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Abstract

Trans-splicing of leader sequences onto the 59ends of mRNAs is a widespread phenomenon in protozoa, nematodes and
some chordates. Using parallel sequencing we have developed a method to simultaneously map 59splice sites and analyze
the corresponding gene expression profile, that we term spliced leader trapping (SLT). The method can be applied to any
organism with a sequenced genome and trans-splicing of a conserved leader sequence. We analyzed the expression profiles
and splicing patterns of bloodstream and insect forms of the parasite Trypanosoma brucei. We detected the 59 splice sites of
85% of the annotated protein-coding genes and, contrary to previous reports, found up to 40% of transcripts to be
differentially expressed. Furthermore, we discovered more than 2500 alternative splicing events, many of which appear to
be stage-regulated. Based on our findings we hypothesize that alternatively spliced transcripts present a new means of
regulating gene expression and could potentially contribute to protein diversity in the parasite. The entire dataset can be
accessed online at TriTrypDB or through: http://splicer.unibe.ch/.
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Introduction

Trypanosoma brucei is a unicellular eukaryotic parasite with a

digenetic life cycle alternating between the tsetse fly and a variety

of mammalian hosts. Besides its importance as a human and

veterinary pathogen it has been key to the discovery and

understanding of general biological principles such as RNA

editing, antigenic variation, GPI anchoring and trans-splicing

[1,2,3,4,5]. The genome sequence of the 11 megabase-sized

chromosomes of T. brucei revealed a compact structure containing

about 9000 predicted genes, including 900 pseudogenes and 1700

genes specific to T. brucei [6]. The majority of protein coding

genes in trypanosomes is organized in polycistronic units that are

transcribed by RNA polymerase II (Pol II) [7]. Polycistronic RNA

precursors are processed into mature monocistronic mRNAs by

trans-splicing of a 39 nt leader sequence to the 59 end and

polyadenylation of the 39 end [5]. With the exception of the actin

promoter, no Pol II promoters for protein-coding genes have

been identified, reviewed in [8]. Recently, an elegant study

showed correlation between the position of histone marks and

putative transcription start sites, suggesting that chromatin

structure plays a major role in directing Pol II to its promoter

sites [9]. While promoter structures are still elusive, it has long

been known that transcription itself is regulated very little, if at

all. The regulation of gene expression occurs mainly at the level

of RNA stability, translation and protein stability (for review see

[8]). Four microarray analyses have shown the transcriptome of

the organism to be rather static, with only 2–10% of the

transcripts being stage-regulated [10,11,12,13]. This limited

degree of regulation at the level of transcript abundance is

surprising, given the fundamental changes in morphology and

metabolism that occur during the development of the parasite,

and especially in the light of the large differences that occur in the

closely related species Trypanosoma cruzi, where approximately half

of the genome is regulated at the level of transcript abundance

[14]. To date, very little is known about the way in which

trypanosomes regulate translation, but in many other eukaryotes

the 59 untranslated regions (UTRs) contain sequence elements

that are responsible for regulating protein synthesis. In order to

analyze the T. brucei genome for such elements it is crucial to

delineate the 59 UTR of each expressed gene. In the past,

bioinformatics approaches have been used to predict 59 splice

sites in T. brucei, but few of these have been confirmed

experimentally [15]. Using a novel high throughput parallel

sequencing approach that we term spliced leader trapping (SLT),

we have now mapped the vast majority of 59 UTRs and analyzed

the developmental regulation of transcript abundance in

bloodstream and insect form trypanosomes. SLT also provides

a means of selectively analyzing the transcriptome of parasites

without having to purify them from host tissue. Furthermore,

since trans-splicing of a spliced leader has been identified not only

in protozoa but also in cnidarians, nematodes, flatworms and

ascidians, SLT could potentially be applied to a wide variety of

organisms [5,16,17,18,19,20].
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Results

Libraries, sequencing and mapping of splice acceptor
sites

Long slender and short stumpy bloodstream form trypanosomes

are the proliferative and quiescent life cycle stages, respectively, in

the mammalian host, while the procyclic form is a proliferative

form in the midgut of the insect host. In order to map the 59splice

sites and quantify abundance of the corresponding transcripts in

these three life cycle stages, poly(A)-RNA was purified and first

strand cDNA was synthesized using random hexamers (Figure S1).

In order to process multiple samples in one sequencing channel a

four-nucleotide barcode was added to the 39end of the cDNAs.

After amplification and size fractionation to 120–160 base pairs

the cDNA library was sequenced on a Genome Analyzer (GA-II,

Illumina) using the Chrysalis 36 cycles v 3.0 sequencing kit and 76

cycles. Base calling was performed using the Genome Analyzer

Pipeline and linker sequences were removed while separating

reads according to identified barcodes. The estimated error

probability of the retained bases was 1.1%. Inserts containing a

barcode were up to 70 base pairs (bp) with an average insert size of

42 bp (median 45 bp, s 17 bp; Figure 1).

We obtained 4.6 million sequence tags that could be attributed

to one of the libraries (Table 1). Of these 4.5 million tags (98%)

could be aligned to one of the 11 megabase-sized chromosomes of

T. brucei, the Antat 1.1 variant surface glycoprotein (VSG; 227,063

reads) or the telomeric expression sites (40,333 reads). Depending

on the library, 77% to 79% of all genes had at least one tag

associated with their 59 UTR or annotated coding sequence. The

median number of tags per gene ranged from 12 in the long

slender bloodstream form to 24 in the procyclic form (Table 1).

The dynamic range of the SLT method is best described in the

bloodstream library where it spanned more than 5 orders of

magnitude from 1 tag for an individual gene to 205,410 tags or

11% of all tags in that library for the Antat1.1 VSG. The majority

of genes without any tags were hypothetical unlikely (316),

hypothetical (118), expression site associated genes (116) and

hypothetical conserved genes (103).

Using information for the positions of snoRNAs, rRNAs and

tRNAs, together with the direction of transcription, we estimated

the number of polycistronic transcription units to be approxi-

mately 200. Transcription profile analysis of the majority of

individual transcription units containing five or more protein

coding genes (excluding VSG genes) indicated large variations in

transcript abundance between adjacent genes. Of 270 monocis-

tronic mRNA transcription units that have been annotated, 76

had major splice sites less than 2kb upstream of the ATG and eight

were differentially expressed.

Figure 1. Insert sizes and gene discovery rate. (A) Insert sizes of
the sequence tags of the three libraries in base pairs (bp); long slender
bloodstream form (LS, red), short stumpy bloodstream form (SS,
orange) and procyclic form (PC, green). (B) Simulation of gene coverage
from the long slender bloodstream form library; considered are all tags
that lead to UTRs #2 kb. Error bars depict 99.99% confidence interval
from five simulations assuming normal distribution. (C) Number of new
genes discovered per 1000 tags depending on the total number of tags,
error bars depict 95% confidence interval from five simulations,
assuming normal distribution.
doi:10.1371/journal.ppat.1001037.g001

Author Summary

Some organisms like the human and animal parasite
Trypanosoma brucei add a leader sequence to their mRNAs
through a reaction called trans-splicing. Until now the
splice sites for most mRNAs were unknown in T. brucei.
Using high throughput sequencing we have developed a
method to identify the splice sites and at the same time
measure the abundance of the corresponding mRNAs.
Analyzing three different life cycle stages of the parasite
we identified the vast majority of splice sites in the
organism and, to our great surprise, uncovered more than
2500 alternative splicing events, many of which appeared
to be specific for one of the life cycle stages. Alternative
splicing is a result of the addition of the leader sequence to
different positions on the mRNA, leading to mixed mRNA
populations that can encode for proteins with varying
properties. One of the most obvious changes caused by
alternative splicing is the gain or loss of targeting signals,
leading to differential localization of the corresponding
proteins. Based on our findings we hypothesize that
alternative splicing is a major mechanism to regulate gene
expression in T. brucei and could contribute to protein
diversity in the parasite.

Alternative Splicing in T. brucei

PLoS Pathogens | www.plospathogens.org 2 August 2010 | Volume 6 | Issue 8 | e1001037



It has recently been shown that procyclin-associated genes

(PAGs) are located preferentially at a subset of strand-switch

regions, or between polycistrons that are transcribed by different

polymerases, and that a region within PAG1 could silence

transcription by Pol I [21]. Based on SLT analysis, mature

transcripts from genes downstream of PAGs were not observed for

five of the six annotated sites. In one case transcripts were absent

from the procyclic form, while the bloodstream form produced

spliced transcripts downstream of two PAG-like genes

(Tb11.01.6210-6220). It has been documented that overlapping

sense and antisense transcription can occur at a single locus, giving

rise to processed mRNAs from both strands [22]. We identified

140 unique antisense spliced leader addition sites with $1 tag per

million (TPM), 60 of which were detected in more than one life

cycle stage. Thirty-eight of the unique antisense splice leader

addition sites were found on the reverse strand of a hypothetical

gene at the end of a transcription unit and twenty-three were in

strand-switch regions.

Expression profiling and comparison with previous
transcriptome studies

In order to evaluate if the expression profiles were consistent

with previously published data we first analyzed 20 well-studied

genes and found good agreement between the direction and

magnitude of change in transcript abundance between life cycle

stages (Table S1). These included the phosphoglycerate kinases

PGKB and PGKC [23], the nuclear-encoded cytochrome oxidase

complex subunits (IV–X) [24], the terminal alternative oxidase

[25], invariant surface glycoproteins (ISGs; [26]) and the major

surface glycoproteins, VSG and procyclins [27]. In total, 3554

genes or ,40% of the genome significantly changed expression

levels in at least one of the three life cycle stages (statistical

significance of ,1025; [28]; Table 2). More than 2000

differentially expressed transcripts could be observed between

the bloodstream and procyclic forms, while 1226 changes in

expression level could be detected between the proliferative long

slender and quiescent short stumpy bloodstream stages. (Figure 2;

Table 2). Of the entire transcriptome 5472 transcripts (60%) did

not change abundance between life cycle stages; 919 of these

transcripts were represented by $25 TPM in all stages.

We further evaluated the SLT approach by comparing the data

to a previously published tiling array study [11]. Transcripts more

abundant in the procyclic form correlated with a coefficient of 0.77

or 0.93 to the SLT approach, depending on the statistics used by

Koumandou et al. (Figure S2, [11]). Transcripts more abundant in

the bloodstream form showed a correlation coefficient of 0.23 or

0.43 (Figure S3). When we compared our data to the most recent

microarray study by Jensen et al. [12], which identified 234

transcripts are being less abundant in the procyclic than the

bloodstream form, 172 showed the same direction of change while

62 did not agree with our study. In addition, from the 317

transcripts that are increased in the procyclic form, 270 are in

agreement with our study. Of the 551 transcripts that were

significantly changed $2-fold between the two life cycle stages in

the study by Jensen et al. ,80% showed the same pattern in our

study. Using the two data sets, we have compiled a list of 442 genes

that show a robust change in expression pattern (Table S2).

When we analyzed the metabolic pathways as annotated in

KEGG we found the majority to be down regulated in the stumpy

form when compared to the long slender form (Figure S4, S5, S6,

Table S3). In the glycolytic pathway for example, 8 of 11

transcripts are decreased in abundance in the short stumpy form,

which is in good agreement with previous studies of the metabolic

Table 1. Library statistics.

Long slender
bloodstream
form

Short stumpy
bloodstream
form

Procyclic
form

Number of reads 2,223,504 1,919,710 1,430,649

Number of reads $24nt 1,814,248 1,602,918 1,171,012

Number of reads aligned1 1,562,364 1,538,057 1,148,155

Number of splice sites 29,406 27,572 23,842

Genes with tags 8,277 8,173 7,926

Coverage in %2 91 90 87

Genes with major
internal sites

793 870 683

Genes with major
internal sites but
no downstream AUG

97 95 90

Genes with only internal
sites

542 558 496

Genes with 59 UTR .2kb 198 191 153

Genes with major 59

UTR .2kb
356 329 235

Genes with major 59

UTR ,2kb
7,143 6,989 7,009

Genes with $1 uORF 1,331 1,326 1,229

Splice sites/gene mean 2.9 2.8 2.7

Splice sites/gene median 2 2 2

59 UTR length mean
(0–2kb)

139 127 105

59 UTR length median
(0–2kb)

47 32 34

Tags per gene mean 85.1 94.8 96.9

Tags per gene median 12 15 24

1reads aligned to one of the 11 megabase-sized chromosomes excluding
expression sites or VSGs.

2of 9068 genes in the genome.
doi:10.1371/journal.ppat.1001037.t001

Table 2. Differentially expressed and spliced transcripts.

Long slender/
short stumpy

Short
stumpy/
procyclic

Long
slender/
procyclic Total1

Significantly
regulated genes

1226 2675 3296 3554,
(3215)4

Upregulated2 769 1248 1286

Downregulated3 457 1427 2010

Differentially
spliced

158 415 458 676

Alternatively
spliced

1523 1531 1267 2637

Alternatively
spliced $5 tags

874 783 872 1588

1total number of regulated/spliced transcripts, non-redundant.
2upregulated in long slender when compared with short stumpy, short stumpy
vs procyclics and long slender vs procyclics.

3downregulated in long slender versus short stumpy, short stumpy versus
procyclics and long slender vs procyclics.

4significantly regulated ([28]; threshold of P,1025) and $26 change.
doi:10.1371/journal.ppat.1001037.t002

Alternative Splicing in T. brucei
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pathways in quiescent cells in general [29] and trypanosome short

stumpy form in particular (for review see [30]). We furthermore

compared the expression profile of ten genes between bloodstream

long slender and procyclic cells using SLT and RT qPCR and

found positive correlation between the two methods (Pearson

correlation r = 0.97; p-value of p,1025; Figure S7, Table S4).

Additionally, we performed two RNAi experiments (Alba1 and

Alba 3/4) in procyclic forms (Figure S8). The efficiency of the

knockdown was then measured by Northern blot analysis and

SLT. For Alba1 both techniques showed a knockdown in message

level to 6% compared to the uninduced cell line. For Alba 3/4

Northern blot analysis indicated a knockdown to 8% while the

value measured by SLT was 13%. The overall correlation between

the uninduced and the induced libraries was between 0.97 (Alba1)

and 0.94 (Alba 3/4; Spearman rank correlation coefficient). Lastly

we compared the expression profile from SLT with one run of

regular RNAseq from poly(A)-RNA from procyclic forms (24

million sequence tags) and found a positive correlation between

the two techniques (Spearman r= 0.69, Figure S9).

Analysis of a VSG expression site
In addition to the different life cycle stages of Antat 1.1, we also

analyzed the widely used monomorphic bloodstream form MITat

1.2 (221) and mapped the sequence tags to the active VSG

expression site (Figure 3; [31]). The most highly expressed gene

was VSG 221 with more than 69,000 TPM. The second most

highly expressed gene in the expression site was the ESAG 12 gene

(761 tags) followed by a hypothetical gene that has not been

annotated previously, now designated ESAG13 (138 tags) and

ESAG 6 and 7, which encode the two subunits of the transferrin

receptor (80 and 43 tags; for review see [32]).

Splice site detection and changes in alternative splicing
patterns during development

We identified 29,406 splice sites in the T. brucei genome with a

median of two splice sites per gene (bloodstream form AnTat1.1;

Table 1). The major splice site was strictly conserved with 94% of

the splice acceptor dinucleotides being AG preceded by an

upstream polypyrimidine tract (214 to 243, relative to the splice

site; Figure 4A). Twenty percent of the minor splice acceptor sites

contained a dinucleotide other than AG. GG occurred in 7% of

these while TG, AA, GA and AC were found in 2% of the minor

splice sites (Figure 4B–C). The least abundant dinucleotide was CC.

When we compared the major splice sites from this study to a

previous genome-wide prediction we found that about 40% of the

major sites and 6% of the minor sites had correctly been predicted

by the model [15]. Using the position of the major splice sites we

determined the mean length of all 59 UTRs to be 104–138

nucleotides and the median length to be 32–47 nucleotides

(Figure 4D–E, Table 1). In the procyclic life cycle stage we

Figure 2. Whole genome comparisons of gene expression levels. Each subfigure (A–F) shows a scatter plot of mRNA expression levels (log10

tags per million) between two life-cycle stages. Each dot represents one gene. (A) long slender/short stumpy, (B) long slender/procyclic, (C) short
stumpy/procyclic. In panels D–F only genes with statistically significant difference in expression levels between any two life stages of the parasite are
shown (Audic-Claverie P,105).
doi:10.1371/journal.ppat.1001037.g002

Alternative Splicing in T. brucei
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identified 588 transcripts with splice sites that would allow N-

terminal extension of the annotated protein coding gene and, for 11

of these, peptides corresponding to the N-terminal region were

recently detected by mass spectrometry (Table S5; [33]). About 500

of the currently annotated genes only had internal splice sites 39 of

the predicted AUG start codon, and depending on the life cycle

stage, 683–870 genes had major internal splice sites (Table 1). Of

the transcripts with major internal sites ,90% had a downstream

AUG in the same reading frame within 400 nucleotides of the splice

site, leaving about 10% of the transcripts without a likely translation

start. In each life cycle stage .1200 transcripts exhibited an

alternative splicing pattern (Figure 5–6 Table 3). A transcript was

termed alternatively spliced if the major splice site contained less

than 60% of all sequence tags. We identified four different types of

alternative splicing, based on the potential functional consequences

(Figure 7). Splicing type A renders the transcript potentially

untranslatable since the transcript does not contain an in-frame

AUG downstream of the alternative splice site (Figure 7, Figure

S10). Splicing type B leads to a 59 truncation of the original open

reading frame, with a potential downstream AUG start site (Figure

S11). Splice Type C does not change the open reading frame, but it

includes or excludes potential regulatory elements such as upstream

open reading frames (uORFs) in the 59 UTR (Figure S12). Splice

type D potentially allows for the use of a novel open reading frame

due to the inclusion of an AUG start codon in a different reading

frame (Figure S13). We then analyzed if the major splice sites for a

particular transcript changed between the life cycle stages and

termed this differential splicing (Figure 6). Depending on the two life

stages we compared, 158–458 differential splicing events affecting a

total of 676 genes were identified (Table 2). We additionally verified

the differential splicing patterns for three transcripts (Tb927.1.790,

Tb927.6.4240, Tb11.02.2700) by RT qPCR and found positive

correlation between the SLT and the RT qPCR data (Pearson

r = 0.85; 95% confidence interval; Table S6).

Alternative splicing of mRNAs encoding aminoacyl tRNA
synthetases (AARS)

Of the 23 currently annotated distinct AARS the Asp-RS, Lys-

RS, Trp-RS and Tyr-RS are each encoded by two genes, one of

which contains a mitochondrial targeting signal (MTS) at the N-

terminus as determined by MITOPROT (Table S7; [34].

Recently, Charrière and coworkers verified the cytosolic and

mitochondrial localization of the Trp-RS and Asp-RS experi-

mentally [35,36]. Five additional AARS (Asn-RS, Pro-RS, Glu-

RS, Gln-RS, Ser-RS) contain an N-terminal MTS; for these

AARS, however, there is no cytosolic isoform encoded in the

genome. When we analyzed their expression and splicing patterns

we found that the major 59 splice site is internal to the currently

annotated AUG start codon leaving only a small fraction of the

splice sites upstream of the first AUG (Figure 8, Table S7). Thus

the major translation product would exclude the MTS.

Additionally, 4 AARS (Arg-RS, Cys-RS, His-RS and Leu-RS)

contain an internal MTS that is masked by 48–101 amino acids

at the N-terminus (Table S7). However these MTS could become

N-terminal if a downstream start codon would be used as the

translation start site.

Discussion

We have developed a cost effective method to analyze whole

genome expression and splicing profiles from organisms employing

leader trans-splicing. This was tested on T. brucei, where we

obtained 85% coverage of all genes with fewer than 1 million

sequence tags. A major improvement over traditional microarray

technology is the possibility of sequencing directly from the spliced

leader, which allows selective analysis of the transcriptome of

intracellular parasites like the amastigote forms of Trypanosoma cruzi

or forms that are closely associated with their host and extremely

difficult to purify like the epimastigote form of T. brucei in tsetse

salivary glands.

Using the SLT approach we sequenced more than 1 million

splice site tags from poly(A)-mRNA from each of three life cycle

stages of T. brucei. Each sequence tag covered at least 24

nucleotides 39 of the spliced leader/59 UTR junction. Even

though the analyzed strains (Antat 1.1 and Mitat 1.2) were not

identical to the genome strain (TREU 927) mapping of the 24mer

sequence tags onto the TREU 927 genome was very successful,

given that the majority (98%) could be aligned with high statistical

significance using a combination of mismatch and sequence

Figure 3. Expression levels of genes in the active VSG expression site. Schematic representation of the tag frequency distribution in the
bloodstream expression site 1 (BES1/TAR40), as annotated by Hertz-Fowler et al. [31]. The hypothetical gene between ESAG 12 and ESAG 8-1 encodes
a protein of 96 amino acids and is renamed ESAG 13.
doi:10.1371/journal.ppat.1001037.g003

Alternative Splicing in T. brucei
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quality scores (see materials and methods). In the process, this

method revealed the existence of a new expression site associated

gene in an active VSG expression site.

In general, our data are in good agreement with the current

genome annotation, and strongly support both the number and

positions of putative transcription start sites identified by binding

of specific histones [8]. In addition, 98% of the sequence tags from

the procyclic form map in the sense orientation of annotated

transcription units, and only 2% in the zones between transcrip-

tion units, where the direction of transcription is not immediately

obvious from the annotations. The splicing patterns indicated that

transcription overlaps in several of the converging strand switch

regions as has been suggested previously for converging transcrip-

tion units transcribed by Pol I and Pol II, respectively [22].

Interestingly, bloodstream form cells show twice the number of

sequence tags mapping to the zones between the transcription

Figure 4. Splice site conservation and 59 UTR length distribution. (A) Consensus of the major splice sites from procyclic form T. brucei. The
inset shows a close up of the conserved AG at the splice site. The upstream polypyrimidine tract is dominated by T residues starting at an average
distance of 26 nucleotides (black triangle; 619) upstream of the splice site. (B–C) Splice site comparison. Abundance of dinucleotides at the splice
acceptor sites for (B) major splice sites and (C) minor splice sites in T. brucei procyclic forms. (D–E) Untranslated region (59 UTR) length distribution in
procyclic forms using the major splice site on a per gene basis (D). 59 UTR length distribution of the major splice site on a per transcript basis (E).
doi:10.1371/journal.ppat.1001037.g004

Alternative Splicing in T. brucei
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units compared to the procyclic form, indicating that the control of

transcription initiation may be less specific, or degradation less

efficient in this life stage. It is also possible that splice site

recognition is different, or not equally efficient between the stages,

leading to the increased number of processed RNAs from the

regions between the transcription units.

Figure 5. Example of an alternatively spliced transcript (Tb11.02.2700). (A) Display of the splicing profile for Tb11.02.2700 using Gbrowse.
Spliced leader tags from bloodstream form (red) and procyclic form (green) are shown; numbers indicate tags per million (TPM). The position and size
of the RT qPCR amplicon is depicted by a black bar (RT qPCR amplicon). Below the bar the mRNA abundance ratios as determined by SLT and qPCR
respectively, are shown. (B) Expected size of PCR product using a spliced leader-specific oligonucleotide together with a gene specific
oligonucleotide are depicted. Gel shows PCR products from procyclic cDNA.
doi:10.1371/journal.ppat.1001037.g005

Figure 6. Example of a differentially spliced transcript (Tb927.6.4240). (A) Display of the splicing profile for Tb927.6.4240 using Gbrowse.
Spliced leader tags from bloodstream form (red) and procyclic form (green) are shown. Numbers indicate tags per million. The position and size of the
RT qPCR amplicon is depicted by a black bar (RT qPCR amplicon). Below the bar the ratios of mRNA abundance as determined by SLT and qPCR
respectively are shown. (B) Expected size of PCR products using a spliced leader-specific oligonucleotide together with a gene specific
oligonucleotide are depicted. Gel shows PCR products from procyclic (PC) and bloodstream (BS, long slender) cDNA.
doi:10.1371/journal.ppat.1001037.g006

Alternative Splicing in T. brucei
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The large variation in transcript abundance that we detected

within transcription units was expected and is in good agreement

with previous studies, strengthening the notion that steady state

RNA levels in trypanosomes are regulated mainly post-transcrip-

tionally at the level of RNA processing and/or RNA stability.

When we analyzed the monocistronic transcription units we found

.70% unlikely to be expressed in the life cycle stages analyzed

because we could not detect any splice sites within 2 kb upstream

of the start codon. Of the remaining 76 transcripts, only 8 showed

differential expression.

Previous microarray studies of T. brucei using genomic arrays or

single probe arrays have indicated a rather static transcriptome

with relatively few changes between the bloodstream and procyclic

forms. Estimates ranged from 2–6% of the genome being

regulated at the transcript abundance level [9,10,11,12,13]. A

more recent study by Jensen et al. using eight oligonucleotides per

gene on a Nimblegen microarray found that up to 700 transcripts

or (8%) change expression between the two life cycle stages [12].

Considering these studies it would appear that a multiprobe array

is more likely to detect a larger set of regulated genes.

Furthermore, using arrays with only one probe in the 59 region

of the genes is likely to be affected by the misannotation of the start

sites of open reading frames and/or by alternative splicing. Using

SLT we found 30% of the transcripts from protein-coding genes to

be significantly regulated between the long slender bloodstream

form and the procyclic form (Table 2). The number of changes

increased to 40% of all genes when extended to include the short

stumpy form of the parasite. Even at a more conservative

threshold ($2-fold, significantly changed), 35% of all genes

exhibited changes in transcript abundance. In conclusion, we

have found that a much larger cohort of genes changes expression

levels during development than was previously thought to be the

case. This is in line with recent findings that about 50% of the

genome of T. cruzi is regulated at the level of transcript abundance

[14]. When we compared our results with the previous microarray

studies we find different levels of correlation in gene expression

depending on the study. While some part of the differences might

be due to the higher sensitivity of the SLT approach we have to

keep in mind that the low level of correlation might also be due to

strains and culture conditions that vary considerably between the

different studies. We also employed three different approaches to

verify the results obtained by SLT. (i) Results from RT qPCR

showed strong positive correlation with the SLT approach for the

expression level changes between life stages and the differential

splicing events (Figure S7, Table S4, Table S6). (ii) We also

performed two RNAi experiments indicating that the abundance

of the RNAi target transcript as quantified by SLT is in excellent

agreement with quantification by Northern blots. The overall

correlation between the induced and uninduced transcriptomes

was on a par with the technical reproducibility of RNAseq, further

supporting that SLT tag counts serve as a sufficient proxy for

comparisons between different life cycle stages or cell lines of the

same organism (Figure S8). (iii) We included the correlation to one

run of regular RNAseq of poly(A)-mRNA (24 million sequence

tags, Figure S9). While not perfect, the correlation between SLT

and RNAseq (Spearman r= 0.69) is nearly on a par with that

between a technical comparison of RNAseq and microarrays

(Spearman r= 0.75 e.g. [37]).

During the revision of this manuscript Siegel et al. published a

study describing the expression profile in bloodstream and

procyclic forms of T. brucei using RNAseq [38]. Although the

approaches used in both studies are different (RNAseq vs. SLT)

many features found in both studies are well correlated; the mean

number of splice sites per gene (2.6 versus 2.7–2.9), the mean

lengths of the 59 UTRs (184 versus 105–135), the number of genes

with internal splice sites (488 versus 496–558) and the large

dynamic range (105 to 106). However, there are also a number of

features that do not correlate so well, most striking of which is the

Table 3. Alternatively spliced transcripts.

Long
slender

Short
stumpy Procyclic Total1

Alternatively spliced 1523 1531 1267 2637

Alternatively spliced $5
tags

874 783 872 1588

1total number of regulated/spliced transcripts, non-redundant.
doi:10.1371/journal.ppat.1001037.t003

Figure 7. Proposed functions for alternative splicing variants. Regular splice sites (grey triangles) and alternative splice sites (red triangles)
are depicted on a pre-processed mRNA (black line) containing an open reading frame (ORF; black box). The red bar depicts an alternative ORF. AUG
depicts an alternative translation start site. Upstream open reading frames are denoted uORF.
doi:10.1371/journal.ppat.1001037.g007
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difference in expression profile. We identified almost 40% of the

genes as being regulated significantly while Siegel et al. found only

about 10%. There are several reasons that could explain the

differences observed: (i) strain differences and the number of life

stages analyzed, (ii) growth conditions for bloodstream forms (in

vitro versus in vivo), (iii) cDNA preparation, with RNAseq being

more likely to capture precursors and breakdown intermediates

(e.g. intron sequences), and (iv) scaling of the data (tags/million

versus constant median count/gene). The major advantage of SLT

when compared to conventional RNAseq is the cost effective

mapping of 59 splice sites in splice leader bearing organisms,

especially intracellular parasites where the purification of RNA is

very difficult.

According to our study, VSG transcripts account for 7–11% of

spliced mRNAs in bloodstream forms trypanosomes, which is in

excellent agreement with the value obtained from hybridization

data [39]. The levels of most other transcripts, however, are at

least two to three orders of magnitude lower. Assuming there to be

approximately 40,000 mRNA molecules in a procyclic trypano-

some, and approximately half that number in a bloodstream form

(Haanstra and co-workers and our calculations), a large number

(.5000, 65%) would be present at ,1 mRNA per cell [40].

Similar results have been reported for yeast where more than 80%

of all transcripts are present at #2 copies per cell [41,42]. The

question if the small number of transcripts is distributed evenly

across the population of trypanosomes, or accumulates in very few

cells during a transcriptional burst, remains to be investigated.

Recently it has been suggested that transcription in yeast is much

more steady, with fewer transcriptional bursts than seem to occur

in mammalian cells [43,44,45].

The data presented here describes the splice sites for 85% of the

annotated genes in the T. brucei genome (Table 1). Spliced leader

addition sites were very well conserved within and between life

cycle stages. AG was the predominant splice acceptor dinucleotide

of the major splice sites, however 20% of the minor splice sites

used other dinucleotides, predominantly GG (Figure 4A–C). The

least abundant acceptor dinucleotide was CC followed by any

pyrimidine combination. The major splice sites contained a 15

(66) nucleotide polypyrimidine stretch at an average distance of

31 nucleotides (619) upstream of the actual splice acceptor site.

Both these findings are in very good agreement with previously

published experimental data on individual splice sites [46]. The

UTR length distribution indicated 59 UTRs with a median length

between 32 to 47 nucleotides, which is similar to yeast (50 nt; [47];

Figure 4 D–E). Interestingly we detected a shift towards longer

UTRs in the long slender bloodstream form when compared to

the procyclic form. This is at least in part due to the differential use

of splice sites in the two life forms and might indicate differential

regulation of translation. About half of the major splice sites in the

different life stages could not be predicted using our current splice

site recognition model, although the majority contained the signals

that conform to our current understanding of splice sites. An

obvious consequence of alternative splicing would be the change of

N-terminal targeting sequences as has been shown for T. cruzi

(LYT1) and for alternative cis-splicing in other systems

[48,49,50,51]. Our analysis indicated this likely to be the case

for several AARS that are essential in the cytosol and

mitochondrion [35,36] thus providing evidence that alternative

splicing is a potential mechanism for dual localization of proteins

similar to what has been reported for the LYT1 gene in T. cruzi

[48].

More than 500 transcripts with splice sites exclusively 39 of the

annotated start site were identified by SLT. While we cannot

exclude that a very small fraction is still spliced upstream of the

annotated AUG, we consider it much more likely that the bona fide

start codon is within the open reading frame. A second set of

transcripts (.600) indicated the possibility of 59 extensions to the

currently annotated open reading frames, which would effect

changes in the N-terminus of the corresponding protein. The

evaluation of these N-terminal extensions is much more difficult

and will require additional experiments. However, by screening

the recently published proteomics dataset from Panigrahi and co-

workers, we were able to identify 11 candidates where peptides

corresponding to a region upstream of the annotated start codon

are expressed in the procyclic form trypanosomes [33]. Depending

in the life cycle stage, we also identified 90–97 transcripts in which

alternative splicing ablated the start codon, suggesting this form of

splicing plays a minor but significant role in regulating gene

expression.

Most surprising was that a large number of transcripts showed

differential abundance of alternative splice variants in the three life

stages analyzed. A previous report indicated that T. brucei used

different splice sites on an artificial construct, but it remained

unclear if, and how frequently, this might occur in the T. brucei

transcriptome [52]. We found more than 600 differentially spliced

transcripts between the life stages, supporting the idea that

alternative splicing has functional consequences for the regulation

of parasite development. One open question is if the actual splicing

event is regulated or the differential abundance is a result of

altered stability of the RNA transcripts. So far, we have been

unable to detect sequence elements in the vicinity of the alternative

splice sites that would explain the differential regulation of splicing

itself. It is worth noting, however, that transcripts encoding several

of the core components of the spliceosome, such as SMD1, SMD3

and SMG, are themselves differentially regulated during develop-

ment; this may reflect an adaptation of the splicing machinery to

Figure 8. Alternatively spliced aminoacyl tRNA synthetase
mRNAs (AARS). Depicted are 600 nucleotides from the 59 region of six
alternatively spliced AARS transcripts. The major spliced site (red
triangle) and minor splice site (black triangle) are indicated in tags per
million in procyclic forms. The yellow bar indicates the AUG
downstream of the minor and major splice sites. The blue box
represents the N-terminal mitochondrial targeting signal as determined
by MITOPROT. The 2* marks tags, that were only seen in larger procyclic
libraries (e.g. Alba1 and 3/4).
doi:10.1371/journal.ppat.1001037.g008
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differences in the major splicing targets, such as the VSG and

procyclin transcripts, or to the subtleties of alternative splicing.

These hypotheses should now be testable on a genome-wide scale,

using the SLT approach in combination with RNA knockdown of

specific splicing components.

Materials and Methods

Cell lines
T. brucei brucei AnTat 1.1 and MITat 1.2 (221) were used in this

study. Late procyclic forms of AnTat 1.1 were cultivated in

SDM79 supplemented with 10% FBS. Bloodstream forms were

grown in mice. For bloodstream forms of AnTat 1.1, mice were

immunosuppressed with 260mg/kg cyclophosphoamide (Sigma)

24 hours prior to intraperitoneal injection of 106 parasites. Short

stumpy parasites were harvested 5 days post-infection at a density

of 2–46108/ml blood. 75–80% of the cells showed a short stumpy

phenotype as determined by light microscopy of blood smears

after methanol fixation. Long slender forms were harvested from

untreated mice at day three post-infection at a density of ,56107

cells/ml blood. MITat 1.2 bloodstream forms were grown in mice

as described above for long slender bloodstream forms of AnTat

1.1. Parasites were purified from whole blood using DE-52 anion

exchange resin equilibrated to pH 8 with a bicine glucose buffer.

After purification cells were centrifuged and resuspended in

TriPure RNA isolation reagent (Roche, Switzerland).

RNA extraction and library construction
RNA was extracted using TriPure (Roche, Switzerland)

according to the manufacturer.

Poly(A) mRNA was purified from 7.5 mg total RNA using

Dynabeads oligo-(dT) beads according to the manufacturer

(Invitrogen, USA). First strand cDNA was synthesized from

poly(A) RNA using random hexamers and Superscript II reverse

transcriptase (Invitrogen, USA) in a final volume of 20 ml for

1 hour at 42uC. Half of the first strand mix was used for second

strand synthesis (10 ml 1st strand mix, 1 ml RNaseH, 15 minutes at

37uC). Second strand synthesis was done using 2 ml 106
Thermopol buffer (New England BioLabs), 1 ml dNTPs 10 mM,

1 ml 2nd strand primer 10 mM ([BIOT]59- AATGATACGGC-

GACCACCGAGATCTACAGTTTCTGTACTATATTG -39),

2 units Taq polymerase (New England BioLabs, USA) and

4.5 ml H2O by incubation for 5 minutes at 50uC and then

5 minutes at 72uC. The cDNA was purified on a Qiagen MinElute

column (Qiagen, USA) and eluted in 10ul TE buffer. Adapter

ligation to the purified dsDNA was done using (10.0 ml DNA,

2.5 ml 106 Ligase Buffer (New England BioLabs), 10.0 ml H2O,

1.0 ml Fasteris customized bar-coded paired-end Illumina adapter,

600 units T4 DNA Ligase (New England BioLabs, USA) for

1 hour at room temperature. The ligation mix was purified from

unligated linker with streptavidin beads (Dynabeads). After

incubation at room temperature for 15 minutes beads were

separated on a magnetic stand, and washed twice and then

resuspended in 20 ml 10 mM Tris buffer. 5 ml was used for PCR

amplification with primers (59- AATGATACGGCGAC-

CACCGA -39/59- CAAGCAGAAGACGGCATACGAGATCG-

GTCTCGGCATTCCTGCTGAAC -39) following the standard

Illumina mRNA-SEQ library amplification protocol. Fragments in

the range 120–160 bp were separated on a 2% agarose-TBE gel

and subsequently purified on Qiagen Gel Extraction MinElute

columns (Qiagen, USA). Quality control for insert size was

performed by TOPO cloning and subsequent ABI sequencing.

Sequencing on the Illumina Genome Analyzer was carried out

using the following sequencing primer (59- ACCGAGATCTA-

CAGTTTCTGTACTATATTG -39).

In total we sequenced three libraries from bloodstream form

mRNA, (long slender and short stumpy, both Antat1.1 and

monomorphic Lister 427), one from procyclic form mRNA

(Antat1.1), 262 RNAi libraries (uninduced and induced), where

each pair could be considered a biological replicate. Lastly we

prepared and sequenced one conventional RNAseq library from

procyclic mRNA (Antat1.1).

Bioinformatic analysis
Base calling was performed using the Genome Analyzer

Pipeline (Illumina). Linker sequences were removed while

separating reads according to identified barcodes. Only sequence

reads of inserts with a length of at least 24 nucleotides were

retained. A pipeline was set up using languages with open source

interpreters (bash, perl and R) to automate the following analysis.

The reads were mapped to the genome sequence of T. brucei

TREU927 using maq ([53] http://maq.sourceforge.net) with n = 3

and an effective first read length of 24. Single mapping reads were

separated from multi mapping reads by an alignment quality

threshold of 30. Tags ending in the same position were joined

together, and their counts were added (using bioperl, [54]). Tag

counts were normalized to the library size (number of reads of

length 24 or more) and scaled linearly to reflect counts of tags per

million (TPM). Mapped tags were assigned to the annotated

protein coding gene 39 of the tag. Tags mapping internally to a

coding sequence (CDS) were assigned to it as internal splice sites.

Data was exported in tabular and GFF format (http://www.

sanger.ac.uk/Software/formats/GFF/) and then visualized using

Gbrowse [55]. Alternative spliced leader addition sites were

cataloged for each gene. Genes with #60% tags in the assigned

major splice site were designated alternatively spliced. The 59

UTR lengths were calculated and visualized using R [56].

Upstream open reading frames (uORFs) were detected on the

mapped 59 UTR, counted and assigned a note describing their

length, whether they were terminated on the 59 UTR, or

overlapped the bona fide (CDS) start codon. Sequences surrounding

the splice sites were extracted using bioperl and visualized as

sequence logos using WebLogo [57,58]. Differences in expression

levels of a gene in two stages was tested for significance according

to Audic and Claverie with a threshold of P,1025. Scatterplots of

the differential gene expression levels of all libraries were produced

using R [28]. When a gene had different major splice sites in two

stages, the normalized counts of these sites were tested for a

statistically significant difference (Fisher two-tailed test, P,1025).

Significant differences were termed differential trans-splicing

events. Expression levels were pooled over T. brucei specific

KEGG pathways and visualized as heatmaps after log2 transform

and hierarchical average linkage clustering of euclidian distances

using MeV ([59]; http://www.genome.jp/kegg; http://www.tm4.

org/mev.html).

Anti-sense splice sites were detected using bioperl. In order to

simulate gene coverage a subset of reads was drawn randomly

without replacement from one library and the mapping and

analysis pipeline executed for each subset. This was repeated five

times for each subset size. Saturation curves were drawn for

several parameters, with error bars given as confidence intervals

assuming normal distribution. Comparison to splice model

predictions were made according to Benz et al. with the mapped

splice sites substituted for the previous small mapping EST set

[15]. All bioinformatics tools, programs, pipelines used in this

study will be provided upon request. All sequence data including
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the regular RNAseq data is available through our website and

TriTrypDB.

cDNA and PCR and RT qPCR
PCR was used to confirm the splice sites detected by SLT. 3 mg

total RNA was used as a template for reverse transcription in 50 ml

AMV reverse transcriptase buffer (Promega, USA) in the presence

of 1mM dNTPs, 360 ng random hexamers, 80 U RNasIn

(Promega, USA) and 60 U AMV reverse transcriptase (Promega,

USA). Subsequently 1ml of this reaction was used for PCR. For

PCR the splice leader primer CGCTATTATTAGAACA-

GTTTCTGTAC-39 (Tm 55uC), and reverse primers 59-

GTTGCATCCGGTGTTCTTTT -39 (Tb11.02.2700) and 59-

AGCAGTCATCAATTCTTCCT-39 (Tb927.6.4240) were used.

The reaction was performed in 25ml, (2mM MgCl2, 2.5ml PCR

106 buffer, 400nM primer, 1 unit of Taq DNA polymerase

(Qiagen, USA), 0.2mM dNTP and 30ng/ul cDNA) for 30 cycles.

RT qPCR was done essentially as described previously. cDNA for

RT-qPCR was prepared as described above. The primers were

designed such they would amplify regions of 80 to 150 nucleotides

using the online software tool for real time PCR from Genescript

(Table S8). Real-time PCR was run on the GeneAmp 7000

(Applied Biosystems) using 30ng of cDNA, 400nM oligonucleo-

tides in 25ml of the MESA GREEN qPCR Master mix for SYBR

assay (Eurogentec). Values were normalized to beta tubulin and

the amplification efficiency was derived from a cDNA dilution

series covering five logs. Average values and standard deviations of

3 RT qPCRs from one cDNA sample are shown.

Sequence data
The sequence data can be accesed through GEO (http://www.

ncbi.nlm.nih.gov/geo/) with the accession number GSE22571 or

through our website http://splicer.unibe.ch/ or in future also

from TriTrypDB (http://tritrypdb.org/tritrypdb/).
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Supporting Information

Figure S1 Spliced leader trapping approach. Schematic descrip-

tion of (A) library preparation, sequencing and (B) bioinformatics

analysis.

Found at: doi:10.1371/journal.ppat.1001037.s001 (0.62 MB PDF)

Figure S2 Microarray correlation. Correlation between the SLT

approach and a recent microarray study by Koumandou et al.

(2008). Transcripts more abundant in procyclic forms than in the

bloodstream forms correlated with a coefficient of 0.77 or 0.93 to

the SLT approach depending on the statistics (fspma or limma)

used in the study by Koumandou and coworkers [11].

Found at: doi:10.1371/journal.ppat.1001037.s002 (0.66 MB PDF)

Figure S3 Microarray correlation. Correlation between the SLT

approach and a recent microarray study by Koumandou et al.

(2008). Transcripts more abundant in bloodstream forms than the

procyclic forms correlated with a coefficient of 0.43 or 0.23 to the

SLT approach depending on the statistics (fspma or limma) used in

the study by Koumandou and coworkers [11].

Found at: doi:10.1371/journal.ppat.1001037.s003 (0.38 MB PDF)

Figure S4 Expression profile of KEEG pathways. Heatmap of

log2 changes for KEGG pathway genes for three life cycle stages of

T. brucei. The dendrogram was obtained using hierarchical average

linkage clustering of euclidian distances. LS, long slender

bloodstream form; SS: short stumpy bloodstream form; PC,

procyclic form.

Found at: doi:10.1371/journal.ppat.1001037.s004 (0.18 MB PDF)

Figure S5 Expression profile glycolysis pathway. Regulation of

the glycolytic pathway as annotated in KEGG. The differences in

expression between long slender bloodstream and short stumpy

(maroon), short stumpy and procyclic (light green) and long

slender bloodstream from and procyclic form (dark green) are

shown in log2 fold.

Found at: doi:10.1371/journal.ppat.1001037.s005 (0.09 MB PDF)

Figure S6 Expression profile oxidative phosphorylation path-

way. The regulation of the citric acid cycle pathway as annotated

in KEGG. The differences in expression between long slender

bloodstream and short stumpy (maroon), short stumpy and

procyclic (light green) and long slender bloodstream form and

procyclic form (dark green) are shown in log2 fold.

Found at: doi:10.1371/journal.ppat.1001037.s006 (0.26 MB PDF)

Figure S7 Correlation RT qPCR and SLT. Comparison of

expression levels between SLT and RT qPCR from procyclic over

long slender bloodstream form cells. Log2 fold changes of

expression are shown for the SLT (blue) and RT qPCR. A

positive value indicates higher steady state level RNA abundance

for the corresponding gene in procyclic cells.

Found at: doi:10.1371/journal.ppat.1001037.s007 (0.17 MB PDF)

Figure S8 Comparison RNAi libraries uninduced induced.

Comparison of SLT and Northern hybridization. (A and B)

Relative levels of RNA transcripts detected by either SLT or

Northern blot analysis using RNAi cell lines Alba1 and Alba 3/4.

2Tet/+Tet refers to RNA isolated from uninduced and induced

cell lines after 7 days. Quantitation of Northern blots was

performed with a Phosphoimager using the 18S rRNA as a

loading control. RNA levels from uninduced cells were set at

100%. (C and D) Scatter plots of mRNA expression levels (log10

tags per million) between two libraries. Each dot represents one

gene. (C) RNAi experiment Alba1_N non-induced vs. Alba1_I

induced. (D) RNAi experiment Alba34_N non-induced vs.

Alba34_I induced. (E) Overall correlation of steady state RNA

levels of the entire genome from uninduced and induced cell lines.

Found at: doi:10.1371/journal.ppat.1001037.s008 (0.27 MB PDF)

Figure S9 Scatter plot expression profile comparison SLT and

RNA seq. Scatter plot of mRNA expression levels (log10 tags per

million) between SLT and RNAseq from poly(A) procyclic T. brucei

mRNA.

Found at: doi:10.1371/journal.ppat.1001037.s009 (0.09 MB PDF)

Figure S10 Alternative splice variant A. Example of splicing

type A, no downstream AUG is found in the reading frame of the

annotated gene. This also represents an example of a differentially

spliced transcript, where the major splice site changes between

long slender (LS), short stumpy (SS) and procyclic form (PC). RT

qPCR amplicon shows the region that was used for RT qPCR.

Ratio BS/PC (SLT) indicates the ratio of SLT tags, for the

downstream tags the upstream tags are added in order to be

comparable to the qPCR results (i.e. 1 downstream+9 upstream).

Found at: doi:10.1371/journal.ppat.1001037.s010 (0.07 MB PDF)

Figure S11 Aternative splice variant B. Example of splicing type

B with a downstream AUG (M) in the reading frame of the

annotated gene, but use of that AUG would lead to loss of the
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signal peptide predicted by SingalP. This also represents an

example of a differentially spliced transcript where the major splice

site changes between the long slender (LS), short stumpy (SS) and

the procyclic form (PC).

Found at: doi:10.1371/journal.ppat.1001037.s011 (0.08 MB PDF)

Figure S12 Alternative splice variant C. Example of splicing

type C with several uORFs between the two alternative splice sites.

uORFs are in color according to the reading frame. The minimum

length for an uORF was set to six amino acids. Long slender (LS),

short stumpy (SS) and the procyclic form (PC).

Found at: doi:10.1371/journal.ppat.1001037.s012 (0.08 MB PDF)

Figure S13 Alternative splice variant D. Example of splicing

type D with an overlapping open reading frame of 384 bases

(ORF2). Long slender (LS), short stumpy (SS) and procyclic form

(PC).

Found at: doi:10.1371/journal.ppat.1001037.s013 (0.09 MB PDF)

Table S1 Correlation of SLT expression profile

Found at: doi:10.1371/journal.ppat.1001037.s014 (0.04 MB PDF)

Table S2 Robustly regulated transcripts

Found at: doi:10.1371/journal.ppat.1001037.s015 (0.08 MB PDF)

Table S3 KEGG pathways and their expression levels in three

life cycle stage

Found at: doi:10.1371/journal.ppat.1001037.s016 (0.08 MB PDF)

Table S4 Correlation of expression profile between SLT and

qPCR for 10 selected genes

Found at: doi:10.1371/journal.ppat.1001037.s017 (0.03 MB PDF)

Table S5 Proteins with N-terminal extensions

Found at: doi:10.1371/journal.ppat.1001037.s018 (0.04 MB PDF)

Table S6 Comparison of expression levels from differential

splice sites using RT qPCR and SLT

Found at: doi:10.1371/journal.ppat.1001037.s019 (0.04 MB PDF)

Table S7 Alternative splicing and dual localization of tRNA

Synthetases

Found at: doi:10.1371/journal.ppat.1001037.s020 (0.07 MB PDF)

Table S8 Oligonucleotide sequences

Found at: doi:10.1371/journal.ppat.1001037.s021 (0.04 MB PDF)
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