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Abstract

Hearing loss (HL) is a common sensory disorder. More than half of HL cases can be attrib-

uted to genetic causes. There is no effective therapy for genetic HL at present, early diagno-

sis to reduce the incidence of genetic HL is important for clinical intervention in genetic HL.

Previous studies have identified 111 nonsyndromic hearing loss genes. The most frequently

mutated genes identified in NSHL patients in China include GJB2, SLC26A4, and the mito-

chondrial gene MT-RNR1. It is important to develop HL gene panels in Chinese population,

which allow for etiologic diagnosis of both SHL and NSHL. In this study, a total of 220 unre-

lated Han Chinese patients with bilateral progressive SNHL and 50 unrelated healthy con-

trols were performed Single nucleotide polymorphism (SNP) genotyping using an improved

multiplex ligation detection reaction (iMLDR) technique, is to simultaneously detect a total of

32 mutations in ten HL genes, covering all currently characterized mutations involved in the

etiology of nonsyndromic or syndromic hearing loss in the Chinese population. The 49 posi-

tive samples with known mutations were successfully detected using the iMLDR Technique.

For 171 SNHL patients, gene variants were found in 57 cases (33.33%), among which, 30

patients carried mutations in GJB2, 14 patients carried mutations in SLC26A4, seven

patients carried mutations in GJB3, and six patients carried mutations in MT-RNR1. The

molecular etiology of deafness was confirmed in 12.9% (22/171) of patients carried homozy-

gous variants. These results were verified by Sanger sequencing, indicating that the sensi-

tivity and specificity of the iMLDR technique was 100%. We believe that the implementation

of this population-specific technology at an efficient clinical level would have great value in

HL diagnosis and treatment.
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Introduction

Hearing loss (HL) is a common sensory disorder, affecting 360 million people worldwide

(WHO, 2017) and more than 27 million individuals in China alone. It is estimated that the

prevalence of HL is 1 to 3 per 1000 live births, and the total number of children that suffer

from HL exceeds 32 million worldwide (WHO, 2017). Both genetic and environmental factors

can lead to HL. More than half of congenital HL cases can be attributed to genetic causes, of

which 30% are syndromic (SHL) and 70% are nonsyndromic (NSHL). HL is commonly caused

by variation in a single gene that adheres to a simple Mendelian inheritance pattern: autosomal

dominant, autosomal recessive, X-linked inheritance, Y-linked inheritance, or maternal inher-

itance. However, more than 1000 known variants in over 100 genes cause HL. Previous studies

have mapped 165 NSHL loci, and 111 of these have been cloned (http://hereditaryhearingloss.

org, March 2018).

There is no effective therapy for genetic HL at present. Therefore, early diagnosis to reduce

the incidence of genetic HL is important for clinical intervention in genetic HL. Currently,

many cases of HL are identified at birth via newborn hearing screening (NBHS), which gener-

ally includes either otoacoustic emission (OAE) or auditory brainstem response (ABR) testing

or both. However, many HL cases only become apparent later in life with late-onset hearing

impairment mutations or following an environmental insult, such as noise exposure, antibiotic

use, or head trauma. In these cases, the implications of missed and delayed diagnoses indicate

an opportunity to utilize the newest ideas and tools of genetic screening for improved diagnos-

tic measures.

The previous standard of practice indicated the need for genetic screening in HL only in

cases of suspected congenital sensorineural HL (SNHL) or for individuals that fail the NBHS

[1]. Application of this standard resulted in only about one-third of patients with HL receiving

a definitive molecular diagnosis after having undergone comprehensive genetic testing for

known HL genes [2]. In addition, in the field of HL, unique genetic profiles are being identi-

fied in specific ethnic groups at an increasing rate. In different countries or ethnic groups, and

in different regions of the same country, the frequency of mutations varies greatly [3–5]. Epi-

demiological survey data indicate that the most frequently mutated genes identified in patients

with NSHL in China include GJB2 (OMIM: 121011), SLC26A4 (OMIM: 605646), and the

mitochondrial gene MT-RNR1 (OMIM: 561000) and that each of these genes have multiple

common mutations. These data provide a theoretical basis for the large-scale development of

deafness gene screening and diagnosis in various genomic regions [6, 7]. Therefore, rare genes

or mutations that are not commonly included in panels designed for diagnosis of genetic HL

in multiple populations, or ethnic groups, can be included in customized, population-specific,

gene panels. Additionally, it is important to develop HL gene panels that allow for etiologic

diagnosis of both SHL and NSHL.

Several screening methods, each with their own advantages, can be used to screen for the

causative mutations of HL. These approaches include Sanger sequencing, PCR-restriction

fragment length polymorphism (PCR-RFLP), real-time PCR, SNaPshot, matrix-assisted laser

desorption/ionization–time-of-flight mass spectrometry (MALDI-TOF MS), and microarray

analysis. However, these approaches are time-consuming, tedious, costly, and not suitable for

large-scale detection in clinical applications. In this study, we introduce a newly developed

multiplex genetic screening system, called the iMLDR technique, to investigate neonatal HL

samples in the Chinese population. The objective of this screening system is to simultaneously

detect a total of 32 mutations in the GJB2, SLC26A4, and MT-RNR1 genes, covering all cur-

rently characterized mutations involved in the etiology of nonsyndromic or syndromic SNHL

in the Chinese population.
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Materials and methods

Samples

A total of 220 unrelated Han Chinese patients with bilateral progressive SNHL were recruited

between 2011 and 2013 from the Otolaryngology Department of Xiangya Hospital, Central

South University. We recruited patients in whom deafness resulted from unclear causative fac-

tors. Patients in who clear causative factors for deafness were identified such as noise exposure,

trauma (exception for the patients who are identified with enlarged vestibular aqueduct by

medical imaging), intrauterine infection, poisoning, or tumors were excluded. A detailed med-

ical history was available for each proband. Every participant was examined thoroughly,

including systemic and specialized physical examination, electric otoscopy, and audiological

assessment animation. All participants were probands and were divided into 215 cases of non-

syndromic SNHL and 5 cases of WS based on clinical history, physical examination, audiologi-

cal examination, and imaging tests. Among these samples, 49 cases (33 prelingual and 16

postlingual) were already tested by Sanger sequencing and were used to validate the perfor-

mance of the iMLDR technique (Table 1). Of these, 32 patients were from family and 17 were

from sporadic cases. The controls consisted of 50 unrelated healthy Chinese volunteers with

normal hearing and without another genetic disease.

Genomic DNA was extracted from 10 ml peripheral blood using standard phenol-chloro-

form protocols and stored at -20˚C[8]. Written informed consent was obtained from all

patients and controls, and the study was approved by the Human Ethics Committee of Central

South University and is compliant with the Code of Ethics of the World Medical Association

[9].

Selection of mutations responsible for hereditary HL (HHL)

We searched the literature available on the human gene mutation database[10], PubMed,

Embase, the Chinese National Knowledge Infrastructure, and the Chinese Wanfang Literature

Database to estimate the frequency of mutations in causative genes for HL in the Chinese pop-

ulation. We then selected an initial set of genes, which had been previously implicated in HL,

for inclusion in our study. The mutation list included single-nucleotide changes and deletions.

The 32 mutations chosen included all currently characterized mutations involved in the

Table 1. Forty-nine positive cases used to validate the performance of the iMLDR technique.

Gene Chromosome Nucleotide Change Heterozygous Homozygous

GJB2 13 c.139G>T 2 0

c.176_191del16 1 0

c.235delC 10 6

c.299_300delAT 2 0

c.571T>G 1 0

SLC26A4 7 IVS7-2A>G 3 3

c.1174A>T 1 0

c.1229C>T 2 0

c.2168A>G 3 0

MT-RNR1 mtDNA c.1555A>G - 11

GJB3 1 c.580G>A 1 0

PAX3 2 c.812G>A 1 0

MITF 3 c.650G>T 1 0

CEACAM16 19 c.505G>A 1 0

https://doi.org/10.1371/journal.pone.0215212.t001
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etiology of nonsyndromic and syndromic SNHL (Table 2). Mutations in the mutation list

included those involving mitochondrial and autosomal deafness genes, 28 NSHL variants and

4 common SHL variants related to Waardenburg syndrome (WS), two maternally inherited

variants, and one X-linked variant.

Single nucleotide polymorphism genotyping using the iMLDR technique

Single nucleotide polymorphism (SNP) genotyping was performed using an improved multi-

plex ligation detection reaction (iMLDR) technique recently developed by Genesky Biotech-

nologies Inc. (Shanghai, China). The basic principle of this technique is illustrated in Fig 1.

Generally, for each SNP locus, three 5´-phosphorylated probes were designed, two allele-spe-

cific 5’ probes, and one common 3’ probe. Each 5’ probe was designed with a dye-specific

sequence at the 5’ end and an allele-specific sequence at 3’ end. A variable length stuffer

sequence may be added at the 3’ end of the 3’ probes to distinguish ligation products with iden-

tical dye labeling. The 3’ end of the allele-specific 5’ probe can hybridize to the target genomic

DNA and ligate to the adjoining 3’ probe. The 5’ half can hybridize to an oligo template and

ligate to a corresponding 5’ dye-labeled oligo, making the allele-specific 5’ probe dye-labeled.

This system means that an effective ligation product will be produced by a double ligation con-

sisting of a labeling ligation and an allelic discrimination ligation. The two allele-specific 5’

probes contain different 5’ dye-specific sequence to enable labeling with different dyes by the

labeling ligation. The sequence of the two allele-specific 5’ probes differs at the 3’ end and will

ligate to the 3’ probe when bound to the corresponding allele DNA template. Therefore, the

ligation products from two alleles will be labeled with different dyes. In Fig 1, four dyes (blue,

green, yellow, and red) are used to distinguish the four ligation products from two SNP loci

with same size. This approach can be significantly scaled-up to increase the number of SNP

loci assayed in one reaction.

We applied the iMLDR technique to genotype 32 SNP loci in one ligation reaction. A multi-

plex PCR reaction was designed to amplify 18 fragments covering all 32 SNP loci. The 20 μl

PCR reaction mixture contained 1 x GC Buffer I (Takara), 3.0 mM Mg2+, 0.3 mM dNTPs, 1 U

of Hot-Start Taq DNA polymerase (Takara), 1 μl of primer mixture, and 20 ng of genomic

DNA. Primer sequences and concentrations are described in S1 Table. The PCR cycling con-

ditions were as follows: 95˚C for 2 min; followed by 11 cycles of 94˚C for 20 s, 65–0.5˚C/cycle

for 40 s, and 72˚C 1 min 30 s; then 24 cycles of 94˚C for 20 s, 59˚C for 30 s, and 72˚C 1 min 30

s; and a final extension of 72˚C for 2 min and holding at 4˚C. The PCR products were equally

mixed and purified by digestion with 1 U of shrimp alkaline phosphatase at 37˚C for 1 hr, fol-

lowed by deactivation of the phosphatase at 75˚C for 15 min. The 20 μl ligation reaction con-

tained 1 x ligation buffer, 80 U Taq DNA ligase (NEB), 1 μl of labeling oligo mixture, 2 μl of

probe mixture, and 5 μl of purified PCR product mixture. The oligo and probe information is

described in S2 and S3 Tables, respectively. The cycling program for the ligation reaction was

95˚C 2 min followed by 38 cycles of 94˚C for 1 min and 56˚C for 4 min and a hold at 4˚C. Liga-

tion product (0.5 μl) was loaded into an ABI 3730xl DNA analyzer and the raw data were ana-

lyzed by GeneMapper 4.1. All primers, probes, and labeling oligos were designed by and

ordered from Genesky Biotechnologies Inc. (Shanghai, China).

Sanger sequencing

Detected variants were confirmed by Sanger sequencing and data were analyzed using the

DNASTAR software program (DNASTAR, Inc., Madison, Wisconsin, US).
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Results

Performance of iMLDR Technique

The 49 positive patients utilized in this study were initially characterized by Sanger

Sequencing. Samples with known mutations were successfully detected using the iMLDR

Technique. These samples included five compound heterozygous variants detected in

nine patients (Table 3),which were inherited from the parents. The iMLDR findings con-

sistent with the initial results obtained using an array. Three GJB2 heterozygous

(c.176_191del16, c.235delC and c.299_300delAT) and two SLC26A4 heterozygous (IVS7-

2A>G) mutations were detected in 50 controls (Table 4). The assay demonstrated 100%

sensitivity and specificity.

Table 2. Thirty-two mutations responsible for hereditary hearing loss.

Gene Chromosome Nucleotide change Allelic Change dbSNP rs#

GJB2 13 IVS1+1G>A G/A rs80338940

c.35 del G G/- rs80338939

c.71G>A G/A rs104894396

c.139G>T G/T rs104894398

c.167delT T/- rs80338942

c.176_191del16 gctgcaagaacgtgtg/-

c.235delC C/- rs80338943

c.299_300delAT AT/-

c.571T>G T/C

c.596C>T C/T

GJB3 1 c.538C>T C/T rs74315319

c.547 G>A G/A

c.580G>A G/A rs121908852

SLC26A4 7 c.281C>T C/T

IVS7-2A>G A/G

c.1174A>T A/T

c.1226G>A G/A

c.1229C>T C/T

IVS15+5G>A G/A

c.2027T>A T/A

c.2168A>G A/G rs121908362

MT-RNR1 mtDNA c.1494C>T C/T

c.1555A>G A/G

COCH 14 c.151C>T C/T rs28938175

c.1625G>A,c.1625G>T G/A;G/T rs121908933

POU3F4 X c.967C>G C/G rs104894924

PAX3 2 c.812G>A G/A

MITF 3 c.650G>T G/T

c.648_650delAAG AAG/-

SOX10 22 c.113delG G/-

CEACAM16 19 c.505G>A G/A

c.418A>C A/C

rs#: reference SNP cluster

https://doi.org/10.1371/journal.pone.0215212.t002

Gene mutations in hereditary hearing loss, a new rapid detection method

PLOS ONE | https://doi.org/10.1371/journal.pone.0215212 April 11, 2019 5 / 12

https://doi.org/10.1371/journal.pone.0215212.t002
https://doi.org/10.1371/journal.pone.0215212


Mutations detected by iMLDR in a cohort of bilateral progressive SNHL

patients

For 171 bilateral progressive SNHL patients, gene variants were found in 57 cases (33.33%)

(Table 5). In summary, 30 patients carried mutations in GJB2, 14 patients carried mutations

in SLC26A4, seven patients carried mutations in GJB3, and six patients carried mutations in

MT-RNR1. Of these variants, nine were compound heterozygous (Table 6), 35 were heterozy-

gous (20.47%), and 22 were homozygous variants (12.87%). Mutations in GJB2, SLC26A4, and

GJB3 exhibit autosomal recessive inheritance. Therefore, only SNHL patients with homozy-

gous or compound heterozygous pathological mutations would present with hearing

impairment caused by the mutations in these genes. Since the 31 patients whose parents’ DNA

was not available, We cannot be sure that the nine compound heterozygous mutations of the

patients are located in one allele or two alleles respectively, which needs further analysis.

Through this analysis, the molecular etiology of deafness was confirmed in 12.9% (22/171) of

patients carried homozygous variants. To clarify the genetic etiology for the 35 patients who

carry heterozygous variants, Next-Generation Sequencing(NGS) based techniques to analyze

Fig 1. Illustration for Multiplex SNP Genotyping Using iMLDR technique.

https://doi.org/10.1371/journal.pone.0215212.g001

Table 3. Compound Heterozygous detected in 49 positive cases.

Compound Heterozygous No. of

Samples

SLC26A4_ IVS7-2A>G/ c.2168A>G 1

GJB2_ c.235delC/ c.299_300delAT 2

GJB2_ c.235delC/ MT-RNR1_ c.1555A>G 1

GJB2_ c.235delC/ SLC26A4_ IVS7-2A>G 1

GJB3_ c.580G>A/ MT-RNR1_ c.1555A>G 1

GJB2_ c.571T>G/SLC26A4_ c.1174A>T 1

SLC26A4_ c.1229C>T/ c.2168A>G 2

https://doi.org/10.1371/journal.pone.0215212.t003
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the entire coding sequence of the involved genes could be performed to find out the possible

existence of a second mutant allele.

GJB2 was the most prevalent causative gene among patients with nonsyndromic SNHL and

the frequency of GJB2 mutations was 17.54% (30/171). Three mutations, c.235delC,

c.299_300delAT, and c.176_191del16, were detected in GJB2. The most prevalent mutation

was c.235delC, which accounted for 53.33% (16/30) of all mutant GJB2 alleles. SLC26A4 was

the second most prevalent causative gene among the nonsyndromic SNHL patients examined

(8.19%, 14/171). Four distinct mutations, IVS7-2A>G, c.1229C>T, IVS15+5G>A, and

c.2168A>G, were detected in SLC26A4. IVS7-2A>G was the most prevalent mutation,

accounting for 42.86% (6/14) of all mutant SLC26A4 alleles. These results were verified by

Sanger sequencing, indicating that the accuracy rate of the iMLDR technique was 100%.

Discussion

HL affects one in 1000 newborns[11]. However, the heterogeneity of etiologies leading to HL

provides a challenge for effective diagnosis and treatment. Mutations in GJB2, SLC26A4, and

the mitochondrial gene MT-RNR1 were the most frequently identified in NSHL patients. GJB2
accounts for about 50% of NSHL cases. To date, up to 350 GJB2 mutations have been reported

(http://www.hgmd.cf.ac.uk). The most frequently reported mutation in GJB2 in East Asian

populations is c.235delC[12, 13]. In this study, GJB2 was the most prevalent causative gene

among nonsyndromic SNHL patients. In this gene, three mutations, c.235delC,

c.299_300delAT, and c.176_191del16, were detected. Consistent with the results of previous

c.235delC was the most prevalent GJB2 mutation detected in this study [14]. The autosomal

recessive inheritance of GJB2 mutations means that only the NSHL patients with homozygous

Table 4. Variants detected in 50 controls.

Gene Nucleotide change Heterozygous Frequency

n = 50

GJB2 c.176_191del16 1 2%

c.235delC 1 2%

c.299_300delAT 1 2%

SLC26A4 IVS7-2A>G 2 4%

https://doi.org/10.1371/journal.pone.0215212.t004

Table 5. Variants detected in 171 SNHL patients.

Gene Chromosome Nucleotide Homozygous Heterozygous Frequency

change n = 171

GJB2 13 c.176_191del16 0 1 0.58%

c.235delC 12 4 9.36%

c.299_300delAT 2 9 64.33%

c.571T>G 0 2 1.17%

GJB3 1 c.538C>T 0 1 0.58%

c.580G>A 0 6 3.50%

SLC26A4 7 IVS7-2A>G 2 4 3.50%

c.1229C>T 0 4 2.34%

IVS15+5G>A 0 1 0.58%

c.2168A>G 0 3 1.75%

MT-RNR1 mtDNA 1494 C>T 1 0 0.58%

c.1555A>G 5 0 2.92%

https://doi.org/10.1371/journal.pone.0215212.t005
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or compound heterozygous pathological GJB2 mutations would present with hearing

impairment. Therefore, monoallelic GJB2 mutations could not explain the molecular etiology

of the subject’s HL in this study. Additional mutations, in other alleles, might be responsible

for the HL phenotype. Alternatively, other factors, such as congenital cytomegalovirus (CMV)

infection or additional environmental factors, could contribute to HL in this study population

[15].

The second most common cause of HHL identified in this study was mutations in the

SLC26A4 gene, which accounted for 5–10% of prelingual HL. The types and frequencies of

mutations in SLC26A4 are differ based on ethnicity. In Chinese HL patients, the carrier fre-

quency of the SCL26A4 c.919-2A>G mutation accounts for 69.1% of all cases associated with

SLC26A4 mutation [16, 17]. In European populations, SLC26A4 c.1246A>C and IVS8+1G>A

are the two most common mutations [18]. SLC26A4 was the second most prevalent causative

gene among the nonsyndromic SNHL patients examined in this study. Four distinct SLC26A4
mutations, IVS7-2A>G, c.1229C>T, IVS15+5G>A, and c.2168A>G, were detected, with

IVS7-2A>G the most prevalent. SLC26A4 is the causative gene for enlarged vestibular aque-

duct (EVA), and more than 300 SLC26A4 variants have been identified in cases with EVA

(www.healthcare.uiowa.edu/labs/pendredandbor). Routine clinical examinations to diagnose

EVA involve audiological tests and temporal bone imaging to reveal the expansile vestibular or

endolymphatic sac. EVA manifests clinically as fluctuating or progressive SNHL, ranging from

mild to profound deafness[19], and most patients are diagnosed when their hearing is already

poor. Therefore, early clinical genetic diagnoses of EVA patients are critical to implement the

appropriate disease control and prevention responses, such as avoiding head trauma, getting

cold, and noise stimulation. Moreover, when patients with HL are diagnosed with EVA, they

can choose hearing aids or artificial cochlear implantation in a timely manner. Currently stud-

ies suggest that a SLC26A4 biallelic variant (compound heterozygous or homozygous) is the

main cause of EVA. EVA patients carrying SLC26A4 biallelic variants usually can be verified

by videography diagnosis[20]. In this study, 12 cases with monoallelic SLC26A4 variants were

identified and may only be carriers. In these cases, additional mutations in other alleles may be

responsible for the HL phenotype. There could be other undetected mutations in SLC26A4
regions not examined in this study such as the promoter region, or in a potential intron splice

site. Alternatively, there might be a digenic pattern of inheritance implicating a second gene in

the etiology of HL in these patients [21]. Furthermore, the interaction between genetic and

environmental factors may play a role in the pathogenic process of EVA[22].

Mitochondrial 1555A>G and 1494 C>T mutations that lead to toxic deafness are a com-

mon cause of genetic HL in the Chinese population, accounting for 5% of prelingual HL[23,

24]. In this study, 2.92% (5/171) of patients with nonsyndromic SNHL were homoplastic for

1555A>G. Moreover, another patient was found to harbor the homozygous mutation in 12S

rRNA 1494 C>T. This suggests that mitochondrial 1555A>G and 1494 C>T mutations might

be common in Chinese HL populations and that screening for these two mutations should be

performed routinely in molecular-diagnostic centers. It was previously shown that the pene-

trance of the A1555G mutation can be enhanced by treatment with aminoglycosides. The

Table 6. Compound Heterozygous detected in 171 SNHL patients.

Compound Heterozygous No. of Samples

SLC26A4_ IVS7-2A>G/ c.1229C>T 1

SLC26A4_ IVS7-2A>G/ c.2168A>G 1

GJB2_ c.235delC/ c.176_191del16 1

GJB2_ c.235delC/ c.299_300delAT 6

https://doi.org/10.1371/journal.pone.0215212.t006
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identification of the A1555G mutation in families with deafness, the presymptomatic detection

of this mutation in maternally related subjects, and the avoidance of aminoglycosides by indi-

viduals who are positive for the A1555G mutation should help in the prevention of deafness.

In HHL, roughly 70% of cases are nonsyndromic and 30% of prelingual deafness cases are

associated with> 400 types of syndromes [25]. The most common autosomal-dominant syn-

dromic deafness is WS, which is characterized by sensorineural deafness, distinctive facial fea-

tures, and pigment disturbances. WS is clinically and genetically highly heterogeneous. Four

subtypes of WS, WS1 (OMIM: 193500), WS2 (OMIM: 193510), WS3 (OMIM: 148820), and

WS4 (OMIM: 277580) have been classified based on the presence or absence of additional

symptoms. Heterozygous PAX3 (OMIM: 606597) mutations were responsible for 90% of WS1

patients, and WS3 is caused by heterozygous or homozygous PAX3 mutations [26]. Fifteen

percent of patients with WS2 carried heterozygous MITF (OMIM: 156845) mutations [27].

SOX10 (OMIM: 602229) deletions were identified in WS2 patients, and we identified two

novel SOX10 mutations in the first report of WS4 in Chinese patients [28, 29]. In this study,

we included one PAX3 mutation (c.812G>A), two MITF mutations (c.650G>T and

c.648_650delAAG), and one SOX10 mutation (c.113delG) detected previously in Chinese

patients with WS in the panel. The inclusion of these mutations enabled our diagnostic tech-

nology to simultaneously cover nonsyndromic deafness and syndromic deafness.

We also included another nine mutations in our screening panel. In 1998, Xia. et al. cloned

the GJB3 gene, which encodes human gap junction protein β, which was responsible for bilat-

eral high-frequency hearing impairment [30]. COCH (OMIM: 603196) is the most frequently

reported gene responsible for autosomal dominant nonsyndromic progressive SNHL [31–33].

POU3F4 (OMIM: 300039) is the most common gene responsible for X-linked HHL [34].

Using exome sequencing, we identified a novel CEACAM16 mutation associated with autoso-

mal dominant NSHL, DFNA4B, in a Chinese family. This is the first report in China, and the

second report in the literature, of a family with autosomal dominant NSHL caused by a CEA-
CAM16 mutation. The mutations included in this panel represent the genes that are most fre-

quently involved in deafness, most of which have been reported more than twice in the

Chinese population. There was no mutations detected in COCH, POU3F4, PAX3, MITF,

SOX10 and CEACAM16 in this study. The reason may be that the incidence of these six genes

is not very high in HHL patients. Larger sample screening studies should be performed in the

future.

In our study, we sought to establish a new molecular method based on the iMLDR tech-

nique for identification of HHL mutations that, on the one hand, would be capable of simulta-

neously genotyping of 32 SNP loci with high accuracy and reliability and, on the other hand,

would be simple enough for application even in routine laboratories. We used Sanger sequenc-

ing to confirm our results, and found that the false positive and the false negative rates were

both 0%. We confirmed that in 22 of 171 deaf patients, HL was due to nonsyndromic heredi-

tary deafness, and that 22 cases might be attributed to genetic factors. To clarify the genetic eti-

ology for the 35 patients who carry heterozygous variants and the patients who do not bear

any of these mutations, Next-Generation Sequencing(NGS) based gene panels to analyze the

entire coding sequence of all the known HHL involved genes, or Whole-exome sequencing

(WES) by targeting the protein-coding regions of the genome, could be performed to find out

the possible existence of mutant alleles. Additionally, since molecular confirmation of the caus-

ative variations for SNHL is important for genetic counseling of patients, steps should be taken

to ensure patient safety and confidentiality through several available guidelines, such as

through the guideline of American College of Medical Genetics and Genomics (ACMG).

Compared with other screening technologies such as NGS, the iMLDR technology has advan-

tage of low cost that the screening costs is less than 0.3 cents/SNP locus, which can be

Gene mutations in hereditary hearing loss, a new rapid detection method

PLOS ONE | https://doi.org/10.1371/journal.pone.0215212 April 11, 2019 9 / 12

https://doi.org/10.1371/journal.pone.0215212


suggested as the initial screening technique of SNHL mutation screening. And then if neces-

sary, the NGS based techniques covering all known genes for SNHL could be further per-

formed. In the field of HL, unique genetic variations were identified in specific ethnic groups.

As a result, rare genes or mutations that are not commonly included in panels meant for

multi-population use can be included in customized population-specific gene panels. Com-

pared with disease-specific but large-scale NGS gene panels to unearth common HL gene vari-

ants, this new technology developed in this study can be stratified by ethnic group or

geography and applied clinically in smaller, more targeted HHL diagnostic panels, as the mul-

tiplex PCR reaction can be designed to amplify different fragments covering different SNP

loci. We believe that the implementation of this population-specific technology at an efficient

clinical level would have great value in HL diagnosis and treatment.
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