Ma et al. Journal of Neuroinflammation (2016) 13:26
DOI101186/512974-016-0490-1 Journal of Neuroinflammation

RESEARCH Open Access

Deletion of the hemopexin or heme @
oxygenase-2 gene aggravates brain injury
following stroma-free hemoglobin-induced
intracerebral hemorrhage
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Abstract

Background: Following intracerebral hemorrhage (ICH), red blood cells release massive amounts of toxic heme
that causes local brain injury. Hemopexin (Hpx) has the highest binding affinity to heme and participates in its
transport, while heme oxygenase 2 (HO2) is the rate-limiting enzyme for the degradation of heme. Microglia are
the resident macrophages in the brain; however, the significance and role of HO2 and Hpx on microglial clearance
of the toxic heme (iron-protoporphyrin IX) after ICH still remain understudied. Accordingly, we postulated that
global deletion of constitutive HO2 or Hpx would lead to worsening of ICH outcomes.

Methods: Intracerebral injection of stroma-free hemoglobin (SFHb) was used in our study to induce ICH. Hpx
knockout (pr’/’) or HO2 knockout (HO2™7) mice were injected with 10 uL of SFHb in the striatum. After injection,
behavioral/functional tests were performed, along with anatomical analyses. Iron deposition and neuronal
degeneration were depicted by Perls" and Fluoro-Jade B staining, respectively. Immunohistochemistry with anti-ionized
calcium-binding adapter protein 1 (Ibal) was used to estimate activated microglial cells around the injured site.

Results: This study shows that deleting Hpx or HO2 aggravated SFHb-induced brain injury. Compared to wild-type
littermates, larger lesion volumes were observed in Hpx ™~ and HO2™~ mice, which also bear more degenerating
neurons in the peri-lesion area 24 h postinjection. Fewer Ibal-positive microglial cells were detected at the peri-lesion
area in Hpx/~ and HO2 ™~ mice, interestingly, which is associated with markedly increased iron-positive microglial cells.
Moreover, the Ibal-positive microglial cells increased from 24 to 72 h postinjection and were accompanied with
improved neurologic deficits in Hox ™~ and HO2 ™~ mice. These results suggest that Iba1-positive microglial cells could
engulf the extracellular SFHb and provide protective effects after ICH. We then treated cultured primary microglial cells
with SFHb at low and high concentrations. The results show that microglial cells actively take up the extracellular SFHb.
Of interest, we also found that iron overload in microglia significantly reduces the Ibal expression level and resultantly
inhibits microglial phagocytosis.

Conclusions: This study suggests that microglial cells contribute to hemoglobin-heme clearance after ICH; however,
the resultant iron overloads in microglia appear to decrease Ibal expression and to further inhibit microglial
phagocytosis.
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Background

Intracerebral hemorrhage (ICH) causes severe clinical
disability and mortality [1]. During ICH, large amounts
of erythrocytes are released into the extracellular spaces
in the brain. When erythrocytes are lysed, extracellular
hemoglobin is rapidly oxidized from ferrous (Fe**) to
ferric (Fe3*) hemoglobin (methemoglobin) [2, 3], which,
in turn, readily releases heme [4, 5]. The free heme is ex-
tremely lipophilic and binds to lipids intercalating into
cell membranes, which results in cellular oxidative dam-
age [6, 7]. Understanding how the released heme is re-
moved after ICH is important because excess free heme
is highly toxic [8-11]. The hemoglobin and heme scav-
enger proteins haptoglobin (Hp) and hemopexin (Hpx)
contribute to hematoma removal after ICH [12], and
Hpx has the highest binding affinity to heme (Kd <
1 pM) [12, 13]. Hp and Hpx have been characterized as
a sequential defense system with Hp as the primary pro-
tector and Hpx as a backup when Hp has been depleted
during severe ICH. Interestingly, recent quantitative ana-
lysis defined an exponential relationship between Hp
availability relative to hemoglobin and related protective
activities, illustrating that large Hp quantities are re-
quired to prevent hemoglobin toxicity [14], perhaps be-
cause oxidatively modified hemoglobin loses its binding
affinity to Hp and CD163 [15]. In contrast, the linear re-
lationship between Hpx concentration and protection
defined a highly efficient backup scavenger system dur-
ing conditions of large excess of free hemoglobin [14].
These together suggest that Hpx could be more critical
in hematoma removal after ICH than has been known
before. One study also supports that another role of Hpx
is to act as an antioxidant after blood-heme overload
[16]. The heme-Hpx complex is endocytosed by cells ex-
pressing the CD91 receptor [17]. It is noteworthy that
the CD91 receptor is highly expressed within the brain
on vascular cells, microglia, and neurons [18]. The
CD163 receptor is known for the uptake of the Hp-
hemoglobin complex and is expressed on activated
microglia [19]. In the brain, Hp is almost exclusively
synthesized by oligodendrocytes [20], and Hpx is
expressed on neurons and microglia [21-23]. Moreover,
it has been suggested that Hp expression cannot be in-
duced in the brain. For example, intraperitoneal injec-
tion of bacterial endotoxin has been shown to cause a
robust increase in Hp expression in peripheral organs
and blood serum, but not in the brain [15].

The heme oxygenase (HO) system is responsible for
cellular heme degradation to biliverdin, iron, and carbon
monoxide. Two main isoforms have been reported to
date: homologous HO1 and HO2 are microsomal pro-
teins that share more than 45 % residue identity and
catalyze the same reaction. However, the HO1 isoform
has been extensively studied mainly for its ability to
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respond to numerous cellular stresses such as oxidants,
hemorrhage, or trauma [24-26]. On the contrary, HO2
has been less studied likely due to its apparent constitu-
tive nature. Nevertheless, its particular abundance in the
brain emphasizes the relevance of HO2 function [27,
28]. HO2 is constitutively expressed by most brain cells,
notably neurons, and endothelial and glial cells [29-31]
and accounts for the majority of HO activity in the brain
[32]. Under oxidative stress conditions, HO2 can rapidly
degrade heme [33, 34]. Further evidence for this concept
came from experiments with HO2-deficient animals,
demonstrating its involvement in brain cell damage pro-
duced by cerebral ischemia and ICH [35, 36]. HO2 is the
abundant isoform in the adult rodent brain and has been
detected in the forebrain, hippocampus, midbrain, basal
ganglia, thalamic regions, cerebellum, and brain stem
[37]. Additional effort is required to further clarify the
physiological role of the Hpx-HO system in the brain.
Also, it remains to be investigated which cell type plays
the major role in hemoglobin clearance after ICH.

As the resident macrophages in the brain, microglial
cells are purported effectors of the innate response after
injuries. Growing evidence suggests a protective role for
microglial activation in central nervous system patholo-
gies, including ICH [38-41]. The possible mechanism
underlying the beneficial effects of activated/migrating
microglia may be phagocytosis. For example, it has been
shown that microglial cells were activated and recruited
to newly formed -amyloid plaques within 1 to 2 days in
animal models of Alzheimer’s disease [42]. By stimulat-
ing the peroxisome proliferator-activated receptor, it has
been demonstrated that activated microglia can promote
the removal of hematomas after ICH [38]. Even in the
resting state, microglial cells can be active and vigilant in
the adult brain, and blood-brain barrier disruption pro-
vokes immediate activation of microglia [43].

In general, although Hpx and HO2 are important for
the clearance of hemoglobin and heme, little is known
about the role that the Hpx-HO system plays after ICH
and notably in respect of the microglia phagocytosis
properties. In this study, we investigated the role of Hpx
and HO2 after ICH, using genetically modified mice that
have separate deletions for Hpx and HO2, to establish
whether Hpx is a critical factor for hematoma removal
after ICH and whether HO2 is required for the removal.
We also investigated the unique role of microglia in
hematoma removal.

Methods

Animals

All procedures were approved by the Institutional Ani-
mal Care and Use Committee of the University of Flor-
ida. Adult male Hpx knockout (pr’/ 7) mice (22-28 g)
were descendants of those generated by Dr. Tolosano’s
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lab [44], and HO2 knockout (HO2™'") mice were gener-
ated by Drs. Poss and Tonegawa [45]. The mouse geno-
type was assayed by polymerase chain reaction and was
additionally confirmed by standard Western blot ana-
lysis. Hpx'~ and HO2™~ mice were backcrossed into
the C57BL/6 background, and matched C57BL/6 mice
were used as the wild-type (WT) controls. The knockout
mice and the size of their litters were normal overall. No
cognition or motor dysfunction was observed. When we
examined the gross superficial cerebrovascular anatomy,
no detectable changes were observed. Mice had access
to food and water ad libitum and were housed under
controlled conditions (23+2 °C; 12-h light/dark
periods).

Antibodies

The antibodies used for these studies included mouse
monoclonal neuronal nuclei (NeuN; specific for neu-
rons) antibody (Millipore, Billerica, MA), rabbit poly-
clonal ionized calcium-binding adapter protein 1 (Ibal)
antibody (specific for microglial-like cells; Wako Biopro-
ducts, Richmond, VA), and glial fibrillary acidic protein
(GFAP) antibody (specific for astrocytic-like cells;
DAKO, Carpinteria, CA). Secondary antibodies were
conjugated with Alexa-488 (Jackson ImmunoResearch,
Inc., West Grove, PA) or labeled with avidin-peroxidase-
biotin complex (Vector Laboratories, Inc., Burlingame,
CA).

ICH model

The procedure for preparing murine stroma-free
hemoglobin (SFHb) has been described previously [46].
In brief, blood was taken by cardiac puncture in mice.
After centrifugation (2500 r.p.m.) for 5 min at 4 °C, the
supernatant was removed and the cell pellet was washed
three times with sterile saline. Cells were then collected,
suspended in sterile saline, and lysed by two freeze-thaw
cycles. The sample was then centrifuged, the supernatant
was removed, and the hemoglobin concentration was de-
termined spectrophotometrically. SFHb was then diluted
with sterile saline to 2 mM (expressed as the concentra-
tion of the hemoglobin tetramer), which approximates its
concentration in whole blood. It was aliquoted and stored
at —80 °C until used. For hemoglobin injection, age- and
weight-matched male mice were anesthetized with halo-
thane (3 % initial, 1-1.5 % maintenance) in O, and air (80
and 20 %, respectively). To model hemorrhage, we placed
mice in a stereotaxic device (Stoelting, Wood Dale, IL)
and introduced a 32-gauge stainless-steel needle through
a burr hole into the right striatum at the following stereo-
tactic coordinates: 0.5 mm anterior and 2.0 mm lateral of
the bregma, 3.5 mm in depth. We then injected them uni-
laterally with 10 pL of 2 mM SFHb over a period of
30 min with a microinfusion apparatus. The injection
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needle was slowly withdrawn 15 min later, and the wound
was sutured. Mice in the sham group received sterile sa-
line injection only. Rectal temperature was maintained at
37.0+0.5 °C throughout the experimental and recovery
periods. At 24 and 72 h after SFHb injection, behavioral
tests were performed and brains were harvested for stroke
injury analysis.

Locomotor activity

Locomotor activities were assessed before ICH and 24,
48, and 72 h after ICH by an automated system (MED
Associates, Inc., St. Albans, VT). The mice were placed
in four transparent acrylic cages at the same time every
day and monitored for locomotor (horizontal activity),
rearing (vertical activity), and stereotypy behaviors dur-
ing a 30-min test period. The results are expressed as an
activity ratio of the baseline for each mouse [47].

Neurological scoring

Neurological deficits were assessed at 24 and 72 h after
SFHb injection. An experimenter blind to the mouse
genotype scored all mice for neurological deficits with a
24-point neurological scoring system [48]. The tests in-
cluded body symmetry, gait, climbing, circling behavior,
front-limb symmetry, and compulsory circling and whis-
ker response. Each test was graded from 0 to 4, estab-
lishing a maximum deficit score of 24. Immediately after
the testing, the mice were sacrificed for injury analysis.

Histology and immunohistochemistry

At 24 and 72 h after ICH, mice were euthanized and
perfused transcardially with phosphate-buffered saline
(PBS; pH 7.4) and then ice-cold 4 % paraformaldehyde
(PFA) in PBS. The brains were removed, postfixed, and
cut into 30-pm coronal sections with a cryostat. The
mounted sections were stained with cresyl violet to esti-
mate the lesion volume. Six to eight coronal sections, in-
cluding the entire injured hemorrhagic area, were
summed, and the lesion volumes in cubic millimeters
were calculated by multiplying the thickness with the
measured areas [47]. All slides were scanned using Scan-
Scope CS (Aperio Technologies, Inc., Vista, CA) and an-
alyzed using ImageScope software (Aperio Technologies,
Inc.). For immunohistochemistry, free-floating sections
or primary microglial cells were rinsed in PBS after fix-
ation and permeabilization and then incubated at room
temperature in 5 % donkey or goat serum to block non-
specific binding. All primary antibodies were diluted in
PBS and applied overnight at 4 °C. Antibody concentra-
tions were as follows: rabbit anti-Ibal: 1:1000; rabbit
anti-GFAP: 1:2000; mouse anti-NeuN: 1:500. Avidin-
peroxidase-labeled biotin-complex secondary antibodies
(1:1000) and Vectastain ABC and 3,3’-diaminobenzidine
(DAB) SK-4100 kits (Vector Laboratories, Inc.) were
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then used according to the manufacturer’s instructions.
When followed with fluorescence staining, the sections
were incubated with a secondary antibody conjugated
with Alexa-488 (1:1000). After being rinsed, all sections
were mounted in DAPI Hardest Reagent (Vector La-
boratories, Inc.) under a glass coverslip. To use as nega-
tive controls, additional sections were incubated without
the primary antibodies. Stained sections were examined
with a Nikon TE2000-E Eclipse fluorescence microscope
(Nikon Instruments, Inc., Melville, NY); the images were
captured and analyzed by SPOT advanced image soft-
ware (Diagnostic Instruments, Inc., Sterling Heights,
MI). To quantify the numbers of positive cells, photos
were taken of four regions of interest in each section
containing the infarct sites.

Perls’ iron and Fluoro-Jade B staining

Iron deposition was detected with Perls’ staining for
mainly nonheme ferric iron (Fe®*) followed by DAB devel-
opment. Briefly, brain sections or primary microglial cells
were washed in PBS after fixation in 4 % PFA and then in-
cubated with Perls’ solution (10 % potassium ferrocyanide
and 20 % HCI, equal parts in PBS) for 30 min. After wash-
ing in PBS, the sections or microglial cells were incubated
with DAB and hydrogen peroxide for 5 min. Brain sec-
tions were finally counterstained with hematoxylin for
2 min. The DAB intensification and hematoxylin counter-
staining were omitted when brain sections were co-
stained with specific cellular markers.

To determine neuronal cell degeneration in brain tissue,
Fluoro-Jade B staining was used according to published
protocol [49]. In brief, the slides were first immersed in a
solution containing 1 % sodium hydroxide in 80 % alcohol
for 5 min. This was followed by 2 min in 70 % alcohol and
2 min in distilled water. The slides were then transferred
to a solution of 0.06 % potassium permanganate for
10 min and then rinsed in distilled water for 2 min. The
staining solution was prepared from a 0.01 % stock solu-
tion of Fluoro-Jade B (Histo-Chem, Inc., Jefferson, AR).
After 20 min in the staining solution, the slides were
washed in distilled water. The dry slides were then cleared
by xylene before coverslipping.

Perls’ iron and Fluoro-Jade B-positive cells were counted
in three to four fields immediately adjacent to the
hematoma in each section. At least three sections per ani-
mal over a magnification field of x400 were averaged and
expressed as cells per field. The images of stained sections
were captured and analyzed by SPOT image software. Tis-
sue sections were all processed and analyzed by an obser-
ver who was blind to the mouse genotype.

Primary microglial cell cultures
Primary microglial cultures were prepared as described
previously [50]. In brief, the mixed cell culture was
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prepared from postnatal 2- to 4-day-old mice and then
maintained at 37 °C and 5 % CO, for 10 to 15 days in
Dulbecco’s modified Eagle’s medium (DMEM) contain-
ing 10 % heat-inactivated fetal bovine serum (FBS),
50 U/mL penicillin, and 50 pg/mL streptomycin. Micro-
glial cells were collected as floating cells by gentle shak-
ing and used for the following experiments.

In vitro phagocytosis assay

Primary microglial cells were plated in divided dishes
(35 mm, four compartments; Greiner Bio-One, Monroe,
NC) for 48 h at a density of 60,000 cells per well in
DMEM with 10 % FBS. Latex beads (6 pm, internally
dyed with the fluorophore flash green; Polysciences, Inc.,
Warrington, PA) were preopsonized in 50 % FBS and
PBS. Cells were pretreated with SFHb (1 mM) or vehicle
for 2 h. Microglial cell media were then replaced with
DMEM alone, and preopsonized beads were added to
the cells at a concentration of 10 beads per cell. Micro-
glial cells and beads were incubated at 37 °C for 1 h and
then subsequently washed with ice-cold PBS. After fix-
ation with 4 % PFA, the images were taken using the
EVOS digital inverted fluorescence microscope (Life
Technologies, Grand Island, NY).

Statistics

Data are expressed as mean+ SEM. Prism 5 software
(GraphPad) was used for statistical analysis. In all com-
parisons, a P value less than 0.05 was considered signifi-
cant. The statistical comparisons among multiple groups
were made by one-way ANOVA followed by Newman-
Keuls multiple comparison tests or two-way ANOVA
followed by Bonferroni multiple comparison tests, ex-
cept for neurologic deficit scores, which were calculated
by the nonparametric Kruskal-Wallis test followed by
Dunn’s multiple comparison tests. Differences between
two groups were determined by unpaired two-tailed Stu-
dent’s ¢ test.

Results

Mortality

Overall, injection of 10 pL of SFHb did not cause any
mortality. Of note, we had one mouse die following
anesthesia before performing the injection.

Deletion of Hpx and HO2 aggravates brain injury after
SFHb injection

Our preliminary studies showed that backflow did not
occur when mice were injected over a period of 30 min
with 10 pL of SFHb. This concentration of 2 mM SFHb
approximates that in whole blood [46]. To define the lo-
cation and distribution of SFHb, a cohort of mice was
injected with 6 or 10 puL of SFHb in the right striatum
and sacrificed 5 h after injection. Brain sections revealed
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that the injected 10 pL of SFHb diffused to the whole
striatum, which led to behavioral disability. This condi-
tion was reproducible and optimal to assess the removal
capacity of the Hpx-HO2 system (Fig. la). Thus, we
chose the 10-pL injections of SFHb for the following ex-
periments. Cresyl violet staining was used to quantify
the lesion volume after injection (Fig. 1b). The results il-
lustrated that 10 pL of SFHb led to a lesion in the stri-
atum at 24 h post-ICH. The Hpx’~ and HO2™/~ mice
had larger lesion volume compared to their WT controls
(Hpx'~, 75+14; HO27", 7.6+05 vs. WT, 50+
0.3 mm?; both P < 0.05; Fig. 1c). In addition, no obvious
lesion was observed in the saline-injected group (data
not shown).

Deletion of Hpx and HO2 aggravates behavioral deficits
after SFHb injection

At the same time, behavioral tests were performed
blindly on the mice until 72 h after SFHb injection. The
data indicated that significant behavioral deficits were
caused by injecting 10 puL of SFHb in mice. Moreover,
deleting Hpx or HO2 exerted detrimental effects on the
neurological deficit score and undermined the loco-
motor activities in contrast with their WT controls
(Fig. 2b). Further, improved performance on behavioral
tests over time suggested that the brain injury caused by
injected SFHb was recovering from 24 to 72 h postinjec-
tion (Fig. 2a, b). In addition, the 10-pL SFHb injection
reduced mouse body weight after surgery; however, this
was not significant among genotypes and times (Fig. 2c).

Deletion of Hpx and HO2 causes more iron deposition
and neuronal degeneration

It has been reported that the accumulated ferric iron
after ICH produced oxidative stress and loss of neurons
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[9]. To show whether the toxic iron deposition resulted
in neuronal degeneration at 24 h postinjection, we per-
formed Perls’ iron and Fluoro-Jade B staining on a series
of sections. Interestingly, we found that the two posi-
tively stained signals were colocalized on successive sec-
tions (Fig. 3a), supporting that iron overload contributes
to neuronal degeneration after ICH. Quantitative results
demonstrated that HO2™/~ mice have a larger Perls’
iron-positive area compared to WT controls after SFHb
injection (Fig. 3b). Under light microscopy, we observed
two types of Perls’ iron staining: one was diffused and
located in the lesion area, which is generally colocalized
with the dense positive signals of Fluoro-Jade B, and the
other was located inside glia-like cells (Fig. 3a). To better
identify the cell type with iron accumulation, we per-
formed the Perls’ iron staining with various cellular
markers: Ibal for microglial cells, GFAP for astrocytes,
and NeuN for neurons. The results showed that the
Perls’ iron-positive signals were mainly in microglial cells
(Fig. 3c), suggesting that microglia would appear to be
the main cells for heme clearance after ICH. However,
the extracellular diffused irons are toxic and cause neur-
onal degeneration after ICH. It has been reported that
macrophages recycle iron in the liver, spleen, and bone
marrow [51]. A recent publication reported that prolifer-
ation of local resident microglia rather than recruitment
of circulating myeloid cells would be the main source of
microgliosis after stroke [52]. Our data are overall con-
sistent with such observation, although we could not en-
tirely exclude the role of infiltrating macrophages.

To further address the effects of Hpx or HO2 deletion
on neuronal degeneration and iron overload, we then
quantified the Fluoro-Jade B-positive neuronal cells and
the Perls’ iron-positive microglial cells around the lesion
24 h postinjection (Fig. 3d). Compared to the WT
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Fig. 1 Deleting Hpx and HO2 aggravates brain injury after SFHb injection. Photographs on the left are representative brain coronal sections
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controls, it was shown that Hpx™'~ and HO2™”~ mice
had more degenerating neurons (Hpx ", 455 + 36; HO2
/7, 486 +23 vs. WT, 318 + 34 cells/mm? both P<0.01;
Fig. 3e) and Perls’ iron-positive cells (Hpx™'~, 1394 +
109; HO27", 1532110 vs. WT, 788 +69 cells/mm?*
both P<0.001; Fig. 3f). Therefore, we concluded that
the resident microglial cells in the brain are actively in-
volved in removing iron products after ICH. However,
deleting Hpx and HO2 could attenuate this ability be-
cause of resultant iron overload in microglia, as indi-
cated by Perls’ staining.

Deletion of Hpx and HO2 reduces activated microglia
after SFHb injection

It is known that microglia can be activated to exert mi-
gration and phagocytosis. We and others have postulated
that activated microglial cells could play the critical role
in hemoglobin clearance after ICH [38, 47]. However, ac-
tivated microglia also release proinflammatory factors
and reactive oxygen species, which can cause neuronal
toxicity. Therefore, it is intriguing to check the net effect
of microglial activation in this context of SFHb injection.
Ibal is widely accepted as a marker to show the resting
and activated microglial cells in the brain, with an

increased expression level during activation. To assess
the effects of Hpx or HO2 knockout on microglial acti-
vation, we immunostained brain sections with Ibal anti-
body to observe microglial activation/morphology
around the lesion 24 and 72 h after SFHb injection
(Fig. 4a). The injected SFHb was able to induce micro-
glial activation, and the quantitative data showed that
Hpx™/~ and HO2”/~ mice had much less Ibal-positive
cells around the lesion compared to WT controls at 24 h
(Hpx™'~, 476 +62, P<0.05; HO2™'~, 220 +48, P<0.001
vs. WT, 704+ 34 cells/mm® and 72 h postinjection
(Hpx™'~; 640 + 41, P> 0.05; HO2™'~; 416 + 46, P < 0.01 vs.
WT; 758 +95 cells/mm? Fig. 4b), suggesting that iron
deposition within microglial cells could potentially re-
duce the Ibal expression level after SFHb injection.
Additionally, the numbers of activated microglial cells
were increasing from 24 to 72 h postinjection, espe-
cially in Hpx™~/~ mice (from 476 + 62 to 640 + 41 cells/
mm?% P<0.05) and HO2”~ mice (from 220 +48 to
416 +46 cells/mm? P <0.05; Fig. 4b), which was ac-
companied with the improvement of behavioral tests
during the same time period. Therefore, these results
support that microglia could play a net protective role
in this SFHb-injection ICH model.
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positive signals of Fluoro-Jade B and Perls' iron staining were colocalized partially on continuous neighbor sections. The inset image shows that
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iron-positive signals were mainly in microglial cells. Scale bar, 50 um (c). The degenerating neurons and Perls’ iron-positive cells are shown in
coronal sections. Scale bar, 50 um (d). The 10-uL SFHb injection produced significantly more degenerating neurons (e) and Perls’ iron-positive
microglial cells (f) in HO2™~ and pr’/’ mice than those in WT controls. Values represent means + SEM. *P < 0.05, **P < 0.01, and ***P < 0.001,
compared to WT mice, one-way ANOVA followed by Newman-Keuls multiple comparison tests (n = 5-6)

Hemoglobin treatment induces iron deposition and
reduces Ibal expression

To further address whether microglial cells take up
heme-hemoglobin and contribute to hemoglobin clear-
ance, we treated cultured primarily microglial cells with
two doses of SFHb for 2 h and then performed the Perls’
iron and Ibal double staining (Fig. 5a). First, we con-
firmed that hemoglobin can induce microglial activation.
The areas of microglial cells treated with SFHb were
markedly bigger than vehicle-treated cells (Fig. 5b).

Second, it was observed that SFHb treatment signifi-
cantly increased the amount of iron accumulated in
microglia and that higher SFHb treatment dosage re-
sulted in more iron deposition within microglial cells
(Fig. 5¢). Further, we found that the accumulated iron
in microglia reduced the Ibal expression level, illus-
trating a significant negative correlation by linear-
regression analysis (Fig. 5d). This observation sup-
ports our in vivo data that the injected SFHb may ei-
ther directly or indirectly decrease the Ibal
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mice (a). Activated microglial cells were observed in and around the injury region after the SFHb injection
(#2, with large cell bodies bearing short and thick processes) in contrast with resting microglia in the vehicle group (#1
ramified long and fine processes). Stars indicate cell bodies and arrows present cell processes. Quantitative analysis demonstrated that HO2 ™~ and Hpx™”~
mice had less activated microglia at 24 and 72 h than WT mice. In addition, 72 h after injection, their activated microglia cells were significantly increased

compared with those at 24 h (b). Scale bar, 50 um; values represent means + SEM*P < 0.05, **P < 001, and ***P < 0,001, compared to WT mice; #P < 0.05
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Fig. 4 Deleting Hpx and HO2 reduces activated microglia. The distribution and morphology of microglia (Iba1 positive) can be seen in coronal sections

, with small cell bodies bearing

expression level and concurrently change Ibal-positive
microglia to Perls’ iron-positive microglia.

Hemoglobin treatment inhibits microglial phagocytosis
Ibal is known to play an important role in microglia mi-
gration and phagocytosis [53, 54]. To determine the ef-
fect of iron overload on microglial phagocytosis, we
treated primary microglial cells with SFHb (1 mM) or
vehicle for 2 h and then incubated them with fluorescent
latex beads for 1 h (Fig. 6a). The results showed that the
hemoglobin pretreatment markedly reduced the percent-
age of phagocytic microglial cells (Fig. 6b) and the num-
bers of beads attached by microglia (Fig. 6¢). This may
suggest that following ICH, hemoglobin degradation
within cells would affect microglial phagocytosis and
delay resultant hematoma removal.

Discussion

By using the 10-uL SFHb-injection model, we found that
Hpx or HO2 deletion leads to aggravated brain injury
and Perls’ iron deposition, which was consistent with the
behavioral results showing the neurological and loco-
motor disability of the Hpx~’~ and HO2™'~ mice. Fur-
thermore, by performing double staining of Perls’ iron
with various cellular markers, we showed that the Perls’
iron-positive cells were mainly Ibal-positive microglial

cells. Using mouse primary microglial cultures, we also
observed that the SFHb dose-dependently increased
Perls’ iron deposition within these cells and, interest-
ingly, iron accumulation appeared to negatively correlate
with Ibal staining. Finally, using similar cultures, we ob-
served that the rate of beads being phagocytosed within
SFHb-treated microglia was drastically attenuated. These
data suggest that (a) microglial cells contribute to
hemoglobin-heme clearance after ICH; (b) however, the
resultant heme/iron overloads in microglia appears to
decrease Ibal expression and further inhibit microglial
phagocytosis. Therefore, microglial cells may have a sort
of threshold for their hemoglobin-heme degradative cap-
acity. Above this level, their activity, such as phagocyt-
osis, is severely compromised.

The disparate effects of HO2 knockout have been
shown in whole-blood and collagenase-injection models,
which indicate the complexity in rodent ICH models
and the necessity of a simplified ICH model [55, 56].
Here, in the 10-pL SFHb-injection model, the hemoglobin
diffuses throughout the mouse striatum and produces a
gradient distribution to induce the activation of microglia,
which could be optimal to evaluate the hemoglobin-
removal capacity of the Hpx-HO system. Also,
hemoglobin injection excludes the intrinsic inflammatory
influence of the erythrocyte debris and recombinant



Ma et al. Journal of Neuroinflammation (2016) 13:26

Page 9 of 12

A Perls Iron Merge
= 15007 — %
2 ¥ ¥ ; ) -
0 =
= B T 1000 _#xt
] P T
> L - ~ |
yos < E :
= 500
o5 o |
IE LS 0 - 3]
n = L ==
E E E
o o~
B > SFHb
_ -
2 s e . \ C
[TH E & 4 % A .
n o ¢ ..“' |
8 6000 —
g 5%
g =) E 4000
s ~ - @ x
2 3 @ -% *
o o @ 20004 ——
5 - ;
w S
= 1 r?=0.6954 2 = =
o
D =z .| : SEE
w o v o~
e > —
=3 e SFHb
o c
2=
c
3 2
E
50 100 160 200 260
Perls Iron
(mean intensity)
Fig. 5 Hemoglobin treatment induces iron deposition and reduces Iba1 expression. The primary microglia derived from WT mice were treated with
SFHb for 2 h as indicated concentration. Distribution of Iba1 (green) and iron localization (black) was shown in microglia by double staining. The cells
highlighted within the dashed box were demonstrated at a higher magnification in the enlargement. The asterisk (*) indicates that Iba1 signals were
absent at the Perls’ iron-positive area (a). The bar graph shows the significant changes in the size of microglia that are Perls" iron-positive. SFHb treat-
ment greatly increases microglial size, which is dose-dependent (b). The SFHb-treated microglial cells have a larger area of positive Perls' iron staining,
suggesting SFHb-induced iron deposition inside microglia (). The linear-regression graph illustrates that Perls" iron-positive signals are negatively related
to Ibal-positive signals, n = 50 cells (d). Scale bar, 50 um. Values represent means + SEM. Significant differences between the groups are expressed as
follows: *P < 0.05; ***P < 0.001, one-way ANOVA followed by Newman-Keuls multiple comparison tests. The experiment was repeated three times and
inn 2150 cells

collagenase in whole-blood and collagenase-injection
models. In our preliminary test, we had confirmed that
minimal backflow happened over a very slow 30-min
period of injection before withdrawing the needle. In
addition, Hpx-deficient mice are viable and fertile [44].
Nevertheless, Hpx'~ mice were shown having iron de-
posits in oligodendrocytes [57, 58]. The Hp protein and
mRNA levels are comparable in serum between naive
Hpx™'~ and WT mice; however, after hemolytic stimulus,
Hpx ™'~ mice showed persisted Hp levels in the circulation,
suggesting compensatory expression of Hp induced by
hemolysis [44]. It is well known that iron reacts with lipid
hydroperoxides to produce free radicals. Free radicals at-
tack DNA, lipids, and proteins, causing oxidative brain in-
jury. In this study, the degradation of the injected SFHb

caused two types of iron deposition in brain tissues: one
appearing to be intensely diffused iron deposition in the
lesion area and the other suggested to be iron overload in
microglial cells. The results demonstrated that the distri-
bution of Perls’ iron staining was consistent with that of
neuronal degeneration shown by Fluoro-Jade B staining,
which suggested that iron overload mainly contributes to
neuronal degeneration after SFHb injection. Under mi-
croscopy, we found that the Perls’ iron-positive cells that
were glia-like migrated around the lesion area. To further
determine which cell type mainly contributes to this
hemoglobin clearance and cellular iron accumulation
around lesions, we performed double staining of various
cellular markers with Perls’ iron and showed that micro-
glia mainly contribute to the clearance of hemoglobin
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after ICH. This result was supported by the study from
Keep’s group [59], and it was also reported by Koeppen’s
group that most iron-positive cells around intracerebral
hematoma were microglia [60].

It could be concluded that whether activated microglia
exert protective or toxic effects might be context
dependent, determined by both injury severity and dur-
ation [61, 62]. For example, the exogenous application of
microglia was shown to protect against different types of
ischemic injury in vivo [63—-65] and in vitro [40]. On the
other hand, brain microglial activation and its related in-
flammatory response had been shown to confer neuro-
toxicity in various models of neurodegeneration [66—69].
In this SFHb-injection model, compared to the toxicity
of the large amount of hemoglobin, the harmful effects
of the proinflammatory cytokines released from the acti-
vated microglial cells might remain minor within the ex-
perimental time frame and the beneficial potential of the
neuroprotective factors might be limited. Therefore, we
suggest that under our experimental protocol, it was the

effect of microglial phagocytosis that contributed to
hemoglobin/heme clearance and behavioral improve-
ment over time.

An interesting observation here was the suggestion
that the iron overload appeared to reduce the Ibal ex-
pression level, which could lead to reduced microglial
phagocytosis. Also, it may be the reason why more Perls’
iron-positive staining microglia were accompanied with
less Ibal-positive microglia around the lesion area in
HO27~ and Hpx~'~ mice. As mentioned, Ibal proteins
have been described as playing an essential role in
microglia migration and phagocytosis [53, 70]. Thus, we
speculate that the effect of HO2 deletion may be in-
creasing the vulnerability of microglia to hemoglobin,
potentially similar to the effect already reported for HO1
deficiency [71]. Hpx~'~ mice could change the way heme
was delivered to microglia and neurons from a con-
trolled, receptor-based mechanism to uncontrolled inter-
calation into membranes and subsequent oxidative
injury. Thus, it was not entirely surprising that it would
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result in a deleterious effect on microglia and neurons,
while increasing iron staining.

Conclusions

Our findings suggest that microglial cells contribute to
hemoglobin-heme clearance after ICH; however, the re-
sultant iron overloads in microglia appear to decrease
Ibal expression and further inhibit microglial phagocyt-
osis that warrants further investigation.
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