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INTRODUCTION

The current paradigm of type 2 pre-diabetes/diabetes (T2D) maintains that glycemic control reflects
the interplay between insulin production by beta-cells and the peripheral sensitivity/resistance to
insulin. Insulin resistance implies failure of insulin to activate glucose uptake in muscle and adipose
tissue and glycogen synthesis in liver and muscle, and to inhibit liver gluconeogenesis and adipose
lipolysis. The pre-diabetes stage is considered to present progressive resistance to insulin, being
offset by insulin hypersecretion by beta-cells, resulting in maintaining plasma glucose levels within
the pre-diabetes limits. The overt diabetes stage that follows presents ‘exhaustion’ of beta cells,
resulting in progressive hyperglycemia (1).

The close association between insulin secretion and insulin resistance leaves open the question
which comes first (2, 3). Similarly, the association between insulin resistance and hyperinsulinemia
in normoglycemic normolipemic off springs of T2D parents (4) is still undefined in terms of
primary cause-effect. The classical paradigm maintains that insulin resistance is the primary defect
of T2D, followed by ‘compensatory’ increase in beta cells insulin production (1, 5). An alternative
paradigm maintains that insulin hypersecretion by beta-cells is the primary defect, resulting in
hyperinsulinemia which drives peripheral insulin resistance (6). Each of the two paradigms appears
to be substantiated by respective examples (2–6). However, the apparent cause-effect relationship
outlined by each still remains unresolved in terms of molecular mode(s)-of-mediation. Thus, in
spite of previous attempts (e.g., beta-trophin, irisin) no humoral and/or neuronal agents have yet
been identified which may mediate between primary insulin resistance and increase in beta cells
mass and function during the early normoglycemic normolipemic pre-diabetes stage of T2D. Also,
the mode of suppression of the insulin transduction pathway in liver, muscle and adipose fat by
primary hyperinsulinemia still remains unresolved. Moreover, plasma insulin levels are further
determined by hepatic insulin clearance, which amounts to >50% of the insulin secreted by beta-
cells (7). Indeed, hepatic insulin clearance is significantly inhibited in T2D patients, thereby
synergizing with insulin hypersecretion by pre-diabetes beta cells (8, 9). Thus, the egg-chicken
riddle of insulin resistance and secretion appears to be further complicated by the three-effector
encounter of insulin resistance, secretion and clearance. Solving the concerned three-effector
encounter may help in realizing the primary pathological driver and primary target for treatment
of T2D.
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THE THREE-EFFECTOR ENCOUNTER OF
T2D IS DRIVEN BY mTORC1

In lack of direct cause-effect relations between insulin resistance,
secretion and clearance, the three effectors of T2D are proposed
to be concomitantly driven by an upstream primary con-
founder, namely, hyper activation of the mammalian target of
rapamycin complex 1 (mTORC1) (Figure 1A). mTORC1
controls growth and metabolism by phosphorylating and/or
affecting its downstream targets S6K1, 4EBP, CRTC2, lipin,
ATF4, HIF1a, PPARg, PPARa, ULK1, TFEB, autophagy and
others (10). Wildtype mTORC1 kinase activity may be hyper-
activated by growth factors (e.g., insulin), energy/nutrients excess
(e.g., glucose, leucine, arginine) and inflammation (e.g., NFkB/
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IKK), while being suppressed by metabolic stress (e.g., caloric,
hypoxic, hyperosmotic, redox) (10, 11). Suppression of mTORC1
activity or its downstream targets is reported to ameliorate T2D
phenotype in animal models (12, 13) and human (14–16),
implying a putative upstream role of hyperactive mTORC1 in
driving the three-effector encounter of T2D.

Hyperactive mTORC1 drives insulin resistance by disrupting
the insulin receptor (IR)-Akt transduction pathway in liver,
muscle and adipose tissue, resulting in glycogenolysis,
gluconeogenesis, inhibition of glucose uptake, unrestrained
hyperglycemia and adipose lipolysis (17) (Figure 1B). Thus,
phosphorylation of IRS1,2(Ser312, 636/639) by hyperactive
mTORC1 and IRS1,2(Ser307, 1101) by hyperactive S6K1 result
in suppressing the phosphorylation of IRS tyrosine(s) followed
by IRS ubiquitination and degradation (18, 19). Also,
phosphorylation and stabilization of GRB10 by hyperactive
mTORC1 results in disrupting the IR/IRS transducer (20, 21).
The IR-Akt transduction pathway is further disrupted by
suppression of Akt(Ser473) phosphorylation by mTORC2, due
to inhibition of mTORC2 kinase activity by hyperactive
mTORC1/S6K1 (22, 23). Of note, disruption of the IR-Akt
transduction pathway by hyperactive mTORC1 may still allow
for sustained activation of mTORC1 by insulin, being mediated
by the IR-Erk1,2 transduction pathway, implying a functional
redundancy of the Akt and the Erk1,2 effectors in mediating
mTORC1 activation by insulin (24) (Figure 1B).

mTORC1 drives beta-cells proliferation, cell size and insulin
production (25). Hence, concomitant hyper activation of
mTORC1 in liver, muscle, adipose fat and beta-cells may
account for the close association between peripheral insulin
resistance and insulin hypersecretion during the pre-diabetes
stage of T2D (Figure 1B). However, hyper activation of beta
cells mTORC1 serves as double-edged driver, allowing for beta
cells high performance, while concomitantly promoting beta cells
ER stress and apoptosis (26–28). Thus, chronic increased
production of insulin and its islet amyloid polypeptide (IAPP)
by-product may result in unfolded protein response (UPR),
aimed at eliminating surplus by suppressing protein synthesis
while increasing lysosomal autophagy and/or proteasome
degradation. However, these degradation pathways are blocked
by hyperactivemTORC1, resulting in apoptosis due to unresolved
ER stress (29). Also, disruption of beta cells IR-Akt-FOXO1
pathway by hyperactive mTORC1 results in suppressing PDX1
and beta cells survival (30), while promoting alpha-cells glucagon
expression (31) and glucagon-induced hepatic gluconeogenesis.
The two concomitant contrasting aspects of beta-cells hyperactive
mTORC1 may dynamically evolve during the clinical sequel of
T2D, whereby the hyperplastic-hypertrophic pre-diabetes phase
yields progressively to overt T2D beta-cells failure (1). Indeed, the
decline in beta cells disposition index starts within the range of
normal glucose tolerance and progressively deteriorates as
patients progress to hyperinsulinemic prediabetes and then to
overt T2D (1). Hence, the current two-stage paradigm of pre-
diabetes/diabetes overlooks the inherent pathophysiological
continuum of T2D.

Hepatic hyperactive mTORC1 suppresses hepatic insulin
clearance, which depends on IR availability, and further depends
A

B

FIGURE 1 | (A) The classical paradigm of T2D glycemic control maintains a
cause-effect relationship between insulin resistance, secretion and clearance.
However, the cause-effect paradigm is still unresolved (symbolized by question
marks) in terms of molecular modes-of-mediation. The three effectors of T2D
are proposed here to be concomitantly driven by an upstream primary
hyperactive mTORC1. mTORC1 may be hyper-activated by growth factors
(e.g., insulin), nutrients excess (e.g., glucose, leucine), or inflammation (e.g.,
NFkB/IKK), while being suppressed by metabolic stress. (B) Hyperactive
mTORC1 may concomitantly drive peripheral insulin resistance, beta cells
insulin hypersecretion and failure, and suppression of hepatic insulin clearance.
Thus, hyperactive mTORC1 drives insulin resistance by disrupting the IR-Akt
transduction pathway resulting in glycogenolysis, gluconeogenesis, inhibition of
glucose uptake and adipose lipolysis. mTORC1 activation by the insulin-IR-Erk
transduction pathway allows for sustained activation of mTORC1 by insulin
upon disrupting the insulin-IR-Akt transduction pathway. Hyperactivation of
beta cells mTORC1 serves as double-edged driver, allowing for insulin
hypersecretion, while concomitantly promoting beta cells ER stress and
apoptosis. Hepatic hyperactive mTORC1 suppresses hepatic insulin clearance.
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on CEACAM1 phosphorylation by functional IR. Thus, hepatic
insulin clearance is mediated by insulin binding to the IR followed
by endocytosis, lysosomal insulin degradation and IR recycling to
the cellmembrane (32).HyperactivemTORC1phosphorylates and
stabilizes GRB10(Ser476), resulting in its binding to IR, IR
ubiquitination and degradation (33) (Figure 1B).

Hyperactive mTORC1 may further revoke a primary role of
‘lipotoxicity’ in driving the three effectors of T2D (34). Indeed,
downstream mTORC1 targets [e.g., SREBP, CRTC2, Lipin and
PPARalpha (10)] may drive the increase in long-chain fatty acyl-
CoAs and the accumulation of diglycerides and ceramides in
non-adipose tissues. Secondary ‘glucolipotoxicity’ may
complement hyper-active mTORC1 in shaping the phenotype
of overt T2D.
DISCUSSION

Concomitant driving of the three-effectors of T2D by hyperactive
mTORC1 turns redundant the question which effector comes
first. However, mTORC1 activity is affected by genetic, epigenetic,
ethnic and/or tissue-dependent factors which may determine its
sensitivity to environmental and metabolic conditions. Hence,
modulation of each of the three concerned effectors by
hyperactive mTORC1 may be context-dependent, allowing for
one effector to precede the others, thereby displaying an apparent
cause-effect relationship between the three effectors (2–6).

Most importantly, the primary role played by hyperactive
mTORC1 in driving the three-effector encounter of T2D implies
that suppression of hyperactive mTORC1 may offer an all-in-one
treatment for T2D. That is in contrast to targeting the concerned
effectors individually by means of insulin sensitizers, potassium
channel modulators, incretins, SGLT2 inhibitors, insulin
degrading enzymes and other (35). Hyperactive mTORC1 may
Frontiers in Endocrinology | www.frontiersin.org 3
indeed be targeted by caloric/carbohydrate restriction (36, 37)
and physical exercise (38). However, the compliance to
behavioral modification is poor. Also, treatment of T2D
patients with rapalogs is dubious since chronic treatment may
result in inhibition of mTORC2, thereby suppressing the IR-Akt
transduction pathway (39). By-passing that difficulty by
intermittent rapalogs treatment (40) still remains to be verified
under real life conditions.

Alternatively, hyperactive mTORC1 may be tamed by
mitochondrial complex I inhibitors. Suppression of hyperactive
mTORC1 due to inhibition of mitochondrial complex I is best
exemplified by metformin (41–43) used as first-line therapy for
T2D (44). The anti-diabetic efficacy of pioglitazone may similarly
be ascribed to suppression of mTORC1 kinase activity due to
inhibition of mitochondrial complex I (45, 46). Also, classical
mitochondrial complex I inhibitors (e.g., rotenone) are reported
to alleviate insulin resistance and beta-cell failure in T2D animal
models (47). Suppression of hyperactive mTORC1 by
mitochondrial complex I inhibitors may be ascribed to redox
(NADH/NAD), energy (ATP/AMP), AMPK and/or oxidative
(ROS) stress as function of the respective dose (11, 43). Since
mTORC1 controls disease aspects of T2D beyond glycemic
control (10, 17), suppression of mTORC1 kinase activity by
metformin may further account for its pleiotropic effects in
improving health- and life-span (48). The mitochondrial/
mTORC1 connection may prompt a search for novel
mitochondrial complex I inhibitors (49) which may tame
hyperactive mTORC1 and the three-effector encounter of T2D.
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