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ABSTRACT

microRNAs (miRNAs) associate with Ago proteins
to post-transcriptionally silence gene expression
by targeting mRNAs. To characterize the modes of
miRNA-binding, we developed a novel computational
framework, called optiCLIP, which considers the re-
producibility of the identified peaks among repli-
cates based on the peak overlap. We identified 98
999 binding sites for mouse and human miRNAs,
from eleven Ago2 CLIP-seq datasets. Clustering the
binding preferences, we found heterogeneity of the
mode of binding for different miRNAs. Finally, we
set up a quantitative model, named miRgame, based
on an adaptation of the game theory. We have de-
veloped a new algorithm to translate the miRgame
into a score that corresponds to a miRNA degree of
occupancy for each Ago2 peak. The degree of oc-
cupancy summarizes the number of miRNA-binding
sites and miRNAs targeting each binding site, and
binding energy of each miRNA::RNA heteroduplex
in each peak. Ago peaks were stratified accordingly
to the degree of occupancy. Target repression cor-
relates with higher score of degree of occupancy
and number of miRNA-binding sites within each Ago
peak. We validated the biological performance of our
new method on miR-155-5p. In conclusion, our data
demonstrate that miRNA-binding sites within each
Ago2 CLIP-seq peak synergistically interplay to en-
hance target repression.

INTRODUCTION

microRNAs (miRNAs) are transcribed as long RNAs and
processed by Drosha and Dicer complexes into about 22 nu-
cleotides (nt) long small RNA species, which are recruited

by Argonaute proteins (Ago), including Ago2, to form the
so-called miRNA-induced silencing complex (miRISC) (1).
miRISC post-transcriptionally silences target RNAs by se-
quence pairing (1). In particular, miRNAs bind target RNA
using either 6–8 nt in their 5′ end from the second nt (called
seed sequence) (2,3) or portions of miRNA sequence out-
side the seed (4–6). The pairing miRNA sequence can per-
fectly match to the target sequence or can contain mis-
matches or bulges (2,3). Recently, it has been suggested that
pairing of both 5′ and 3′ sequences of miRNA is prevalent
in the majority of target sites and contributes to the speci-
ficity of the targeting (7). Importantly, a miRNA can poten-
tially interact with many target-RNAs. At the same time,
the complexity of the miRNA-dependent gene expression
control is underscored by the fact that several miRNAs can
potentially target one single target RNA, resulting in ad-
ditive or synergistic effect. Considering that 2654 and 1978
miRNAs exist in human and mouse genomes, respectively
(8), it appears that miRNAs and RNAs interact in multi-
ple combinatorial manners to precisely control gene expres-
sion programs. Thus, a comprehensive identification of all
miRNA-binding sites and their interplay is needed to fully
understand the overall function of miRNAs in cells or tis-
sues.

Cross-Linking ImmunoPrecipitation associated with
high-throughput sequencing (CLIP-seq) is a recent tech-
nique to identify the direct binding sites of RNA-binding
proteins in cells or tissues. When CLIP-seq is performed
on Ago proteins enables researchers to characterize in
a transcriptome-wide fashion the miRNA-binding sites
with high resolution (5,9–11). The public availability of
the Ago CLIP-seq data coupled with the RNA profiling
allows systemic assessment of the combinatorial mech-
anism for multiple miRNA targeting associated with
transcriptomic silencing. This task would be beneficial to
improve the computational prediction of miRNA-binding
sites and to derive precious biological information about
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the global function of miRNAs in a cell or tissue-specific
fashion.

In this study, we present a quantitative method that in-
tegrates multiple miRNA-binding activity and gene expres-
sion data and propose a model for miRNA mode of action.

To identify miRNA-binding sites for endogenously ex-
pressed miRNAs, we analyzed eleven publicly available
Ago2 CLIP-seq datasets from raw data using a computa-
tional framework called optiCLIP (optimized pipeline of
CLIP-seq data analysis) based on a novel benchmarked
workflow for pre-processing and peak calling (12), peaks
reproducibility assessment among replicates by a newly de-
veloped strategy based on Jaccard index calculation, and
finally employing miRBShunter prediction program for
miRNA-binding sites identification (4).

To evaluate the performance of optiCLIP, we repeated
the analysis using other prediction programs, namely, Tar-
getScan (13), miRanda (14), TarPmiR (15) and RNAhybrid
(16).

We have also set up a quantitative model to study the in-
terplay of miRNA-binding sites, by proposing a degree of
occupancy that stratifies Ago2 peaks. To this goal, we have
developed a new algorithm, called miRgame, to quantify
the degree of occupancy by taking into account the num-
ber of miRNA-binding sites, number of miRNAs targeting
each binding site (promiscuous miRNA-binding sites), and
the free energy of each miRNA::RNA heteroduplex within
each Ago2 peak.

The final aim of the present work is to demonstrate the
ability of optiCLIP framework and miRgame quantitative
model to provide a more accurate interpretation of miRNA-
dependent gene expression control and decipher its com-
plexity.

MATERIALS AND METHODS

optiCLIP: an integrated and optimized framework for Ago2
CLIP-seq data analysis

In order to analyze Ago2 CLIP-seq experiments from raw
data files and identify miRNA-binding sites, a computa-
tional framework, called optiCLIP, was developed thanks
to our recent computational benchmarks of several soft-
ware used in CLIP-seq analysis workflow (4,12). optiCLIP
starts with raw data preprocessing that includes adapter re-
moval with cutadapt (17), quality filters of reads to iden-
tify possible sequencing errors or biases requiring a minimal
quality score of 15 and a minimal length of 10 nucleotides,
and duplicate collapsing with Prinseq (18) with the option
‘-derep 123’ to collapse duplicated reads, ‘-min qual mean
15 –min len 10’ to finally select reads based on quality
and length. The alignment of sequence reads to a refer-
ence genome is done using Novoalign software (http://www.
novocraft.com/products/novoalign/) with specific parame-
ters set up for Ago2 CLIP-seq (12,19):‘-t 85’ the alignment
cost that allow two substitutions, two consecutives deletions
or one substitution in addition to one deletion, ‘-l 15’ re-
quires more than 15 high-quality matches, ‘-s 1’ is the com-
putation step, and ‘-o sam’ output format. Finally, peaks
have been identified by Pyicoclip (20) as the best perform-
ing software for Ago2 CLIP-seq peak calling (4).

To identify high-confidence and reproducible peaks, we
have developed a novel strategy that considers experimental
replicates. Briefly, instead of merging together all the reads
coming from different replicates before performing the peak
calling (for simplicity, here called the merge method), as it
has been done to date by the community (21–23), we rea-
soned that a good strategy to find high-confidence peaks
could be to perform the peak calling step in each replicate
separately and then quantify the overlap of peaks among
multiple replicates through the Jaccard index (J-index) cal-
culation. The boundaries of the consensus peaks are then
calculated by the union of all the peaks that fulfill the repro-
ducibility constrains. To assess the optimal J-index thresh-
old, we tested three different J-index thresholds, namely,
the 20%, 40% and 80% (here called J20, J40 and J80, re-
spectively). As last step, optiCLIP identifies the miRNA-
binding sites from the identified peaks, using miRBShunter
that identifies all potential miRNA::RNA heteroduplexes
for both seed and non-seed mode of binding.

Heuristic approach was used to adapt the parameters of
miRBShunter to datasets with different sizes:

• <100 peaks: -log10(p) = 3; ms= 0.25; Fimo score = 0.0008
• 100 < peaks < 1000: −log10(p) = 5; ms= 0.35;

Fimo score = 0.0008
• 1000 < peaks < 2000: −log10(p) = 7; ms= 0.35;

Fimo score = 0.0002
• >2000 peaks: -log10(p) = 12; ms = 0.35; Fimo score =

0.0002

where p is the P-value calculated by Homer (24), ms is
the match score calculated by Homer between the identi-
fied motifs and the miRNA sequences, the Fimo score is the
threshold for the program FIMO of the MEME suite (25)
to localize the motifs in the peak.

OptiCLIP is written mainly in python language and
is freely available at https://github.com/TrabucchiLab/
optiCLIP.

To assess the performance of the miRNA prediction step
of optiCLIP, we repeated the analysis using other predic-
tion programs, namely, TargetScan, miRanda, TarPmiR
and RNAhybrid, using the default parameters.

Specificity in identifying miRNA-binding sites on Ago2 peaks

To evaluate the specificity of the identified miRNA-binding
sites, we have randomized five times the sequence of
the 25 most expressed miRNAs of each dataset by us-
ing the Shuffle DNA software (www.bioinformatics.org/
sms2/shuffle dna.html), thus five creating negative control
datasets, and used with peaks identified by J20 threshold
and the merge method to feed the prediction programs. The
number of identified miRNA-binding sites using miRB-
Shunter, miRanda and TargetScan by the real sequence of
miRNAs (reference dataset) was then compared with each
of the negative control datasets (named ‘shuffles’) Wilcoxon
signed-rank test and boxplots were generated by R software.

Precision of miRNA-binding sites

The precision of the prediction can be measured by the dis-
tance from the miRNA-binding sites and the center of the

http://www.novocraft.com/products/novoalign/
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peaks. The precision has been calculated for miRBShunter,
TargetScan and miRanda for all datasets on peaks identi-
fied by J20 threshold or merge methods. miRNA-binding
sites close to the peak center correspond to high degree of
precision (4,26). The comparison between the three predic-
tion programs, namely, miRBShunter, miRanda, and Tar-
getScan, was performed by using the Kruskal-Wallis test.
Boxplots were generated by R software.

Publicly available Ago2 HITS-CLIP datasets

Raw data for Ago2 CLIP-seq datasets were downloaded
from GEO database (Table 1) with the exception of Chi
et al. (5) datasets, which were downloaded from http://ago.
rockefeller.edu/rawdata.php

Alignment and quantification of the most expressed miRNAs

To identify the most expressed miRNAs in the eleven
datasets, we selected reads from 18 to 35 nt in length and
mapped the reads using Novoalign software with highly
stringent parameters:

novoalign -c 20 -t 20 -l 5 -s 1 -F STDFQ -o sam -r All -d
INDEX GENOME -f input file > output file.

Then, we quantified the number of mapped reads for each
miRNA, reads count were normalized for each replicate us-
ing the quantile normalization. We finally calculated the
mean among replicates and ranked them to obtain the 25
most expressed miRNAs for each dataset (Supplemental
Table S1).

Clustering the miRNA-binding preferences for each miRNA

Clustering analysis was performed in order to investigate
the miRNA mode of binding. miRNA sequence positions
that matched to target sequence were plotted as heatmap of
the frequency. Heatmaps and dendrograms were generated
by R software using the functions ‘hclust’ or ‘K-means’ with
‘euclidean’ distance metrics and ‘complete’ method.

Expression data analysis

Raw data from microarray gene expression profiles were
downloaded from GEO database or specific websites (Table
2) and analyzed using the packages ‘limma’ (27) and ‘affy’
(28) from Bioconductor and R software.

miRgame: degree of occupancy for Ago2 CLIP-seq peaks

The goal of the degree of occupancy is to provide a stratifi-
cation of the Ago2 peaks, which silencing of the target mR-
NAs would be positively correlated. To establish a quanti-
tative model to calculate the degree of occupancy of Ago2
peaks, we made two assumptions:

• the identified miRNA-binding sites do not depend on the
miRNA expression levels since we identified the binding
sites only of the most expressed miRNAs in each dataset
(up to the top 25 mostly expressed miRNAs for each
dataset);

• miRNA-binding sites within the same peak synergisti-
cally cooperate.

The first assumption implies that we can ignore the con-
centration levels of each miRNA considered in the analysis.
The second assumption implies we can disregard the dis-
tance among miRNA-binding sites within the same Ago2
peak. Although the distance plays a role in terms of coop-
eration between miRNA-binding sites considering a range
distance of 8–60 nucleotides (29,30,41), we have made this
assumption based on the fact that the majority of miRNA-
binding sites do not overlap to each other and show overall
median distances of not overlapping sites within a synergis-
tic cooperation. Thus, because they can potentially cooper-
ate to synergistically enhance target repression. We termed
an Ago2 peak as a ‘miRNA-binding unit’, for which the de-
gree of occupancy is calculated.

To model the degree of occupancy of each Ago2 peak,
we summarized in one single value the contribution of each
miRNA-binding site and the energy of each miRNA::RNA
heteroduplex. We applied a game theory approach to pro-
vide a value of the degree of occupancy, considering that
each miRNA-binding site is a ‘player’ of the game and all
miRNAs that bind the same binding site are the different
‘coalitions’. In this ‘game’ the weight of the marginal con-
tribution of each player (the miRNA-binding site) is mod-
ulated by the number of the possible coalitions that each
player can make (the number of miRNAs for the same bind-
ing site) and by the miRNA-binding energy of each pos-
sible miRNA::RNA heteroduplex. This game (quantitative
model) is defined by the following equation for predictions
using miRBShunter:

�π

(
m, n, Eν

i , ntν
i

) =
∑

ν

μν

(
n, Eν

i , ntν
i

)
where π is the peak, �π is the degree of occupancy, m is the
number of miRNA-binding sites in the considered peak, n is
the number of miRNAs that bind the same binding site, Ei
is the minimum free energy of the miRNA::RNA heterodu-
plex calculated by miRBShunter, and nti represents the
characteristic of the duplex structure (namely, number of
nucleotides paired, presence of mismatches and/or bulges).
To calculate the marginal contribution of each coalition for
each miRNA-binding site, we defined the following func-
tion:

μν (n, Ei , nti ) = log

(∑
i

β (Ei , nti )

)

where β(Ei , nti ) = (−MFE/Min(MFE)) +
N paired nt/lenmiRNA + N paired nt seed/lenseed
+ N paired nt motif/ lenmotif + (lenseed −
N bulges seed)/lenseed is the miRNA::RNA heterodu-
plex by miRBShunter. This score is based on the following
parameters (4):

1. MFE is the free energy of the most stable structure given
by RNAduplex tool (31);

2. N paired nt is the number of paired nucleotides in the
predicted heteroduplex;

http://ago.rockefeller.edu/rawdata.php
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Table 1. Ago2 CLIP-seq datasets

GEO accession Cell lines/tissue Species Replicates number Reference

GSE28865 HEK293 Human 2 (48)
GSE42701 HeLa Human 2 (49)
GSE52084 Brain samples, cingular gyrus Human 6 (50)
GSE52084 Brain samples, motor cortex Human 5 (50)
GSE83410 Heart samples, ventricle Human 6 (51)
GSE44404 293S Human 4 (52)
GSE41285 CD4 + T-cells Mouse 12 (35)
GSE85219 P19 mESC + mmu-let-7a-5p Mouse 3 (36)
GSE25310 mESC Mouse 3 (53)
http://ago.rockefeller.edu Brain samples, cortex Mouse 3 (5)
http://ago.rockefeller.edu Brain samples, cortex Mouse 2 (5)

Table 2. Microarray datasets

GEO accession Cell line Species Replicates number miRNA Reference

GSE41285 CD4+ T-cells Mouse 1 155-5p (35)
GSE89033 P19 cells Mouse 3 Let-7a-5p (36)
http://psilac.mdc-berlin.de HeLa cells Human 3 for each miRNA 1-3p; 16-5p (37)
GSM302945 HeLa cells Human 1 124-5p (5)

3. N paired nt motif is the number of paired nucleotides in
the motif found with Homer software;

4. N paired nt seed is the number of paired nucleotides in
the seed region;

5. N bulges seed is the number of bulges in the heterodu-
plex in the seed;

6. lenmiRNA is the length of the miRNA sequence;
7. lenseed is the length of the miRNA seed;
8. lenmotif is the length of the motif found with Homer soft-

ware.

This algorithm is an adaptation of the game theory ap-
proach (32,33).

miRgame was also adapted for miRanda and Tar-
getScan to compare the data obtained with these predic-
tion tools and miRBShunter data. The marginal contri-
bution score of each coalition for each miRNA-binding
site was considered as equal to the relative score calcu-
lated by miRanda and the context score for TargetScan,
respectively.

The use of the logarithmic scale to sum the contribution
of each miRNA::RNA heteroduplex within the same bind-
ing site would lower down the μν score of binding sites tar-
geted by many miRNAs, reasoning that these binding sites
would be less regulated by expression changes of single tar-
geting miRNAs, but by the pool of targeting miRNAs, as it
has been previously observed (34). To validate the miRNA
degree of occupancy, we used the gene expression profiles
whereby single miRNAs were either knocked out or over-
expressed.

The model miRgame was run on the J20 threshold and
merge method peaks and the related binding sites predicted
by miRBShunter, miRanda or TargetScan for the consid-
ered datasets.

To investigate how the degree of occupancy correlates to
target repression, we determined four levels of degree of oc-
cupancy for each prediction program based on quartiles for
3′UTR peaks.

We then investigated how the four levels correlated to tar-
get repression using the expression data (Table 2) available
for mmu-miR-155-5p.

To test the repression of the target mRNAs in each level
compared to the cumulative distribution of all genes (back-
ground) we used the Kolmogorov–Smirnov test.

The miRgame analyses were performed in R software.
miRgame scrips are shown in the Supplemental data 1.

Program implementation

All software were installed and run on linux workstation
with two 2.6 GHz Intel Xeon Ubuntu machine equipped
with 4 × 32GB of RAM.

RESULTS

Identification of miRNA-binding sites by J-index method and
its sensitivity

We collected and analyzed eleven Ago2 CLIP-seq datasets
(Table 1) generated from human or mouse cells or tissues
and analyzed to identify miRNA-binding sites. In Supple-
mental Figure S1 is illustrated the computational frame-
work we used for this analysis and named it optiCLIP
(optimized pipeline of CLIP-seq data analysis), which is
freely downloadable at https://github.com/TrabucchiLab/
optiCLIP (see Materials and Methods for details).

We tested three different J-index thresholds, namely, the
20%, 40% and 80% (here called J20, J40 and J80, respec-
tively), by quantifying the number and length of the iden-
tified peaks (Figure 1A and B). In human datasets, the J20
threshold identified a significantly higher number of peaks
in human datasets compared to J40 and J80 thresholds
(P < 0.05, Wilcoxon signed-rank test). In mouse datasets,
the number of peaks identified by J20 threshold was higher
compared to J40 and J80 thresholds but not significant (P
= 0.062, Wilcoxon signed-rank test) (Figure 1A). Further-
more, the peaks identified by the J20 threshold had a sig-
nificantly wider length compared to the two other J-index

http://ago.rockefeller.edu
http://ago.rockefeller.edu
http://psilac.mdc-berlin.de
https://github.com/TrabucchiLab/optiCLIP
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Figure 1. Evaluation of Jaccard-index thresholds to identify reproducible peaks and comparison with the merge method. (A) Number of peaks, (B) peak
lengths, and (C) transcriptomic distributions of Ago2 peaks identified by the merge method and the indicated Jaccard-index (J) thresholds. (D) Sensitivity
and (E) transcriptomic distributions of the miRNA-binding sites identified with the indicated prediction programs. (F) Line graph showing the percentage
of peaks containing miRNA-binding sites identified by the high-confidence TargetScan program on peaks identified by the indicated J thresholds and the
merge method for the indicated Ago2 CLIP-seq datasets.

thresholds (P < 0.001, Wilcoxon rank sum test) (Figure
1B). As expected, the number of identified peaks by merge
method was higher and the length wider compared to the
J20 because less stringent (Figure 1A, B, and Supplemental
data 2).

Considering the transcriptomic locations of the identified
peaks, we observed a significant enrichment of the 3′UTR
location in J20 threshold compared to J40 and J80 thresh-
olds and the merge method (P < 0.01, Wilcoxon signed-
rank test) (Figure 1C).

Next, we detected miRNA-binding sites using miRB-
Shunter and other four prediction programs namely, Tar-
getScan, miRanda, RNAhybrid, and TarPmiR (Supple-
mental data 2). As shown in Figure 1D, the merge method
outperformed the J-index method in number of binding
sites, while J20 performed better than the other two J-index
thresholds for all prediction programs in human datasets
(P < 0.05, Wilcoxon signed-rank test). Similar results were
observed in mouse datasets although the differences among
the methods were not significant (P = 0.062, Wilcoxon
signed-rank test).

Then, we inspected the transcriptomic location of the
identified miRNA-binding sites. As shown in Figure 1E and
Supplemental Figure S2A, B and C, miRNA-binding sites

were enriched in the 3′UTR in J20 threshold compared
to J40 and J80 (Supplemental Table S2), and the merge
method for all prediction programs.

In order to compare the different methods, we calcu-
lated the percentage of peaks containing high confidence
TargetScan predicted miRNA-binding sites. The percent-
age of peaks containing TargetScan miRNA-binding sites
was overall significantly higher in J20 compared to J80
threshold (P = 0.013, Wilcoxon signed-rank test) (Figure
1F). Similarly, the percentage of peaks containing miRNA-
binding sites identified by miRBShunter (Supplemental
Figure S2D) and by miRanda (Supplemental Figure S2E)
was overall significantly higher in J20 compared to J40 and
J80 thresholds (P < 0.05, Wilcoxon signed-rank test).

Together, these analyses demonstrate that, among the dif-
ferent J-index thresholds, the J20 outperformed in terms of
sensitivity and accuracy. Furthermore, although the merge
method identified much more miRNA-binding sites, the J20
threshold looks more accurate to find a relative enrichment
of miRNA-binding sites located in the 3′UTR. Because of
these results, we decided to focus our analysis by compar-
ing just the J20 threshold to the merge method. Moreover,
in these analyses, miRBShunter, miRanda, and TargetScan
performed much better compared to TarPmiR and RNAhy-



e66 Nucleic Acids Research, 2021, Vol. 49, No. 11 PAGE 6 OF 14

brid. Therefore, from this point of the manuscript, we also
focus our investigation on miRBShunter, miRanda and Tar-
getScan.

Specificity and precision in identifying miRNA-binding sites
on Ago2 peaks

Concerning the specificity, we performed five sequence ran-
domizations of the top expressed miRNAs in each dataset,
identified the miRNA-binding sites in each randomized
dataset, and compared them to those found using the orig-
inal datasets. We used TargetScan, miRanda and miRB-
Shunter prediction programs and both J20 threshold and
merge methods. Importantly, we found that the number of
miRNA-binding sites was significantly much higher in the
original datasets compared to the randomized ones (Figure
2A), indicating that all the three prediction programs are
specific.

Furthermore, as shown in Figure 2B, all three predic-
tion programs have identified miRNA-binding sites that are
close to the center of the related peaks using J20 threshold
and merge methods. The difference between the prediction
programs was not significant indicating they are compara-
ble in terms of precision (Wilcoxon signed-rank test).

Clustering the mode of binding of miRNAs

We clustered the data generated by the optiCLIP frame-
work to investigate the miRNA mode of binding in a
transcriptome-wide fashion. We plotted the binding se-
quence position for each miRNA as heatmap of the fre-
quency using the ‘hclust’ function. Dendrograms were ob-
tained using K-means function.

The clustering of miRNA-binding sites was applied
to human and mouse datasets using miRBShunter, Tar-
getScan, and miRanda prediction programs on peaks iden-
tified by J20 threshold and the merge method.

As shown in Figure 3A, miRNA-binding sites identified
by miRBShunter are focused on the seed sequence just for a
subset of miRNAs considering the J20 threshold in human
datasets, while in merge method the subset of seed-focused
binding sites was smaller (Supplemental Figure S3A). These
results indicate that the miRNA mode of binding predicted
by miRBShunter show heterogeneity among different miR-
NAs.

As expected, for TargetScan and miRanda the weight
of the miRNA seed in predicting binding sites was much
higher respect to the rest of the miRNA sequence for both
J20 threshold and the merge method (Supplemental Fig-
ures S4A−S7A). In mouse datasets, we observed a variety
of mode of binding with no specific subgroup focused on the
seed sequence for binding sites identified by miRBShunter
in both J20 and merge method (Supplemental Figures S8A
and S9A), while for TargetScan and miRanda seed bind-
ing was again the enriched mode of binding (Supplemental
Figures S10A–S13A). Concerning the clustering method,
we found similar clustering between hclust and K-means
methods for the considered three prediction programs, in
both J20 index threshold and merge method for human and
mouse datasets (Figure 3, Supplemental Figures S3–S13).

Together, these data indicate that for miRBShunter the
predicted miRNA mode of binding looks heterogenous

while for TargetScan and miRanda all miRNAs mainly bind
with the seed sequence. These results are independent on the
clustering method used.

Effectiveness of miRNA-dependent repression in the 3′UTR

Reasoning that the data we generated with optiCLIP might
provide a base for the definition of novel types of miRNA-
binding sites to be used for target prediction, we investigated
the functionality of these sites in mediating target silencing.
To carry out this analysis, we focused on the following miR-
NAs, mouse miR-155-5p (35) and let-7a-5p (36), and hu-
man miR-1-3p, miR-16-5p (37), and miR-124-3p (5), whose
differential RNA profile data upon miRNA overexpression
or knockout/down are available (Table 2).

We investigated the repression efficacy of the mRNAs
containing miRNA-binding sites in the 3′UTR exploiting
the microarray expression data for miRBShunter and the
other four prediction programs, namely, TargetScan, mi-
Randa, RNAhybrid and TarPmiR. We studied the miRNA-
dependent repression of target mRNAs checking the signif-
icance when comparing the J20 threshold with the merge
method and both of them with the cumulative distribu-
tion of all genes (background/black line). As shown in Fig-
ure 4, for TargetScan and miRanda, we found that J20
threshold outperformed the merge method (P = 0.039 and
P = 0.006, respectively, Kolmogorov–Smirnov test) (Fig-
ure 4A and C). Target repression between the J20 thresh-
old and the merge method was not significant for miRB-
Shunter, RNAhybrid and TarPmiR (P = 0.34, P = 0.46
and P = 0.96, respectively, Kolmogorov–Smirnov test) (Fig-
ure 4B, D and E). However, when we compared both meth-
ods with the background, we observed that all prediction
programs showed significant results (Figure 4A, B, C and
E), except for RNAhybrid (Figure 4D). In Supplemen-
tal Figures S14 and S15, we plotted the cumulative frac-
tions of the other four miRNAs. Comparing J20 thresh-
old with the merge method, we noticed significant values
for miRBShunter considering mmu-let-7a-5p (P = 0.037,
Kolmogorov–Smirnov test) and TargetScan, miRBShunter
and RNAhybrid for hsa-miR-124-3p (P = 0.01, P = 0.0004
and P = 0.042, respectively, Kolmogorov–Smirnov test).
Comparing either J20 threshold or the merge method with
background, mmu-let-7a-5p target repression was signifi-
cant for miRBShunter (P = 0.004 and P = 0.01, respec-
tively, Kolmogorov–Smirnov test), while for TarPmiR and
RNAhybrid the merge method outperformed (P = 0.03 and
P = 0.03, respectively, Kolmogorov–Smirnov test) (Sup-
plemental Figure S14A). For hsa-miR1-3p, only the merge
method using miRanda program gave significant values (P
= 0.025, Kolmogorov–Smirnov test) (Supplemental Figure
S14B). Concerning hsa-miR16-5p, both J20 threshold and
merge methods led to significant target repression results
for TargetScan (P = 0.007 and P = 0.0003, respectively,
Kolmogorov–Smirnov test) and miRanda (P = 0.017 and
P = 4.3×10–10, respectively, Kolmogorov–Smirnov test),
while for miRBShunter and TarPmiR merge method gave
significant results (P = 0.002 and P = 0.06, respectively,
Kolmogorov–Smirnov test) (Supplemental Figure S14C).
Regarding hsa-miR-124-3p, significant values were ob-
tained for TargetScan, miRBShunter and RNAhybrid when
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Figure 2. Specificity and precision in identifying miRNA-binding sites on Ago2 peaks identified by J20 or merge methods. (A) Specificity. Boxplot showing
the number of miRNA-binding sites identified by miRanda, miRBShunter or TargetScan using the original miRNA sequence datasets (Reference) or five
randomly permuted miRNA sequences (shuffles) datasets, as indicated. Wilcoxon signed-rank test was applied to compare reference versus each shuffle.
P < 0.05 (*), P < 0.01 (**), P < 0.001 (***), not significant (ns). (B) Precision. Boxplot showing the distance between the miRNA-binding site center for
the top expressed miRNAs and the peak center for the indicated prediction programs on either the J20 (left panel) or the merge (right panel) methods.

comparing J20 threshold with background (P = 0.0002, P =
0.0002 and P = 0.042, respectively, Kolmogorov–Smirnov
test) (Supplemental Figure S15).

These results overall indicate that miRNA-binding sites
identified by the J20 threshold are functional in terms of
mediating target silencing. Although J20 threshold overall
outperformed compared with the merge method, different
experimental conditions (i.e. different antibody used for im-
munoprecipitation) or computational conditions prediction
(i.e. different prediction programs) may impact on the re-
sults of the analysis.

In these analyses, once again, we noticed that miRB-
Shunter, miRanda, and TargetScan performed much bet-
ter compared to TarPmiR and RNAhybrid. Therefore, from
this point of the manuscript, we decided to pursue our inves-
tigation on just miRBShunter, miRanda, and TargetScan.

Importantly, miRNA-binding sites identified in other
transcriptomic regions did not bring any repression on
target RNAs with any prediction programs (data not
shown).

Multiple and promiscuous miRNA-binding sites within Ago2
CLIP-seq peaks

To further investigate the miRNA-binding activity, we
quantified the number of multiple miRNA-binding sites
and the number of binding sites targeted by more than one
miRNA (promiscuous binding sites) in each Ago2 peak.

We observed that 46−100% and 46−84% of the peaks
identified by J20 threshold and the merge method contain
one or multiple miRBShunter-identified miRNA-binding
sites, respectively (Figure 5A and Supplemental Figure
S16A). Concerning miRanda, the related percentages were
22−56% and 24−56%, while for TargetScan the percentages
were 3−32% and 3−32%, respectively (Supplemental Fig-
ures S17A, S18A, S19A and S20A).

In addition, we found that 32−100% and 27−84% of
the peaks identified by J20 and the merge method con-
tain promiscuous miRBShunter-identified miRNA-binding
sites, respectively (Figure 5B and Supplemental Figure
S16B). For miRanda these percentages were 5−31% and
6−33% and for TargetScan were 3−27% and 2−32%, re-
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Figure 3. Clustering of miRNA-binding sites in human datasets. (left panel) Heatmap showing the frequency of the binding positions in the sequence of
human miRNAs identified by miRBShunter using J20 threshold for peak identification. miRNAs are grouped by hierarchical clustering using ‘hclust’ by
R software. The color intensity (scale range from 0 to 1) represents the normalized frequency for each miRNA. (right panel) K-means dendrogram with
group colors showing the clusterization of human miRNA-binding sites identified by miRBShunter applied to the J20 threshold peaks.

spectively (Supplemental Figures S17B, S18B, S19B and
S20B).

Next, we plotted the number of multiple miRNA-binding
sites identified by miRBShunter, miRanda and TargetScan
per peak as a function of the number of promiscuous
miRNA-binding sites for J20 threshold and the merge
method (Figure 5C and Supplemental Figures S16C, S17C,

S18C, S19C and S20C). We found a linear dependency with
Spearman correlation score between these two variables for
all prediction programs and for both J20 threshold and the
merge method. To validate these results, we compared the
number of miRNA-binding sites normalized by number of
peaks, for each dataset, between the original miRNA se-
quences and five negative controls (shuffles). The results are
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Figure 4. Specific miRNA mode of bindings in 3′UTR triggers target repression. Cumulative distributions showing target repression upon mmu-miR-
155-5p knockout in T cells for TargetScan (A), miRBShunter (B), miRanda (C), RNAhybrid (D) and TarPmiR (E). The P-value was calculated using
Kolmogorov−Smirnov statistical test for target downregulation comparing J20 threshold, merge method and background (cumulative distribution of all
genes).

shown in Figure 5D and in Supplemental Figures S16D,
S17D, S18D, S19D and S20D. Overall, we identified a sta-
tistically higher number of miRNA-binding sites per peak
in the original datasets compared to each negative control
for miRBShunter, TargetScan and miRanda and for both
J20 threshold and the merge method (P < 0.05, Wilcoxon
signed-rank test). The same analysis was performed by fil-
tering out the multiple interactions on the promiscuous
binding sites and, therefore, considering each promiscuous
binding site as one, to avoid the bias toward those miR-
NAs that share similar sequences and tend to target the
same binding sites in the reference datasets, but likely not
in the shuffle controls. As shown in the Supplemental Fig-
ure S21, we also identified a statistically higher number of
miRNA-binding sites per peak in the original datasets in
both J20 and merge methods for miRBShunter and mi-
Randa. However, TargetScan did not show any difference
between reference and shuffle datasets and mainly found
one binding site per peak. Thus, we concluded that only
miRBShunter and miRanda specifically and systematically
found multiple binding sites. However, TargetScan that ap-
plies a much more stringent algorithm mainly found one
miRNA-binding site per peak. These data indicate that the
identification of multiple miRNA-binding sites was specific
and not by chance.

Together, these data indicate that on the one hand many
Ago2 peaks contain multiple miRNA-binding sites that can

potentially interplay to synergistically enhance the miRNA-
dependent repression. On the other hand, the complexity
of the miRNA-dependent silencing of target mRNA is en-
hanced by the fact that some binding sites can be potentially
targeted by many different miRNAs.

miRgame: a quantitative model to calculate the degree of oc-
cupancy of Ago2 CLIP-seq peaks

To study how the miRNA-binding sites within each Ago2
peak interplay to finely control miRNA-dependent silenc-
ing, we derived a model to quantify a miRNA degree of oc-
cupancy for each peak. We hypothesize that the degree of
occupancy could provide a stratification of Ago2 peaks that
would positively correlate to miRNA-dependent mRNA re-
pression.

We calculated the degree of occupancy for all peaks con-
taining miRNA-binding sites identified by optiCLIP frame-
work on the 11 Ago2 CLIP-seq datasets of interest and us-
ing two additional prediction programs, namely, miRanda
and TargetScan, to compare these data. We found a linear
distribution of the degree of occupancy for peaks located
only in 3′UTR containing miRNA-binding sites when plot-
ted as a function of the number of miRNA-binding sites
within each peak (Figure 6A for J20 threshold and Sup-
plemental Figure S22A for the merge method). We also
calculated the median of the distance of multiple miRNA-
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Figure 5. Multiple and promiscuous miRNA-binding sites in Ago2 CLIP-seq peaks. (A) Heatmaps showing the percentage of peaks containing single
and multiple miRNA-binding sites or (B) containing promiscuous miRNA-binding sites identified by miRBShunter on the J20 threshold peaks for the
indicated Ago2 CLIP-seq datasets. (C) Plot showing the significant correlation (Spearman rho: 0.876) between the single/multiple and the promiscuous
miRNA-binding sites per peak identified by miRBShunter on the J20 threshold peaks. (D) Boxplot showing the number of miRNA-binding sites identified
by miRBShunter on the J20 threshold peaks, normalized for the number of peaks on the indicated datasets. Wilcoxon signed-rank test was applied to
compare reference with each shuffle. P < 0.05 (*), P < 0.01 (**), P < 0.001 (***), not significant (ns).
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Figure 6. A quantitative model to stratify Ago2 peaks. (A) Distributions of the miRNA degree of occupancy by the number of miRNA-binding sites per
Ago2 peak in the 3′UTR for miRBShunter, miRanda and TargetScan on the J20 threshold peaks. The degree of occupancy calculated on the eleven Ago2
CLIP-seq datasets was divided into four levels depending on quartiles. Levels are highlighted by different colors, as indicated on the right side of the panel.
(B) Cumulative distributions of miRBShunter, miRanda and TargetScan on the J20 threshold peaks showing the target repression upon mmu-miR-155-5p
knockout in mouse T-cells for the four levels of degree of occupancy. For each level, we calculated the P-value by the Kolmogorov−Smirnov statistical test
for target downregulation compared to background (cumulative distribution of all genes).

binding sites, but not overlapping, in each peak and found
different distances depending on J20 threshold or merge
methods and the predictor used (Supplemental Figure S23).
According to miRgame algorithm, peaks with few miRNA-
binding sites or high free energy of the miRNA::RNA bind-
ing have lower values of degree of occupancy compared
to those with several binding sites that have higher lev-
els. Accordingly, the few multiple binding sites containing
peaks predicted by TargetScan showed higher degree of oc-
cupancy.

To assess whether the degree of occupancy could be use-
ful to stratify Ago2 CLIP-seq peaks for correlation with
target repression, we divided it into four levels based on
3′UTR peak quartiles of the degree of occupancy for each
prediction program (Figure 6A). Then, we calculated the
significance of the downregulation in each level for the mR-
NAs containing binding sites for mmu-miR-155-5p, as our
best miRNA-mediated repression dataset compared to the
other four miRNAs (Figure 4 and Supplemental Figures
S14 and S15). The results are presented in Figure 6B for
J20 threshold and in Supplemental Figure S22B for the
merge method. Concerning the J20 threshold, we found

that levels three and four have the strongest target repres-
sion for predictions performed by miRBShunter, while for
miRanda and TargetScan level four was overall linked with
strongest target repression. Similar results were found for
the merge method, except for TargetScan that does not show
any target repression. We also calculated the significance
of the downregulation in each level for the mRNAs con-
taining binding sites for hsa-miR-16-5p, as our second-best
miRNA-mediated repression dataset (Figure 4 and Supple-
mental Figures S14 and S15). As shown in Supplemental
Table S3, for this miRNA useful stratification was observed
for miRanda merge. For TargetScan J20 significant repres-
sion was observed in the level 3. In this latest condition, we
further divided the peaks in 2 levels of occupancy degree
instead of 4 and found that significant repression was ob-
served in the highest level.

In addition, for mmu-miR-155-5p, we compared the re-
pression calculated by miRgame with that by stratifying the
dataset with simple counting of miRNA-binding sites per
peak (Supplemental Table S4). This analysis indicates that
the simple-count method yields similar results of miRgame
for miRBShunter and miRanda. However, it fails to stratify
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peaks according to the degree of repression for TargetScan.
these results suggest that miRgame outperforms when used
together with TargetScan J20. We then repeated the anal-
yses by separating single binding sites peaks and in mul-
tiple binding sites peaks (Supplemental Table S5). Briefly,
we found that when considered solely peaks containing one
miRNA-binding site, only TargetScan J20 associated with
miRgame provides a peak stratification that positively cor-
relates with target repression. However, considering solely
peaks having multiple binding sites, both miRBShunter
and miRanda provide a stratification that positively cor-
relates with target repression, but not TargetScan. There-
fore, these analyses indicate that miRgame is providing spe-
cific peak stratification when used with TargetScan J20, by
taking into account binding properties of miRNA::RNA
heteroduplexes and the number of miRNA-binding sites
within each peak. Whereas, using miRBShunter and mi-
Randa would offer a peak stratification based on multiple
binding sites that could synergistically cooperate to repress
gene expression.

Altogether, these results overall indicate interdependence
between the miRNA-dependent downregulation and high
score of the degree of occupancy.

DISCUSSION

A major goal of systems biology is to develop appropriate
computational models that enable the integration of differ-
ent experimental data to decipher the biological complexity
in gene expression regulation. Nowadays, high-throughput
sequencing associated to biological experiments is widely
used by researchers, thus there is a need for optimized com-
putational pipelines to standardize the data analysis. To
gain insights into the global impact of miRNA targeting
in post-transcriptional control of gene expression, here we
combined a computational method to identify miRNA-
binding sequences from Ago2 CLIP-seq data and RNA
profiles. We developed a new benchmarked framework,
called optiCLIP, to find high-confidence miRNA-binding
sites from Ago CLIP-seq data. To the best of our knowl-
edge, this is the first bioinformatics framework developed
specifically for Ago CLIP-seq data processing and analy-
sis. OptiCLIP employs benchmarked tools in order to ex-
tract reproducible data to gain insights into the miRNA
mode of binding. Within optiCLIP, we developed a novel
method that addresses the reproducibility of the peaks and
integrated a recently developed method to identify miRNA-
binding sites that do not exclusively use perfect seed-match.
To investigate the validity and efficiency of our new frame-
work, we systematically applied optiCLIP to eleven Ago2
CLIP-seq datasets from mouse and human samples and
identified 98,999 miRNA-binding sites.

Briefly, the new method we use in optiCLIP consists in
performing the peak calling step in each replicate separately
and then quantify the overlap of peaks among multiple
replicates through the Jaccard index (J-index) calculation.
The consensus peaks are provided by the union of all the
peaks that fulfill the reproducibility constrains. We found
that 20% of the Jaccard index threshold outperformed other
more stringent thresholds, namely, 40% and 80%, in terms

of number of identified Ago2 peaks, number of miRNA-
binding sites identified in the 3′UTR, and the percentage of
peaks containing miRNA-binding sites.

Furthermore, J20 threshold outperformed the merge
method in terms of peaks and miRNA-binding sites en-
riched in 3′UTR, however, the merge method was al-
ways more sensitive. Together these results would suggest
that the J20 threshold may be more accurate to predict
functional miRNA-binding sites compared to the merge
method. These data were validated using different pre-
diction programs, namely, miRBShunter, TargetScan, mi-
Randa, TarPmiR and RNAhybrid. In our analysis, we
found that miRBShunter, TargetScan, and miRanda out-
performed TarPmiR and RNAhybrid to predict miRNA
targets with statistically significant repression. In particu-
lar, TargetScan associated with the J20 threshold predicted
miRNA targets that showed the best repression, however
limited to the perfect seed-match search to the 3′UTR. mi-
Randa, which uses similar features that TargetScan, is less
stringent and thus would allow a more complete identifi-
cation of miRNA-binding sites beyond the 3′UTR. How-
ever, it would include more false positives than TargetScan.
Finally, miRBShunter predicts both canonical and non-
canonical miRNA-binding sites on all transcriptomic re-
gions, by identifying all potential miRNA::RNA heterodu-
plexes for both seed and non-seed mode of binding based
on the enriched motif sequences on Ago peaks. In addi-
tion, because less stringent than TargetScan, miRanda and
miRBShunter predict the presence of multiple binding sites
that could synergistically cooperate by providing, there-
fore, a more complete miRNA-dependent gene expression
program. Thus, depending on their own findings, results,
and rationale, scientists can choose their own favorite pro-
gram(s) that would better fit to their research.

We characterized the binding preferences of the most ex-
pressed miRNAs, revealing binding patterns that involve
the seed and outside the seed bindings. These results are due
to the intrinsic assumption of the miRBShunter that looks
for enriched motifs in the target sequences with no restric-
tions in terms of mode of binding. The diversity of the bind-
ing preference among the miRNAs can be explained by the
fact that each miRNA has its own specific sequence, which
can influence the efficiency of the pairing composition. This
conclusion is supported by the fact that miRNAs belonging
to the same family show similar binding preferences (38).

As previously described (4,6,9,36), we also found that
miRNA-binding sites are located in different parts of the
transcriptome, especially in the 3′UTR and the CDS. More-
over, we found that 3′UTR miRNA-binding sites identified
by optiCLIP can actually trigger significant target downreg-
ulation in a miRNA-specific fashion. In particular, for tar-
gets identified by optiCLIP, significant repression over the
background was shown for mmu-miR-155-5p, mmu-let-7a-
5p and hsa-miR-124-3p. Overall, we also noticed that for
J20, even if a smaller number of targets was identified for all
prediction programs compared to the merge method, they
were significantly more repressed of those identified by the
merge method. These data indicate that J20 threshold once
again outperformed the merge method by filtering out false
positive peaks.
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Finally, we set up a quantitative model employing a game
theory approach to calculate by a newly developed algo-
rithm the degree of occupancy of miRNA binding for each
Ago2 peak. The degree of occupancy allows the stratifica-
tion of Ago2 peaks that correlates with the target repres-
sion. We called this novel method the miRgame. Impor-
tantly, the degree of occupancy positively correlates with
the number of binding sites within the peak and a stronger
target repression. These results are in line with recent ex-
perimental and computational evidence (30,34,39,40) and
indicate that miRNA cooperation within the Ago2 peaks
is an important feature by which specificity is gained in
the silencing of the targets. Although longer distances were
not tested, synergistic cooperation between two miRNA-
binding sites is effective within a distance of 60 nt (41). Dif-
ferent factors that might explain the different distance of
cooperative miRNA-binding sites found in several publica-
tions (30,34,39,40) would include different linker and flank-
ing sequences, as well as the milieu of RNA-binding pro-
teins. On the other hand, the saturation of binding sites tar-
geted by multiple miRNAs (promiscuous miRNA-binding
sites) can explain the relatively poor ability that changes of
single miRNA expression may modulate target repression,
as it was previously suggested (34). In conclusion, the syner-
gistic cooperation of miRNA-binding sites and the presence
of promiscuous binding sites within each Ago2 peak would
define miRNA-binding units to sophistically regulate target
repression.

Compared to other models of miRNA target regulation
that consider the mechanism of one or few miRNAs (34,42–
45), miRgame is based on the comprehensive identifica-
tion of the whole set of miRNA targetome by CLIP-seq
analysis. By taking into account each miRNA-binding unit,
miRgame determines the synergy of multiple binding sites,
multiple miRNA targeting to the same binding site, and
the energy of binding within each Ago2 peak. Compared
to models not based on CLIP-seq data (45), our method
is not biased toward the search of seed-match sequence to
3′UTR and target abundance. Our comparative analyses in-
dicate that miRgame stratifies according to the miRNA-
binding properties when used with TargetScan J20. How-
ever, when miRBShunter or miRanda are used, miRgame
is providing peak stratification based on multiple binding
sites identification that could synergistically cooperate for a
stronger repression. Thus, depending on their own findings,
results, and rationale, researchers can choose their own fa-
vorite program(s) that would better fit to their research.

In summary, here we proposed an optimized bioinfor-
matic framework, called optiCLIP, to analyze Ago2 CLIP-
seq datasets, and showed by comparative studies its reliabil-
ity and robustness in comprehensively identifying miRNA-
binding sites. We used a systematic approach based on an
adaptation of the game theory, to propose a quantitative
model for stratification of Ago2 CLIP-seq peaks, which re-
vealed that the synergy among miRNA-binding sites in each
Ago2 peak finely controls target repression. This model can
be also used for in silico stratification of predicted miRNA-
binding sites. In conclusion, with increasing number of
high-throughput data for miRNA targeting, our method
is providing a powerful tool to interpret the dynamics and
the complexity of miRNA-dependent post-transcriptional

gene expression. In the future, it should be possible to ex-
tend our model to integrate post-transcriptional regula-
tion by other regulators, including RNA-binding proteins
that regulate miRNA targeting, such as HuR (46), Dnd1
(47) and Sfpq (36), RNA folding, and mRNA expression
levels. Our method will help researchers to better under-
stand the miRNA mode of action involved in complex bio-
logical processes.
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and the Provence-Alpes-Côte d’Azur Region for the finan-
cial support provided to this research project (equipment
CyberStation Performance Dual Scalable Processor Xeon
XL Workstation).

FUNDING

ANR through the ‘Investments for the Future’ [ANR-
11-LABX-0028-01 to LABEX SIGNALIFE]; FRM
[DEQ20140329551 to M.T.]; F.S. was supported by ‘UCA
JEDI: Excellence Initiative’ – Université Côte d’Azur; S.B.
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