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Almost 8% of the human genome comprises endogenous retroviruses (ERVs).

While they have been shown to cause specific pathologies in animals, such as

cancer, their association with disease in humans remains controversial. The

limited evidence is partly due to the physical and bioethical restrictions sur-

rounding the study of transposons in humans, coupled with the major

experimental and bioinformatics challenges surrounding the association of

ERVs with disease in general. Two biotechnological landmarks of the past

decade provide us with unprecedented research artillery: (i) the ultra-fine

sequencing of the human genome and (ii) the emergence of high-throughput

sequencing technologies. Here, we critically assemble research about potential

pathologies of ERVs in humans. We argue that the time is right to revisit the

long-standing questions of human ERV pathogenesis within a robust and care-

fully structured framework that makes full use of genomic sequence data. We

also pose two thought-provoking research questions on potential pathophysio-

logical roles of ERVs with respect to immune escape and regulation.
1. Introduction
Transposable elements (TEs) comprise almost half of the human genome. A signifi-

cant proportion of them (almost 8% of the human genome) are the descendants of

occasional germline invasions by exogenous retroviruses (XRVs) [1,2]. We call them

endogenous retroviruses (ERVs) and they can be identified as DNA segments

within animals’ germline genomes that are similar to known retroviral sequences.

More than 10 years have passed since the first complete human genome

sequence [3], and thousands of full human genome sequences have since

become available [4]. One might think that we now have the technology to

understand the role, if any, of ERVs in disease. However, mapping individual

ERVs to their genomic positions remains a major experimental and biocomput-

ing challenge, whereas studies of human ERV (HERV) expression are small

with no clear consensus [5,6]. The fact that extensive research on HERVs has

not shown clear pathologies, in contrast to ERVs in several other animals,

suggests that research in HERVs still needs to be performed, but only within

a rigorous and robust experimental framework. We argue that researchers

have been ‘there’ (i.e. searched for potential pathogenic roles of ERVs) and

failed likely owing to technological restrictions and fragmentary knowledge

of cancer and autoimmunity, but now it is time to ‘go back again’.

Here, we summarize what we consider to be the most promising lines of

ERV research that might illuminate the role of HERVs in pathophysiology.

We emphasize the most important questions of the role of HERVs on human

pathophysiology and describe some of the challenges that need to be tackled

in order to have clearer understanding of HERVs’ ecology. We start with a

brief introduction to ERV taxonomy and the most important HERV families.
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Figure 1. Population genetics of endogenous retroviruses. It has been suggested that ERVs that we currently identify in animal genomes are the result of ancient
retroviral epidemics. Thus, the first step of ERV colonization involves the establishment of an epidemic in a susceptible population. Endogenization starts when
retroviruses integrate into the host’s germline and pass to the offspring through inheritance. The copies of the ERV in the germline constitute a family and
may increase through time (ERV activity). Some of these copies become extinct or drift to fixation (i.e. every individual has the same locus).
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2. Classification of endogenous retroviruses
The classification system of ERVs divides them into three classes

(I, II, III) [7]. If the XRVs were included based on their phylogeny,

then class I would include the gammaretroviruses, II the beta-

retroviruses and III the spumaviruses. Well-defined groups

within these classes determined by phylogenetic analysis are

termed ‘families’. These families generally represent a single

invasion followed by a copy-number expansion within the

host’s genome [8]. ERV families have traditionally been named

after the amino acid carried by the tRNA complementary to

the primer binding site (PBS) of the ERV genome. This nomen-

clature still holds for historical reasons, even if members of the

same family do not have the same PBS complementary to the

amino acid that names their family [9]. HERVs are classified

into 31–40 families [10,11].
3. ‘Popular’ human endogenous retrovirus
families

(a) HERV-T: the typical
HERV-T is a typical example of a small-to-medium-sized

HERV family (approx. 60 copies or loci) in the human

genome; others include HERV-S, HERV-K(HML5) and

HERV-P. Most of these typical families have fewer than

approximately 80 copies, an env gene and proliferate primarily

by reinfection in the human genome (rather than retrotranspo-

sition or complementation) [12,13]. They have largely ceased

generating new loci since approximately 35 Ma. Consistent

with this observation is that the phylogenetic trees are star-

like [14], indicating that ancient proliferation was followed

by cessation of activity for tens of millions of years (figure 1).

(b) HERV-L: the old
The oldest ERV family in the human genome is HERV-L. This

family has members across a wide range of mammalian species,
and is therefore believed to have infected the common ancestor

of mammals [15]. The most striking characteristic of this ERV

is that no one has ever found an env gene, meaning that it has

been replicating through retrotransposition. ERV-L had bursts

of replication in the mouse, the simian clade of primates and

most recently in the elephant [15]. In humans, HERV-L ceased

replicating approximately 30–40 Ma.

(c) HERV-H: the abundant
The most abundant ERV family in humans is HERV-H, which

accounts for about one-third of pol-containing ERV loci [9]. It

invaded the primates about 30 Ma, around the separation of

Old and New World monkeys [16,17]. Unlike HERV-L, there

are HERV-H loci with env genes [18], which have been

shown to be immunosuppressive [19]. It seems, however,

that HERV-H replicated mostly through retrotransposition,

with some re-infection [20] and trans-complementation [12].

(d) HERV-W: the indispensable
This is a relatively small family that entered the genome of

primates before the separation of Old and New World mon-

keys [21] and was active for only a short period, about 5 Myr

[22]. This family, as well as HERV-FRD, have received

increased research attention because their env genes have

been co-opted (syncytin-1 and -2) to benefit their hosts

[23,24]. HERV-W is also the only HERV family commonly

copied by long interspersed nuclear elements (LINEs) [25].

(e) HERV-K: the last (but not the least)
All but one of the HERV families have ceased replicating within

the human genome. The family that might still expand, as

evidenced by multiple human-specific insertions, and inser-

tional polymorphism within the human population, is termed

HERV-K (HML-2) [26–30], hereafter referred to as HK2. By

using the consensus of different full-length HK2 loci, a func-

tional infectious virus has been reconstructed in vitro [31,32].
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HK2 is the only family that has loci with all of their open reading

frames (ORFs) intact [27,30,33–35], compared with the rest of

the families that have been inactivated with frameshifting

indels and premature stop codons (see §4).
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Figure 2. The fate of ERV long terminal repeats (LTRs). When a retrovirus inte-
grates in the host’s genome (time 0), LTRs are identical. Over time, they
accumulate mutations at a host’s substitution rate; thus the divergence of
the LTRs from the same locus can be used to estimate how much time has
passed since integration. On many occasions, a host genomic repair mechanism
uses LTRs from a locus as a template to loop-out the internal region of the ERV
resulting in remnant LTRs known as solo-LTRs. (Online version in colour.)
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4. Human endogenous retroviruses are
inactivated, downregulated or become
replication defective through random knock-
out mutations, hypermutation and silencing
mechanisms

Most HERV loci are replication defective owing to mutations

acquired during host germline cell division, which can cause

premature stop codons [2] or frameshifts. The exception to

this rule are those ERV genes that have been co-opted to pro-

vide a functional role to the host, and thus maintain coding

capacity owing to purifying selection (e.g. syncytin-1) [36].

Another exception is some HK2 loci, which are very recent

integrations [30]; even if HK2 loci have intact ORFs, they

are transcriptionally and translationally inactive or replica-

tion defective. This can result from various mechanisms,

including histone and DNA methylation [37,38], antiretro-

viral hypermutation [39,40] and potentially through RNA

silencing as in other retrotransposons [41–44].
5. Criticism against the possible role of human
endogenous retroviruses and human disease

The role of HERVs in human disease has been investigated

for at least three decades. XRVs are often oncogenic, and

the initially high expectation to find that HERVs were a

cause of human cancer [45,46] or autoimmunity was followed

by disappointment and dead-end projects. These unsuccess-

ful attempts gave rise to the term ‘rumour viruses’ as a

description of ERVs [47] (a play on the term ‘tumour viruses’)

to reflect the lack of evidence of a pathogenic effect.

Before the deciphering of the human genome, our know-

ledge of HERVs was fragmentary [3,8,11], but since then, as

well as the availability of many more animal genomes, the be-

haviour of ERVs and other TEs as genomic parasites is being

clarified [48]. High-throughput sequencing provides an

opportunity to study the mobility of these viruses in popu-

lations and individuals. For example, it has recently been

shown using high-throughput sequencing [49] that L1 and

Alu retrotransposons are copying within the brain during

development [50,51], though at low levels [52], and within

cancer cells [53]. We also know much more about the patho-

genesis of cancer and autoimmunity. These advances now

allow us to build more solid hypotheses about the role of

HERVs in the development of disease than we were able to

10 years ago, as well as test them more rigorously.

ERVs may be involved in pathophysiological mechanisms

either through their replication or through expressed gene pro-

ducts. Another potential mechanism would be through ectopic

recombination between HERV copies (as it is for other geno-

mic repeats) [54,55], but we will not analyse this in depth

here. First, we are going to discuss the replication cycle as a

possible pathogenic mechanism operating in the most recently

active HERV, HK2. Second, we are going to examine the poss-

ible role of env genes in human pathophysiology.
6. The search for a mobile human endogenous
retrovirus: HK2

(a) Is HK2 active in the human germline?
As we mentioned in §4, HK2 is the only HERV family that has

definitely been copying itself after the human and chimpanzee

split [26–28,56]. This is proved by multiple human-specific

HK2 loci for which LTR-dating supports integration times at

least as recent as 1 Ma (figure 2) [57], and by the existence

of insertionally polymorphic loci within humans [28]. The

unanswered question is whether HK2 contains replication

competent loci and still increases its copy number within our

genome (germline activity).

Two HK2 loci (K106 and K115) have identical LTRs [58],

suggesting that HK2 was producing new germline insertions

around (or earlier than) 0.8 Ma, assuming a divergence rate

of 0.13% per Myr [56]. However, mutations accumulate sto-

chastically at this rate, and a locus could have identical

LTRs but be much older (or younger). Another dating

method [59] uses a sample of the 50 LTR sequences of a

specific locus in the population and estimates the coalescent

dates of these LTRs. These authors suggested that the conver-

gence date of a population sample of K106 LTRs is between

0.09 and 0.15 Ma, which is after the emergence of anatomi-

cally modern humans [58]. Finally, data assuming a neutral

model of HERV insertions indicate that the insertional

polymorphism data of HK2 are consistent with activity

continuing up to any time between the present day and

0.5 Ma [28].

Another group has found HK2 loci in fossil archaic human

remains (a Denisovan) that are not in the modern human

genome, suggesting that HK2 was active after the modern

human–Denisovan split (approx. 0.8 Ma) [60]. However, find-

ing loci in the Denisovan genome, which are not in the

modern human reference genome, is not definitive proof of

active infections after the human–Denisovan split. Two other

processes could result in Denisovan-specific loci. First, at the

time of Denisovan–modern human divergence, many HK2

loci were presumably unfixed within the common ancestral

population; therefore some will have gone to fixation in the

Denisovan and been lost from the human population. A similar

process has led to a HERV-K locus being present in the same
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genomic location in gorillas and chimpanzees but not in

humans [61]. Second, the human reference genome contains

mostly fixed HK2 loci and only a minority of unfixed ones.

This is because the reference genome (GRCh37) is the consensus

of 13 genomes [62] and as such is likely to contain only fixed or

very common loci. We expect that at least some polymorphic

loci in the modern human population have not been mapped

(e.g. some were identified in [63]), so it is probable that some

loci of the Denisovan genome would have unfixed orthologous

loci in the human population.

If we conservatively summarize the above, then our best

estimate of HK2 copying activity in the human genome is

that it was active more recently than 0.8 Ma with the most

recent integration that went to fixation being around

0.1 Ma. To improve this estimate, we need to map the poly-

morphic loci in a large sample of humans to test

the hypothesis that HK2 is still active or ceased replication

0.1–0.8 Ma using modelling based on population genetics

theory [28]. Both mapping polymorphic loci and simulating

the human population during the last 1 Myr are extremely

challenging. Furthermore, an approach based purely on popu-

lation genetics cannot definitively prove or reject a very recent

(e.g. within the past 0.02 Myr) cessation of activity. If HK2 is

actively replicating as a lineage, then there is a substantial

probability that it would have pathogenic potential as has

been shown for active families in other animals, because repli-

cation cannot be decoupled from insertional mutagenesis

[2,64]. We note, however, that because HK2 is a family that

invaded the genome at least 30 Ma, we do not expect high

virulence (i.e. it should not significantly increase mortality

and morbidity during the first 30 years of a human’s life).

(b) Theoretical evolution suggests that human
endogenous retroviruses could be pathogenic at the
post-reproductive age of the host

HK2 is an old family within which is a small branch that contains

some recently integrated loci with largely intact env genes. The

existence of multiple HK2 loci in human genomes means that

these loci cannot be strongly deleterious, at least not prior to

reproductive age [65]. Population genetics theory predicts that

a slightly harmful allele can drift to fixation, especially if the

pathogenicity is mainly expressed after the age of reproduction

in the same way as a trait associated with senescence [66–75].

HK2 loci could have slight pathogenic potential especially at

the post-reproductive age, which also coincides with the

higher incidence of autoimmunity and cancer.

(c) HK2 is upregulated in patients with cancer and
other diseases

The observation that cancer cells produce virus-like antigens

and particles is very old [76]; however, it is a phenomenon

that has only partially been described and its role in cancer

biology is still under investigation [77] (see §5).

Since the sequencing of the human genome in 2001 [3], more

rigorous studies on the upregulation of HERVs in health and

disease have been undertaken [78–87]. HK2 RNA has been

found most frequently in the plasma of patients with HIV-1,

breast cancer and lymphoma, with titres up to 107 copies ml21

[82,85]. Only rarely and with much lower titres has it been

found in patients with rheumatoid arthritis, HCV and/or
normal volunteers [85]. Viral and virus-like particles have

been found at a fraction of 1.16 g ml21 using electronic

microscopy of plasma from patients with breast cancer and

HIV-1; they were identified with immunoelectron microscopy

and molecular sequencing as being HK2 [76,87]. Upregulation

of HK2 expression has been shown to cause an immune

response [88–93]. However, the disease spectrum where HK2

is upregulated has not been systematically investigated with a

rigorous epidemiological design.

(d) In vivo infectivity of HK2 is still under investigation
While the evidence of HK2 plasma RNA is robust, suggesting

upregulation in certain diseases, there is no definitive evi-

dence for the production of infectious particles. Infectious

progenitors of HK2 have been constructed in vitro using exist-

ing HK2 DNA fragments from the human genome, providing

proof of principle of the potential for HK2 infectious particle

formation in humans today [31]. Furthermore, pseudo-typed

viral particles with the HK2 env from locus K108 have been

shown to be infectious in cell lines [32,94]. Isolation of

sequences from patients and comparison of their mutations

with copies in the published human genome have indicated

purifying selection, which could result from copying of loci

within the individual [87]. However, HK2 is insertionally

polymorphic within the human population and many loci

are not in the published human genome [28]. Therefore, the

identification of new loci under purifying selection in contrast

to the published loci is not conclusive proof of infectious

activity. A more rigorous experimental design powered by

high-throughput sequencing technologies and state-of-the-

art molecular evolution analyses would provide a solid

answer to the infectious potential of HK2.

(e) Upregulation of HK2 could provide mobility/
infectiousness of HERV-K

No HK2 locus has been found to be replication competent.

However, there are HK2 proviruses with intact ORFs

[27,30,33–35], and in mice, recombination between replica-

tion-defective ERV loci can lead to replication-competent

loci [95,96]. This provides a plausible model for the reconsti-

tution of mobile and/or infectious HK2 within the genome

[97]. A recent paradigm of reconstitution of a replication

competent ERV from two defective endogenous loci is the

accidental laboratory recombination of defective endogenous

murine leukaemia viruses (MLVs) which resulted in the

xenotropic MLV-related retrovirus [95]. Young et al. [96]

have recently shown the resurrection of defective ERVs in

antibody-deficient mice through recombination, as a result

of the upregulation of these ERVs by inflammation induced

from microbiota in the gut. More importantly, we know

that infectious HK2 can be reconstituted in vitro by the

consensus of common HK2 loci within the genome [31,32],

suggesting that, in principle, naturally occurring recombina-

tion could restore replication and infectivity.
7. Molecular basis of a possible HK2 connection
with the development of cancer

HK2 loci produce one of two non-standard retroviral proteins,

Np9 and Rec through alternatively spliced mRNA [81,98]. Rec
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is analogous to the Rev protein of HIV-1 and when highly

expressed has been shown to promote tumour development

in mice [99,100]. A region of the transmembrane domain of

env has been found to be immunosuppressive in several retro-

viruses—the so-called immunosuppressive domain [101–103].

Heidmann and co-workers showed that tumours expressing

env proteins of mouse mammary tumour virus can escape

the immune response (at least transiently), whereas tumours

having knocked-out env genes were efficiently recognized by

the immune system and rejected successfully [104]. It must

be noted, however, that evidence for immunosuppressive

properties of the env of HK2 is scarce [105]. The emergence

of replication competent/retrotransposing HK2 could be

implicated in pathogenesis through insertional mutagenesis

(extensively reviewed in [106]), a process which has been

recently shown to be common for L1 and Alu retrotransposons

[50]. Finally, another possible pathogenic mechanism would

be through promoter activity of LTRs; for example, de-repres-

sion of one of the oldest HERVs has been recently connected

with the development of Hodgkin’s lymphoma [107].

The expression of oncogenic and immunosuppressive

proteins by HK2 could contribute to the development of the

malignant phenotype, complementing and enhancing the

other numerous well-characterized factors (e.g. oncogenes).

Because evolution of a cell towards the cancerous phenotype

is a multi-stage, multi-factorial process, HK2 could be one of

the many components enhancing the development of the selfish

phenotype by increasing the aggressiveness or immune-stealth

[108] property of the cell [109–111].

Perhaps the upregulation of HK2 expression, indepen-

dently of any HK2 activity in the early stages of

tumourigenesis, provides the conditions for further involve-

ment of HK2 in the latter stages of the development of the

malignant phenotype. Very few apparently healthy individ-

uals have detectable HK2 in the plasma [85]. This could be

due to an inability to suppress ERV and retrotransposon

expression/replication [112], which happens at an early
stage throughout the development of the full disease pheno-

type. Quasi-defective antiviral (e.g. TRIM5a [113–115],

RNAse-L [116,117]), silencing mechanisms or predisposition

to genomic instability could allow upregulation/replication

of HK2 well before the full development of the disease pheno-

type (pre-symptomatic latency; figure 3). An epidemiological

study to define how widespread and early this phenomenon

is, and what the significant underlying confounders are,

could elucidate the mechanism associating HK2 with cancer.
8. The immune response against the
upregulation of HK2

ERV antigens are host antigens and believed not to promote

immune response upon their expression [118]. However, if an

ERV antigen was not presented during the development of

the immune system, then its later expression could promote

an immune response [118]. Immune responses against HK2

antigens have been reported in patients with upregulated

HK2 [119]. Nixon’s group showed that stronger T-cell

responses against HK2 antigens are related to slower

progression to AIDS [88–91]. Some evidence suggests that

this is not the consequence of immune deterioration in cases

progressing to AIDS, but is rather the result of the immune

system being tolerant to HERV antigens (not able to promote

HERV-specific immune response). This group has also shown

recently that CD8 T-cell responses against HK2 antigens

resulted in the elimination of HIV-1 infected cells as a result

of the upregulation of HK2 by HIV infections; this suggests

that a HERV-based vaccine to provide long-term control of

HIV might be possible [88]. Given that immunosuppression

increases the incidence of specific cancers, a study to describe

immune escape of HK2 as a result of generalized immunosup-

pression or HK2-specific immunotolerance with respect to the

development of cancer, could provide insights on the

immune escape of malignant cells [92,120].
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9. Technical challenges in the study of HK2
mobility

As we have already noted, our ability to study TEs has greatly

improved during the past five years. This is firstly due to the

availability of a high-quality human reference genome [3]

and secondly due to the development of higher throughput,

lower-cost sequencing technologies. A HERV that is able to

replicate within the human genome has never been described

so far; determining whether HK2 is mobile within the genome

could have potential clinical implications. To show mobility,

we need to see insertional polymorphism within the same

individual, i.e. we have to identify somatic integrations as

loci present in a tissue but not in another tissue and exclude

the possibility of deletion. Somatic integrations are expected

to be random; therefore unless novel HK2 integrations are fol-

lowed by clonal expansion of the cells, the recovery of a single

locus against thousands of germline (i.e. within every cell)

copies is a major experimental and bioinformatics challenge.

Let us assume that we extract the genome of 1000 cells

within which there have been 100 random novel somatic inte-

grations in total. There are approximately 90 full-length HK2

loci in the human genome [26], so for the sake of simplicity,

we will consider there to be 100. Assuming that solo LTRs

(i.e. the naturally occurring product of recombinational de-

letion of full-length loci; figure 2) are 10 times more frequent

[121], we expect that each one of the 100 novel integrations

would have to be identified against a background of 1100

loci, each one having 1000 copies, in total 1 100 000 standard

fixed HK2 copies. The problem becomes even more difficult

if we consider 5000–6000 copies of SVAs, active transposons

carrying a truncated LTR of HK2 [122]. Current high-throughput

sequencing approaches are not expected to recover novel

somatic integrations (though some researchers have been

able to recover rare integrations [50,52]), unless there is a sig-

nificant favourable bias for the novel integrations either

owing to massive proliferation of the cell carrying the novel

HK2 locus or through a novel experimental protocol which

would enrich the novel and deplete the fixed HK2 loci.

With respect to the bioinformatics challenge, the difficulty

of mapping the high-throughput sequencing reads uniquely

and identifying breakpoints is compounded by the fact that

at least 50% of the human genome comprises repetitive

regions. Longer, better and more reads per locus would

help to establish which loci could be uniquely mapped

within highly repetitive elements. We expect that the recent

and forthcoming updates of high-throughput sequencing

technologies will be able to dramatically improve this

within 2013.
10. Env genes and their role in human disease
HK2 is the only HERV family that could be pathogenic

through replication competent loci. On the other hand, repli-

cation-defective HERVs can contribute in pathophysiological

mechanisms via their gene products. Here, we focus on the

role of HERV env (envelope) genes and especially their

immunosuppressive properties with respect to recent evo-

lutionary insights pertaining to the mechanism of immune

repression. Retroviral env genes have also been implicated

in carcinogenesis as growth stimulators [123,124], but we

shall not refer to this mechanism.
(a) The burden of env genes
We have recently shown that the number of ERV loci gener-

ated following the initial germline invasion of a mammalian

host by the virus is strongly inversely correlated to the integ-

rity of the env gene, with the largest ERV families generally

being derived from elements with deleted (or non-functional)

envelopes [48]. The main way for a locus to produce many

copies in the genome and be active in the long term is to

lose its env gene and become a retrotransposon. There

appears to be a trade-off between the integrity of the env
gene and stable parasite–host coexistence, with the cost

here being the loss of the ability to move between hosts.

ERVs can be placed on a spectrum, with elements with

intact env being the least adapted to intracellular life, and

ERVs with no envelope at all being the most adapted to

stable coexistence with the host.

In addition to being crucial for retroviral reinfection

[12,13], several env genes have been independently co-opted

by their mammalian hosts throughout their evolution, and

contribute to two immune-related functions (other envelopes

are involved in antiviral immunity [125]): development of the

syncytiotrophoblast and immunotolerance of the mother to

the paternal antigens of the fetus [126]. In humans, we are

aware of two co-opted retroviral env genes, syncytin-1 and

syncytin-2, both efficiently expressed at the syncytiotropho-

blast [23,24]. In what follows, we bring two thought-

provoking research questions about the role of env genes in

cancer and autoimmunity.
(b) Is immune escape of transmissible cancer related to
the evolutionary development of the trophoblast
and the co-option of env genes?

Causality in cancer has been dogmatically connected with

acquired mutations (and replicating HK2 elements can be con-

sidered simply as mutations that could lead to cancer).

A striking exception to this paradigm is transmissible cancer

(as distinct from cancer associated with viral infection), of

which two examples are known: canine transmissible venereal

tumour and the Tasmanian devil facial tumour. In both cases,

the genomes of neoplasms from different hosts are clearly

more related to each other than to the genomes of the hosts in

which they are found [127–129]. Therefore, it is believed that

these tumours are serially transplanted between individuals,

causing epidemics in dogs and Tasmanian devils.

The most exotic characteristic of transmissible cancer is

that the infected individual’s immune system fails to identify

the transplanted cancer cells as foreign tissue (immune-toler-

ance to alloantigens) constituting a natural instance of

allogeneic transplantation [129]. Transmission of cancer in

humans has been observed as a rare phenomenon, predomin-

antly as a side-effect of medically driven allogeneic tissue

transplantation (usually followed by extensive immunosup-

pression to protect the allogeneic transplant from rejection)

[130]. These rare cases support the policy of preventing

individuals with cancer from donating their organs unless

the primary tumour is within the central nervous system

(where the probability of distant metastases is minimal

and therefore the probability of cancer transplantation is

negligible) [131]. Apart from the scarce medical cases of acci-

dental cancer transplantation, there is an infrequent but well-
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described paradigm of naturally occurring allogeneic

tumours in humans: gestational trophoblastic disease (GTD).

GTD occurs when a potentially malignant tumour,

comprising a mixture of self and alloantigens, arises from the tro-

phoblast of the placenta, during or after pregnancy [132]. The

trophoblastic tumour develops by taking advantage of the

naturally occurring immune-stealth cloak that placental mam-

mals were forced to evolve to protect the embryo developing

in the uterus, hiding and tolerating the fetus’s alloantigens

[133]. This immunotolerance is so efficient that it can sustain a

totally allogeneic embryo as occurs in gestational surrogacy

[134]. Apart from the well-developed immune-stealth cloak,

GTD takes advantage of another two naturally occurring charac-

teristics of the syncytiotrophoblast: tissue penetration and

vascular remodelling [135]. The efficiency of these properties

can be seen in ectopic pregnancy where the syncytiotrophoblast

is accidentally implanted outside the uterus [136]. In such cases,

the syncytiotrophoblast efficiently attaches to almost any tissue

in the abdomen (e.g. intestines, peritoneum, spleen, liver, dia-

phragm), enhances circulation through vascular remodelling

and then cannot be separated from the attached organs without

extensive bleeding. Dramatically, the treatment of abdominal

pregnancy is an operation where the surgeon is forced to concur-

rently remove the underlying tissues, a situation very similar to

the removal of abdominal malignant tumours [137]. The

adjuvant treatment is performed with methotrexate, a widely

known antineoplastic substance [138]. It therefore seems that

placental mammals have co-opted three crucial malignant

attributes as a cost for well-protected offspring delivery:

immune-tolerance of alloantigens, tissue penetration and

vascular remodelling.

Heidmann and co-workers [104] have shown that it is

possible to transplant allogeneic cancerous cell-lines in immu-

nocompetent mice by engineering cancerous cells to express

retroviral Env proteins. As discussed above, these genes are

known to have been co-opted independently multiple times

within the placental mammal lineage, where they are

expressed in the placenta and play a crucial role for the

normal formation of the syncytiotrophoblast [23,135,

139–141]. While not all retroviral env genes have been co-

opted for their immunosuppressive features (the most striking

property of which is the promotion of cell fusion; hence they

are called syncytins), their contribution to the immune-stealth

cloak of the trophoblast is considered crucial for gestational

immune tolerance [126]. It is thus reasonable to hypothesize

that ectopic upregulation of immunosuppressive syncytin
might contribute to the immune escape of human cancers

(other than GTD).

Apart from showing the contribution of syncytins to the syn-

cytiotrophoblast and thus possibly to allogeneic cancers in

humans, Heidmann’s experiments show a remarkable simi-

larity in natural history to the canine transmissible venereal

tumour: the env-expressing tumours grow, plateau and then

regress [104,129]. This is in striking contrast to what happens

in the Tasmanian devil, where the transmissible cancer is

more aggressive, leading to a deadly and generalized disease

[129]. This difference might be because the Tasmanian devil is

a marsupial and is not likely to have developed a regulatory

system for trophoblast-like activity. In addition, a possible

insight into the regulation mechanisms in placental mammals

comes from recent studies on repeated miscarriages in

humans and the rapidly emerging field of clinical reproductive

immunology [142]. While still considered too controversial to
form a standard treatment guideline [143,144], it seems likely

that a natural killer (NK) cell response in humans does not

allow normal implantation of the placenta, resulting in recur-

rent miscarriages at least in some patients [145]. Interestingly,

NK responses against the facial tumour could not be induced

in Tasmanian devils after active immunization with facial

cancer cells [146].

We could test the hypothesis for an env-induced immune-

stealth cloak in transmissible cancers by implementing the

methods used to discover and characterize syncytins [23,24,

139–141]: in silico search for co-opted (or recently introduced)

retroviral env genes within the tumour genomes, and in vitro
verification of expressed and upregulated Env proteins in the

tumour. The immunosuppressive properties of the Env protein

could be verified in the same way as for the other env genes

discussed previously [104].
(c) Is env upregulation in autoimmunity a last resort for
immune regulation?

The upregulation of HERVs has been described in a variety of

diseases considered to be autoimmune, such as multiple

sclerosis, rheumatoid arthritis and systemic lupus erythema-

tosus [147–150]. The proposed underlying mechanism of

association is that upregulated HERV-derived antigens are

triggering an immune response that either attacks the anti-

gen-producing cells, or cells producing similar antigens

(molecular mimicry) [151], or that truncated env genes act

as superantigens that trigger a non-specific autoimmune

response [152]. While each of these hypotheses could be

valid, the difficulty in proving such a mechanism is substan-

tial. A significant correlation between the immune response

against ERV antigens and autoimmune disease has been

documented, although not always consistently found [153],

but this correlation does not prove that ERV antigens were

the trigger for disease onset. It might simply result from a

general disruption of immune tolerance. The problem is

further complicated by the fact that even for well-established

auto-antibodies, the specificity remains low in the vast

majority of diseases [154]. For example, there are a wide var-

iety of auto-antibodies (e.g. anti-nuclear, anti-dsDNA)

produced in inflammatory diseases, some of which are

more commonly detected in older people with no clinical

autoimmunity [155]. Thus, distinguishing cause from effect

with respect to the role of HERVs and autoimmune diseases

remains an open challenge.

On the other hand, HERVs could be involved in auto-

immune disorders as a last resort for immune regulation if

cells exploit immunosuppressive env antigens, such as

HERV-H [19] and syncytin-2 [126]. Both these env antigens

have been shown to be able to protect against rejection of

allografts in mice [19,126]; therefore, the cells that produce

these antigens could escape the irregular and prolonged

immune responses which are the hallmark of autoimmunity.

We propose that at least a proportion of the population of

endogenous env genes (some of them having ORFs in the

human genome [156]) could serve as a downregulatory

mechanism of immunity and act as a population of expend-

able loci with common action rather than a single locus.

Thus, although Env is among the viral proteins that may trig-

ger, or be a target of, immune responses, these same proteins

could serve an anti-autoimmune role.
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This scenario could also explain the co-option of env, a major

evolutionary paradox, as placentation exists throughout euther-

ian mammals, yet at the same time, the crucial syncytin gene has

been derived independently multiple times from different ERV

families to serve a similar purpose, presenting a very extreme

example of convergent evolution [23,24,135,139–141,157,158].

Eutherian mammals have gradually acquired an array of

innate immune genes (tetherin, TRIM5a, APOBEC, etc.)

[125,159] in an evolutionary arms race between the host and

its pathogens. If cell-mediated immune responses developed

similarly, then the requirement of regulatory mechanisms

against cell immunity would have increased. The population

of endogenized env genes, some of them having immunosup-

pressive properties, could have provided the pool from which

a true immunoregulatory gene could be selected. Eventually,

one env gene prevailed and was co-opted to serve a specific

immunoregulatory purpose (tolerance to fetal antigens),

whereas the rest continued to degrade naturally (as described

in §3) but were still able to provide immunosuppressive
protection in extreme conditions. Intriguingly, we have never

been able to identify an env gene for ERV-L, the oldest ERV

family that we know within mammals. This is in line with our

hypothesis: if, at the time of ERV-L’s invasion, the cost of carry-

ing env genes was not counterbalanced by their potential

benefits in immunotolerance, this would lead to faster extinction

of env-carrying families; more recently, as cell immunity became

more intensive, env genes became useful at least transiently and

eventually some of them became co-opted. Testing for recently

mobile HERVs might be the most direct way to examine their

association with cancer, but perhaps ancient integrations also

contain clues for the underlying processes and could still

remain as participants in certain present-day cancers.
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