 (58.1) 14/44 (31.8) 11/60 (18.3) <0.001 0.11

Tetracycline

E. coli

First sample 13/29 (44.8) 9/44 (20.5) 15/67 (22.4) 0.03 0.81

Last sample 9/31 (29.0) 9/44 (20.5) 16/60 (26.7) 0.81 0.46

All Enterobacteriaceae spp.

First sample 16/29 (55.2) 12/44 (27.3) 17/67 (25.4) 0.005 0.82

Last sample 14/31 (45.2) 11/44 (25.0) 18/60 (30.0) 0.07 0.57

Cefotaxime and/or Ceftazidime

E.coli

First sample 1/29 (3.4) 2/44 (4.5) 0/67 0.13 0.08

Last sample 2/31 (6.5) 1/44 (2.3) 0/60 <0.05 0.24

All Enterobacteriaceae spp.

First sample 1/29 (3.4) 4/44 (9.1) 3/67 (4.5) 0.82 0.33

Last sample 2/31 (6.5) 4/44 (9.1) 3/60 (5.0) 0.77 0.41

Ciprofloxacin

E.coli

First sample 2/29 (6.9) 1/44 (2.3) 1/67 (1.5) 0.16 0.76

Last sample 1/31 (3.2) 1/44 (2.3) 0/60 0.16 0.24

All Enterobacteriaceae spp.

First sample 2/29 (6.9) 1/44 (2.3) 1/67 (1.5) 0.16 0.76

Last sample 1/31 (3.2) 1/44 (2.3) 0/60 0.16 0.24

Gentamicin

E.coli

First sample 1/29 (3.4) 1/44 (2.3) 2/67 (3.0) 0.91 0.82

Last sample 1/31 (3.2) 1/44 (2.3) 0/60 0.16 0.24

All Enterobacteriaceae spp.

First sample 1/29 (3.4) 1/44 (2.3) 2/67 (3.0) 0.91 0.82

Last sample 1/31 (3.2) 1/44 (2.3) 0/60 0.16 0.24

CF, cystic fibrosis; C, cancer; HC, healthy controls.
a The total number (N) of first samples and last samples differ within each study group because some individuals submitted only one faecal sample with

enterobacterial growth, either at the inclusion or at the end of the study period.

https://doi.org/10.1371/journal.pone.0187618.t003
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detected in the QRDRs in all seven ciprofloxacin-resistant isolates [40]. No plasmid-mediated

resistance genes associated with quinolone resistance were detected. Variants of aac genes or

the aadB (= ANT(2”)-1a) gene were detected in the gentamicin-resistant isolates [41].

Phenotypic analysis of the identified Enterobacteriaceae species other than E. coli with

reduced susceptibility to third-generation cephalosporins showed that all were negative for the

presence of ESBLs. Details can be found in S5 Table.

The overall prevalence (in the first and/or the last faecal sample) of Enterobacteriaceae car-

rying acquired ESBLs was 1/32 (3.1%) in the CF group and 2/45 (4.4%) in the cancer group.

No ESBL-producing enterobacteria were detected in the healthy control group.

E. coli MLST analyses

MLST data from the 28 sequenced E. coli isolates are shown in S4 Table. Isolates with identical

sequence type (ST69) were detected in samples from two different individuals (both with CF)

on only one occasion. Five isolates carrying blaCTX-M-1 isolated from one single CF patient

comprised three sequence types (STs); two different STs (ST1640 and ST6331) were detected

in the first sample, and the same two STs in addition to a third ST (ST2144) were detected in

the last sample.

Discussion

In this study we compared the prevalence of faecal carriage of resistant enterobacteria in two

different patient groups of children with high antibiotic exposure to a group of healthy chil-

dren with low or no known previous antibiotic exposure. We found the prevalence of

Table 4. Prevalence of ampicillin-resistant and trimethoprim-sulfamethoxazole-resistant E. coli in faecal samples from two age groups (younger

or older than 4 years) of patients with cystic fibrosis, cancer and healthy controls (first study sample).

Antibiotic resistance Study groups < 4 years, n/N (%) > = 4 years, n/N (%) p-value

Ampicillin Cystic fibrosis 7/12 (58.3) 10/17 (58.8) 1.0

Cancer 4/21 (19.0) 8/23 (34.8) 0.24

Healthy controls 6/20 (30.0) 13/47 (27.7) 0.85

Trimethoprim-sulfamethoxazole Cystic fibrosis 6/12 (50.0) 8/17 (47.1) 0.88

Cancer 2/21 (9.5) 6/23 (26.1) 0.16

Healthy controls 2/20 (10.0) 8/47 (17.0) 0.46

https://doi.org/10.1371/journal.pone.0187618.t004

Table 5. Occurrence of shift in ampicillin and trimethoprim-sulfamethoxazole susceptibility in faecal Escherichia coli between the first and the

last faecal sample collected from children with cystic fibrosis, cancer and healthy controls.

No resistant isolates in the first

sample, resistant isolates in the

last sample, n/N (%)

Resistant isolates in the first

sample, no resistant isolates in the

last sample, n/N (%)

Same resistance pattern in

the first and the last sample,

n/N (%)

Ampicillin- resistance Cystic

fibrosis

7/28 (25.0) 6/28 (21.4) 15/28 (53.6)

Cancer 8/43 (18.6) 2/43 (4.7) 33/43 (76.7)

Healthy

controls

10/57 (17.5) 7/57 (12.3) 40/57 (70.2)

Trimethoprim-

sulfamethoxazole-

resistance

Cystic

fibrosis

3/28 (10.7) 5/28 (17.9) 20/28 (71.4)

Cancer 6/43 (14.0) 2/43 (4.7) 35/43 (81.4)

Healthy

controls

8/57 (14.0) 6/57 (10.5) 43/57 (75.4)

https://doi.org/10.1371/journal.pone.0187618.t005
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resistance against ampicillin and trimethoprim-sulfamethoxazole to be significantly higher in

the children with CF compared to the healthy children (Table 3). In the last faecal samples col-

lected at the end of the study, the prevalence of ampicillin-resistant E. coli was 61.3% and the

prevalence of trimethoprim-sulfamethoxazole-resistant E. coli was 45.2% in the CF group, sig-

nificantly higher than in the group of healthy children (33.3% and 18.3%, respectively). Sur-

prisingly, the prevalence of antibiotic-resistant enterobacteria was not significantly different in

the children with cancer as compared to the healthy children, not even at the end of the study

period when the children with cancer had been treated with repeated courses of broad-spec-

trum antibiotics.

The level of enterobacterial resistance was low in Norway in the period the study samples

were collected [23]. The prevalence of resistant faecal E. coli in the group of healthy children in

our study was similar to the level of resistance in clinical E. coli isolates from urinary tract

infections reported from the Norwegian Surveillance System for Antimicrobial Drug Resis-

tance [23]. The prevalence of faecal E. coli resistant to ampicillin, trimethoprim-sulfamethoxa-

zole, tetracycline, ciprofloxacin or third-generation cephalosporins in the control group was

also at the same level as the corresponding pooled prevalence of resistant, faecal E. coli in chil-

dren in countries within the Organisation for Economic Co-operation and Development

(OECD) [22]. Fifty-three percent of the children in the healthy control group had never been

treated with antibiotics and the majority of the other children had received only a single or

very few courses of phenoxymethylpenicillin, amoxicillin or erythromycin more than one year

prior to inclusion in the study, based on the parents reporting of drug use (S3 Table). We

detected enterobacteria that were resistant to the same antibiotic that the child had been

Table 6. Genotypic resistance mechanisms identified in 28 resistant Escherichia coli isolates from faecal samples from children with cystic fibro-

sis (21 isolates), cancer (5 isolates) and healthy children (2 isolates).

Phenotypic resistance Number of isolates Acquired resistance genes Chromosomal mutations

Ampicillin and third-

generation

cephalosporins

28 ampicillin-resistant (21 CF, 5 C,

2 HC), 10 third-generation

cephalosporin-resistant (6 CF, 4

C)

blaTEM-1 (21 isolates), blaCTX-M-1 (5

isolates)a, blaSHV-2 (1 isolate), blaCMY-7

(2 isolates)b

ampC promoter mutations: -42: C!T and -18:

G!A (2 isolates)

Trimethoprim-

sulfamethoxazole

22 (18 CF, 3 C, 1 HC) dfrA1 (5 isolates), dfrA7 (3 isolates),

dfrA12 (1 isolate), dfrA14 (3 isolates),

dfrA17 (12 isolates)c + sul1 (16 isolates),

sul2 (19 isolates)d

Tetracycline 21 (17 CF, 2 C, 2 HC) tet(A) (14 isolates), tet(B) (7 isolates), tet

(D) (2 isolates)e

Gentamicin 7 (2 CF, 3 C, 2 HC) aac(3)-IIa (1 isolate), aac(3)-IId (4

isolates)b, aac(3)-IVa (1 isolate), aadB (1

isolate)

Ciprofloxacin 7 (3 CF, 3 C, 1 HC) 2 gyrA mutations: Ser-83-Leu, Asp-87-Asn (7

isolates)b + 1 parC mutation: Ser-80-Ile (6

isolates)b or 2 parC mutations: Ser-80-Ile, Glu-

84-Val (1 isolate)

CF, cystic fibrosis; C, cancer; HC, healthy children
a The five isolates harbouring the blaCTX-M-1 gene were isolated from one CF patient and represented two different E. coli sequence types (STs) from the

first faecal sample and the same two STs plus an additional ST from the last sample collected.
b Two of the isolates from one cancer patient represented the same E. coli ST but with different tetracycline susceptibility patterns.
c Two different dfrA genes were found in two of the isolates.
d Both the sul1 and the sul2 gene were found in 13 of the isolates.
e Two different tet genes were found in two of the isolates.

Detailed information about each of the isolates can be found in S4 Table.

https://doi.org/10.1371/journal.pone.0187618.t006
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treated with in only three of the 13 faecal samples that were collected less than one year after

antibiotic exposure. Thus, it seems that this previous, often Gram-positive spectrum, antibiotic

treatment had little or no impact on the overall level of antibiotic resistance in the group of

healthy children, justifying the use of these children as a control group in our study. We found

no significant difference in the prevalence of ampicillin- and trimethoprim-sulfamethoxazole-

resistant E. coli when we compared children younger or older than four years of age within any

of our three study groups, indicating that resistant faecal E. coli is established at an early age, in

accordance with previous studies [42–44].

In one small study the prevalence of amoxicillin-resistant Enterobacteriaceae in faecal sam-

ples from two children with CF was higher than in samples from their healthy siblings [45].

Only two other studies have investigated the prevalence of resistant faecal enterobacteria in

CF patients, reporting no increase in resistance after treatment with ciprofloxacin and ceftazi-

dime, respectively [46, 47]. Other studies, in other patient groups or healthy volunteers, have

reported an increase in resistant bacteria in stools after antibiotic exposure [8, 11, 22, 48]. The

significantly higher prevalence of ampicillin- and trimethoprim-sulfamethoxazole-resistant

enterobacteria in CF patients in our study is likely due to their large exposure to these antibiot-

ics; 55% of the CF patients were treated with per oral amoxicillin for a median of 19 days per

calendar year during the study period, and 65% were treated with trimethoprim-sulfamethoxa-

zole for a median of 60 days. We also found a relative risk (RR) of 1.83 (95%CI 1.11–3.02) for

carrying trimethoprim-sulfamethoxazole-resistant enterobacteria in the last faecal sample in

CF patients treated with trimethoprim-sulfamethoxazole within the last 60 days as compared

to those not treated. Selection of resistant bacteria during antibiotic treatment is the most likely

mechanism causing the higher presence of resistant faecal enterobacteria in children with CF,

and facilitation of horizontal transfer of resistance genes during antibiotic exposure may also

have occurred [15, 49].

Most of our CF patients had received substantial amounts of antibiotics prior to inclusion

in the study. This may explain why the prevalence of resistance was at the same level in the

first and last sample in the CF group (Table 3). However, a shift in susceptibility patterns

between the first and the last sample was noticed for ampicillin-resistant and trimethoprim-

sulfamethoxazole-resistant E. coli in children from all three study groups (Table 5). This

reflects the dynamic nature of the faecal flora and clearly underlines the importance of longitu-

dinal studies.

Although 84% of the children with cancer were treated with intravenous ampicillin for a

median of 29 days per year during the study period, the occurrence of ampicillin resistance

was not significantly higher in the cancer patients as compared to the healthy controls at the

end of the study period. This may indicate that aminopenicillin administered intravenously

has only a modest effect on selection of intestinal resistance and possibly less impact than oral

administration, which was the main route of administration of aminopenicillin to children

with CF (Fig 1, S2 Table). This is supported by Zhang et al. who demonstrated a much greater

increase of faecal, resistant bacterial populations in mice after oral ampicillin administration

compared to intravenous administration [50]. Ampicillin is mainly excreted by the kidneys,

and biliary excretion is of minor importance [51]. Thus, the ampicillin exposure of the gut

flora during parenteral administration seems far less than with per oral treatment. Some older

studies have shown increased prevalence of faecal ampicillin-resistant enterobacteria associ-

ated with intravenous administration of ampicillin in neonates [52, 53]. However, the studies

of the effect of aminopenicillin treatment on the gut flora have almost exclusively investigated

peroral drug administration [8]. Clinical studies comparing the impact of intravenous versus

peroral administration of antibiotics on the gut flora are lacking. The present study was not

designed to evaluate the effect of intravenous versus peroral administration of antibiotics on
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resistance in the faecal flora. Also, a comparison of the effect of antibiotic treatment in children

with CF (mainly oral) and children with cancer (mainly intravenous) on antibiotic resistance

in faecal bacteria could not be performed since these two groups represent very different dis-

eases and antibiotic treatment strategies, including spectre of antibiotics used and duration of

treatment. Repeated courses of antibiotics given to the children with CF from a young age

probably have an impact on the higher prevalence of faecal carriage of resistant enterobacteria

that was found in these children in our study.

Tetracycline-resistant E. coli and other Enterobacteriaceae were detected in all three study

groups (Table 3). Treatment with tetracycline is contraindicated in children below the age of

eight years due to the risk of discolouration of the teeth and effects on bone growth, and no

child in our study had ever been treated with tetracyclines. The high level of tetracycline resis-

tance without any apparent selection pressure from tetracycline exposure is indicative of trans-

fer of tetracycline-resistant strains and/or genetic elements from environmental sources.

Several studies have documented faecal carriage of tetracycline-resistant strains in children,

including infants [22, 54].

The prevalence of resistance to third-generation cephalosporins was not higher in the can-

cer group (in whom 66% of the children were treated for a median of 31 days per calendar year

with this class of antibiotics) as compared to the untreated healthy children. de Man et al.

detected a high risk of colonisation with enterobacteria resistant to cefotaxime in neonates

treated with intravenous amoxicillin plus cefotaxime [48]. Prevot et al. found that intestinal

colonization with cefotaxime-resistant Enterobacteriaceae in oncological patients was strongly

associated with individual exposure to cefotaxime [55]. Except for this, few studies have actu-

ally documented a correlation between third-generation cephalosporin treatment and faecal

carriage of resistance to these agents in individuals. The difference in the prevalence of third-

generation cephalosporin-resistant E. coli between the CF group and the control group barely

reached statistical significance in the last faecal sample (Table 3). The overall number of resis-

tant isolates was however low, and E. coli isolates carrying acquired ESBL genes were detected

in samples from only one single CF patient and from two cancer patients. The low level of

third-generation cephalosporin-resistance in E. coli as well as in other Enterobacteriaceae in

our study corresponds well with surveillance program reports from Norway during the same

time period [23]. We speculate that low resistance rates in the community may be of impor-

tance for the low level of selection of third-generation cephalosporin-resistant strains observed

in our two patient groups treated with these agents.

The prevalence of gentamicin resistance was low in all the study groups, including the

group of cancer patients in whom 84% of the children had been treated with aminoglycosides

for a median of 33.5 days per year in the study period. Aminoglycosides are primarily excreted

by the kidneys and less than 1% is eliminated in the faeces [56]. This may explain why no effect

of aminoglycoside treatment on enterobacterial resistance was detected in our study.

Samples growing Klebsiella spp. and some of the other non-E. coli enterobacterial species

were significantly more prevalent in the CF group compared to controls (Table 2). These spe-

cies are intrinsically resistant to some antibiotics, including ampicillin [57], and thus have a

selective advantage and may emerge during amoxicillin treatment.

Analyses of WGS data detected the presence of resistance determinants that explained the

observed phenotypic resistance in all 28 E. coli isolates examined in this study. This included

mutations (-42:C->T, -18:G->A) in the promoter region of the chromosomal ampC gene in

two isolates resistant to third-generation cephalosporins. The -42:C->T nucleotide change has

been shown to increase ampC expression 22-fold compared to wild-type E. coli [37]. Two pre-

viously described gyrA mutations and one or two parC mutations were detected in all the cip-

rofloxacin-resistant isolates (Table 6 and S4 Table); in accordance with other studies that
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reported that more than one gyrA mutation confer phenotypic ciprofloxacin resistance [40,

58].

The MLST-analyses showed no clustering of isolates that could indicate patient-to-patient

transfer or an outbreak. The observation of E. coli isolates of different STs in the same patient,

all harbouring blaCTX-M-1, indicates transfer of a mobile genetic element carrying this resis-

tance gene between E. coli strains in the gut of the individual patient. This within-host diversity

has previously been shown for ESBL-producing E. coli [59, 60].

Our study has some limitations. The children with cancer comprised a very heterogeneous

group of malignant diseases that vary in treatment intensity and duration. This probably influ-

ences the risk of acquiring infections and the level of antibiotic exposure within this study

group. The number of individuals within each of the different malignancies was too small to

perform subgroup analyses of antibiotic exposure and resistance. Further, we cannot exclude

that repeated exposures to cytostatic chemotherapy per se also have an impact on the gut flora,

including the level of resistance. Studies on this issue are lacking, although some researches

have studied the effects of antineoplastic drugs, alone or in combination with antibiotics, on

bacterial growth in vitro, with conflicting results [61–64].

The faecal samples in this study were collected several years ago, and an obvious limitation

of our study is lack of data from the present time period. However, the low level of resistance

in Norway at the time of the study [23], allowed us to evaluate the impact of the antibiotic

treatment with minor influence of influx of resistance from the surroundings. Nevertheless, a

replication of such a study in Norway at present would be of great interest. Another limitation

of the study is the comparatively small number of children with CF and cancer included, both

being relatively rare diseases. Thus, the lack of statistically significant correlations between

antibiotic treatment and occurrence of antibiotic resistance in our study may be due to too low

power to study the effect of exposure to each individual antibiotic within each patient group.

Conclusions

In this study we found that the prevalence of faecal carriage of enterobacteria resistant to ampi-

cillin and trimethoprim-sulfamethoxazole was significantly higher in children with CF as com-

pared to healthy children. A likely explanation is a selection pressure from treatment with

large amounts of these antibiotics in the CF patients. However, the prevalence of resistant fae-

cal enterobacteria was not higher in children with cancer after repeated courses of mainly

intravenous antibiotic treatment compared to healthy children with no or a very low level of

antibiotic exposure. The level of enterobacterial resistance to third-generation cephalopsorins,

ciprofloxacin and gentamicin was low in all three study groups. We speculate whether the

mode of administration of antibiotics and the level of antimicrobial resistance in the com-

munity may have an impact on emergence of resistance in intestinal enterobacteria during

antibiotic treatment. Further studies comparing the effect of intravenous versus peroral

administration of antibiotics on the gut flora are needed to assess such a hypothesis. WGS

analyses detected acquired resistance genes and/or chromosomal mutations that explained the

observed phenotypic resistance in 28 examined multidrug-resistant E. coli isolates.
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