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Abstract

With the rapid accumulation of biological omics datasets, decoding the underlying relation-

ships of cross-dataset genes becomes an important issue. Previous studies have attempted

to identify differentially expressed genes across datasets. However, it is hard for them to

detect interrelated ones. Moreover, existing correlation-based algorithms can only measure

the relationship between genes within a single dataset or two multi-modal datasets from the

same samples. It is still unclear how to quantify the strength of association of the same gene

across two biological datasets with different samples. To this end, we propose Approximate

Distance Correlation (ADC) to select interrelated genes with statistical significance across

two different biological datasets. ADC first obtains the k most correlated genes for each tar-

get gene as its approximate observations, and then calculates the distance correlation (DC)

for the target gene across two datasets. ADC repeats this process for all genes and then

performs the Benjamini-Hochberg adjustment to control the false discovery rate. We dem-

onstrate the effectiveness of ADC with simulation data and four real applications to select

highly interrelated genes across two datasets. These four applications including 21 cancer

RNA-seq datasets of different tissues; six single-cell RNA-seq (scRNA-seq) datasets of

mouse hematopoietic cells across six different cell types along the hematopoietic cell line-

age; five scRNA-seq datasets of pancreatic islet cells across five different technologies;

coupled single-cell ATAC-seq (scATAC-seq) and scRNA-seq data of peripheral blood

mononuclear cells (PBMC). Extensive results demonstrate that ADC is a powerful tool to

uncover interrelated genes with strong biological implications and is scalable to large-scale

datasets. Moreover, the number of such genes can serve as a metric to measure the similar-

ity between two datasets, which could characterize the relative difference of diverse cell

types and technologies.
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Author summary

The number and size of biological datasets (e.g., single-cell RNA-seq datasets) are boom-

ing recently. How to mine the relationships of genes across datasets is becoming an

important issue. Computational tools of identifying differentially expressed genes have

been comprehensively studied, but the interrelated genes across datasets are always

neglected. Detecting of highly interrelated genes across datasets is hindered because the

samples of them are always different and they could have different numbers of samples.

To solve this problem, we present a new algorithm that can identify interrelated genes

across datasets based on distance correlation. Our proposed algorithm is very efficient

and works well in different technologies, i.e., RNA-seq, single-cell RNA-seq and single-

cell ATAC-seq. Also, we found that the number of such highly interrelated genes can

serve as a metric to measure the similarity between two datasets, which could characterize

the relative difference of diverse cell types and technologies.

This is a PLOS Computational Biology Methods paper.

Introduction

High-throughput sequencing technologies (e.g., RNA-seq, scRNA-seq, scATAC-seq) provide

an unprecedented opportunity to analyze biological process with large-scale data. For example,

The Cancer Genome Atlas (TCGA) profiles numerous cancers with large amounts of omics

data [1]; The Human Cell Atlas (HCA) profiles transcriptomics of thousands to millions of

cells at single cell level. Recently, scATAC-seq has been greatly improved in terms of cell

throughput and sequencing efficiency to view chromatin accessibility [2]. Integrative and com-

parative studies of such data is becoming a key tool to decipher the underlying relationships

among genes [3–6].

Differential analysis plays a vital role in comparative studies, and many methods like limma

[7] and edgeR [8] have been put forward to identify differentially expressed genes between two

different datasets [9]. However, such methods fail to identify genes with similar expression pat-

terns between two datasets with different samples. Meanwhile, the problem of measuring the

correlation between two genes in a single dataset or two multi-modal datasets from the same

samples has been well studied and can be conducted using Pearson correlation coefficient,

Spearman correlation coefficient, Kendall correlation coefficient and so on. However, these

methods only capture linear dependence. Complex nonlinear dynamics exist widely in biologi-

cal systems [10], which cannot be explained by simple linear relationship. More recently, the

maximal information coefficient (MIC) [11] has been proposed to discover linear and non-lin-

ear dependency among the variable pairs in exploratory data mining, and detected a wide

range of interesting associations between pairs of variables. For example, MIC has been

applied to yeast gene expression profiles to identify genes whose transcript levels oscillate dur-

ing the cell cycle [11]. It should be noted that the performance of MIC can be significantly

reduced with a limited number of samples in practice [12].

However, these methods are incapable of quantifying the associations of genes across two

different datasets from different samples, preventing us from finding genes with patially simi-

lar expression patterns under different conditions. Specifically, for a target gene, we would like
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to measure the correlation of this gene across datasets, i.e., the correlation between two gene

vectors with different samples (dimensions). This is a tough task since we don’t have matched

samples. Thus, the correlation is not supposed to rely on the order of the samples (order-free),

which means this correlation is determined by the distribution of genes. The distribution here

indicates that the expression of a gene across a given number of cells are considered as the

expression observations of this gene in a given dataset. A few advances have been made to

measure the correlation of two random vectors with diverse dimensions. For example, distance

correlation (DC) [13] was designed based on the principle that the two random vectors are

independent if and only if their joint characteristic functions are the same as the product of

their marginal characteristic function. An unbiased sample estimation was constructed to cal-

culate the distance correlation coefficient. Under the null hypothesis, there exists a statistic

obeying t-distribution based on sample estimation of DC. So we can easily calculate the p value

of this hypothesis testing. This method views gene pairs with different dimensions as two gene

vectors, and requires multiple observations to measure the associations between them, which

makes it possible to compare gene vectors with different dimensions. However, we usually

only have one observation or very few replicates for a target gene pair in real biological data-

sets. It is impossible to calculate DC directly under such circumstances. Therefore, quantifying

the strength of association between genes across datasets remains an outstanding challenge.

To this end, we propose Approximate Distance Correlation (ADC) to robustly select genes

with high interrelation across two datasets (Fig 1). ADC first obtains the k most correlated

genes for each target gene as its approximate observations, and then calculates the distance

correlation (DC) for the target gene across two datasets. ADC repeats this process for all genes

and then performs the Benjamini-Hochberg (BH) adjustment to control the false discovery

rate (FDR). Extensive experiments with simulation data and four biological applications dem-

onstrate that ADC can uncover the most interrelated genes, which illustrates strong biological

relevance. Moreover, the number of similar genes selected could serve as an index to measure

the degree of similarity across different cell types and technologies. Lastly, ADC can be applied

to datasets ranging from thousands to millions of cells.

Materials and methods

Data and preprocessing

We applied ADC to four biological scenarios (Tables A-D in S1 Supplementary Materials). (i)

We downloaded the gene expression data of 21 different cancers with more than 200 tumor

samples for each on 20 March 2020 from http://gdac.broadinstitute.org. For each cancer type,

housekeeping genes [14] and genes with no expression in more than half of the tumor samples

were removed. After filtering, we log-transformed the expression with a pseudo-count 1 and

perform z-score normalization for each gene.

(ii) We downloaded the scRNA-seq data of mouse hematopoietic cells from NCBI Gene

Expression Omnibus with accession code GSE81682. Cells with less than 200 expressed genes

and genes expressed in less than 3 cells were filtered. Also, cells with more than 25% mitochon-

drial genes present were filtered. We normalized the cells by size factor using the compute-

SumFactors function in the scran package [15] and log-transformed the gene expression data

with a pseudo-count 1. For each cell type, the top 1000 highly variable genes were selected with

scanpy package [16] as the input to ADC. There are six cell types remained including hemato-

poietic stem cells (HSC), common myeloid progenitors (CMP), granulocyte-onocyte progeni-

tors (GMP), megakaryocyte-erythroid progenitors (MEP), common lymphoid progenitor

(MPP), lymphoid-primed multipotent progenitor (LMPP) with 323, 328, 123, 362, 368, 280

cells, respectively.
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(iii) We obtained five scRNA-seq datasets of pancreatic islet cells profiled by five different

technologies including indrop, CEL-Seq2, 10X, CEL-Seq, Smart-seq2 respectively [17–21].

Housekeeping genes were removed [14]. We normalized the gene counts per cell with the

scanpy package and log-transformed the expression with a pseudo-count 1 and the z-score

normalization were also performed for each gene. Finally, these data consists of 8569, 4776,

2477, 1538, 3354 cells respectively.

Fig 1. Schematic diagram of ADC. Single-cell gene expression data are used as an example to illustrate ADC. X and Y

are data matrices with matched genes as the inputs of ADC. For each target gene, ADC selects k genes having the

highest Pearson correlation coefficient with the target one to calculate the p value of DC. After that, ADC performs the

BH adjustment to control the FDR and outputs the most highly interrelated genes.

https://doi.org/10.1371/journal.pcbi.1009548.g001
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(iv) We obtained the scRNA-seq data of human PBMC [22] and the scATAC-seq data [23].

The latter was transformed to gene activity matrix by the CreateGeneActivityMatrix function

in the R package Seurat and the annotation file Homo_sapiens.

GRCh38.91. The preprocessing procedure was the same as (iii). Finally, these data consists

of 8728, 2638 cells respectively.

The ADC algorithm

Here, we have two biological data matrices X 2 Rp×m and Y 2 Rp×n with p matched genes, and

each row represents a gene while each column represents a sample (cell). ADC is designed to

measure the interrelation for each gene between two datasets based on distance correlation

(DC) and selects the most similarly interrelated ones (Fig 1 and Algorithms in S1 Supplemen-

tary Materials).

DC. DC is calculated based on distance covariance. Distance covariance is a method to

measure the distance between the product of marginal characteristic functions of two random

vectors X 2 Rm and Y 2 Rn and their joint characteristic function. It is defined as:

V2ðX;YÞ ¼ k�X;Yðt; sÞ � �XðtÞ�YðsÞk
2

w

¼

Z

Rmþn
j�X;Yðt; sÞ � �XðtÞ�YðsÞj

2wðt; sÞdtds;
ð1Þ
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1þm
m jsj

1þn
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1þd
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here Γ(�) is the gamma function and the weight function w(t, s) ensures distance covariance is

less than infinity. This definition is similar to that of the classical covariance and has a signifi-

cant property, i.e., X and Y are independent if and only if V2
ðX;YÞ ¼ 0. Just as the standard

definition of correlation coefficient, the DC is defined as:

R2ðX;YÞ ¼
V2ðX;YÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
ðX;XÞV2

ðY;YÞ
p : ð3Þ

However, we don’t know the exact distributions of X and Y. If we have k observations from

them, we could use sample estimation to approximate DC. Let �
k
X; �

k
Y and �

k
X;Y denote the

empirical characteristic functions of X, Y and (X, Y) (S1 Supplementary Materials). The sample

estimation of distance covariance for random vectors X, Y is defined as:

V2
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and the sample estimation of DC is

DCðX;YÞ ¼ R2

kðX;Y� ¼
V2

kðX;Y�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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It can be proved that under the independence hypothesis, as m, n tend to infinity,

T k ¼
ffiffiffiffiffiffiffiffiffiffiffi
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p
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converges to t-distribution with
kðk� 3Þ� 2

2
degrees of freedom. Thus, we can calculate the p-value

easily for each hypothesis testing. We can see that the DC doesn’t depend on the order of sam-

ples of both datasets from the derivation process (S1 Supplementary Materials).

Select approximate observations for each gene. Naturally, multiple observations for

each gene across both datasets are needed to estimate the empirical characteristic functions

(S1 Supplementary Materials). However, we usually only have one observation for each gene

across pairwise biological omics data. Profiling the given cells for multiple times to achieve this

is unrealistic, since the cells are destroyed during the measurement process. Thus, it is impossi-

ble to perform the estimation directly. As we know, a set of genes usually tend to be highly cor-

related under the same condition due to the the modular organization of biological systems. In

view of this, we introduce an approximate strategy to select k highly correlated ones with it as

alternative observations in a single dataset to overcome this issue. We applied this procedure

to all the genes individually. The value of k is set to 30 by default.

The BH adjustment for controlling FDR. Since we repeat to calculate ADC for each

gene, we expect to control the FDR, which is defined as the expectation of false discovery pro-

portion (FDP):

FDR ¼ E½FDP� ¼ E
#fi : ðXi;YiÞ are independent and i 2 Ŝg

#fi : i 2 Ŝg _ 1

" #

; ð7Þ

where Xi 2 Rm and Yi 2 Rn, i 2 {1, . . ., p}, Ŝ is a subset of {1, . . ., p} denoting highly interrela-

tedd genes selected by ADC, a _ b = max{a, b} and denotes the size of a set. In the language of

hypothesis testing, we are interested in the m hypotheses {Hi: Xi and Yi are independent} and

want to control FDR. For instance, if we control the FDR at 10% and select 100 pairs of genes,

then at most ten of them are false.

The BH adjustment strategy is a classical method to control FDR for multiple hypothesis

testing [24]. Consider multiple testing H1, H2, . . ., Hp with corresponding p-value P1, P2, . . .,

Pp, we order the p-value so that P(1)� P(2) . . .�P(p). The adjusted p-value Q(i) for P(i) is calcu-

lated as follows:

QðiÞ ¼ PðiÞ �
p
i
: ð8Þ

For a given FDR level α, we call the ith testing is significant and only if Q(i) < α.

Computational complexity of ADC

To rapidly select the k approximate observations, ADC first constructs a Pearson correlation

matrix for each dataset, and its computational complexity is O(p2 max{n, m}]. After that, ADC

searches approximate observations for each gene based on the quicksort algorithm, and its

total complexity for all genes is O(p2 logp). Then, ADC calculates the DC for each gene pair

across the two datasets, and its complexity is O(k3(k + max{n, m}]) (S1 Supplementary Materi-

als). Since k is a constant in ADC, the complexity of calculating the p-value of DC for all genes

here is O(pmax{n, m}]. The BH adjustment is based on a sorting method, so its complexity is

O(plogp). Taken together, the computational complexity of ADC is O(p2 max{n, m}] + O(p2

logp) + O(pmax{n, m}] + O(plogp) = O(p2(max{n, m} + logp)). Generally, the logp is far more

less than max{n, m} for biological datasets, so the complexity can be reduced to O(p2(max{n,

m}]. It is worth noting that in gene expression datasets, p, denoting the number of genes, is

usually less than twenty thousand which will not increase so much, so the computational com-

plexity of ADC is a linear complexity relating to the number of cells. Simulation experiments

further confirmed this. Although the complexity is quadratic with p, the growth rate of
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quadratic functions is very slow in the simulation study (Fig B(a) in S1 Supplementary Materi-

als). All these results suggest that ADC is very efficient in handling large-scale datasets. ADC

was implemented in Python and the package can be downloaded from https://github.com/

zhanglabtools/ADC.

Quantify the degree of similarity between two biological datasets

How to quantify the underlying similarity of datasets across different conditions, cell types,

technologies and modalities is an important issue. For two single-cell omics data, we think that

the expression patterns of genes in the same types of cells tends to be more similar. It is

expected that ADC can detect more interrelated genes in the datasets with more common cell

types. Thus, given a series of datasets, the number of genes selected by ADC could serve as a

metric to measure the similarity between any two different datasets. The reciprocal of this

number can be used to construct a distance matrix, and hierarchical clustering methods can be

further applied it to build the hierarchical relation among these datasets. This could play key

roles in many situations such as clustering cancer types with strong molecular similarity, mea-

suring the consistency across technologies, exploring the degree of differentiation of progeni-

tor cells, and mining the biological signals preserved across modalities.

Results

Simulation studies

In the simulation studies, we control the FDR with the BH adjustment method and verify the

power of DC for selecting interrelated vectors. Here power means the probability of selecting

genes exhibiting similar expression patterns. We considered four different simulation scenar-

ios with 1000 vector pairs for each, half of them share similar structures. The dimensions of

each pair of X and Y are m = 3000 and n = 10000, respectively. They are relatively large to the

observation size 30, and the association of X and Y is built through the l shared dimensions.

The nominal FDR level in all the experiments are 20%.

Scenario 1. Draw X = (x1, . . ., xm)T independently from a standard normal distribution. Let

yi = sxi (i = 1, . . ., l) and draw yi (i = l + 1, . . ., n) independently from a standard normal distri-

bution, where s* U(1, 5).

Scenario 2. Draw X = (x1, . . ., xm)T independently from a standard normal distribution,

after that 90% of the entries are replaced with zeros randomly. Let yi = sxi (i = 1, . . ., l) and

draw yi (i = l + 1, . . ., n) independently from a standard normal distribution, where s* U(1,

5), after that 90% of the entries in yi (i = l + 1, . . ., n) are replaced with zeros randomly.

Scenario 3. Draw X = (x1, . . ., xm)T independently from U(0, 1). Let yi = log(xi) (i = 1, . . ., l)
and draw yi (i = l + 1, . . ., n) independently from a standard normal distribution.

Scenario 4. Draw X = (x1, . . ., xm)T independently from U(0, 1), after that 90% of the entries

are replaced with zeros randomly. Let yi = log(xi) (i = 1, . . ., l) and draw yi (i = l + 1, . . ., n)

independently from a standard normal distribution, after that 90% of the entries in yi (i = l + 1,

. . ., n) are replaced with zeros randomly.

Numerical results demonstrated that for all the four scenarios, FDR could be controlled

well as expected with l> 25, and the power increased quickly with the l growing (Fig 2). Fur-

ther, the FDR is around 10%, which is only a half of the nominal level. Thus, this method is

very conservative and we could expect much lower FDR in real applications. Moreover, even

the two vectors only have l = 100 related dimensions, which is very small compared with the

lengths of the two vectors, the power will exceed 90% or 80% for the vectors with linear or non-

linear dependence structures, respectively (Fig 2A and 2C), indicating DC is very sensitive to

capture tiny similarities. More importantly, sparseness does not hinder the power of DC even
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if zero-entries of the data is up to 90% (Fig 2C and 2D). These results hold true even the ran-

dom vectors were generated from a much more complicated distribution (Fig A in S1 Supple-

mentary Materials). Therefore, DC combined with the BH adjustment method is a powerful

method to capture the dependent structure in data with high power and stable FDR control.

When applying to biological data, we expect to select genes with similar expression (or regula-

tory) patterns. The length of the gene vector is the number of cells, we believe that even if

genes are interrelated in very few cells across two datasets, DC can still accurately identify

them.

Next, we used the splatter R package [25] to simulate three scRNA-seq datasets with four

cell types (Fig 3A). As expected, the results of ADC is consistent with the data structure (Fig

3B), and it selected most correlated genes between Data 1 and Data 3. Although there are only

40% cells overlapped between Data 1 and Data 2, ADC accurately captured the weak associa-

tions and revealed fewer correlated genes than those selected between Data 2 and Data 3 as

expected. We also test the influence of hyper-parameter k by applying ADC to Data 1 and

Data 2. Here, we selected the top 100 highly interrelated gene under each k varying from 20 to

40. For each pair of k, the number of overlapped genes was calculated. In average, we got

almost 93 genes, that suggests ADC is a robust algorithm considering the selection of k (Fig B

(c) in S1 Supplementary Materials).

Fig 2. Simulation experiments on DC combined with the BH method in terms of Power and FDR (the target level

is 20%). (A) Each pair of vectors are dense, and k dimensions are shared with a linear transform. (B) Each pair of

vectors are sparse with 90% zero entries and k dimensions are shared with a linear transform. (C) Each pair of vectors

are dense and k dimensions are shared with a non-linear transform. (D) Each pair of vectors are sparse with 90% zero

entries and k dimensions are shared with a non-linear transform.

https://doi.org/10.1371/journal.pcbi.1009548.g002
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Moreover, ADC could handle two datasets with ten thousand cells each in about 15 min-

utes. The running time increased linearly in term of the number of cells (Fig 3C), which con-

firms our derivation on the computational complexity. The peak memory cost of ADC is less

than twice of generating the data, indicating ADC consumes less memory than copying the

data (Fig 3D). All results suggest that ADC is a powerful method and applicable to large-scale

datasets.

Highly interrelated genes across-cell types reveal cancer similarities

We applied ADC to the gene expression data of 21 different cancers and selected highly inter-

related genes across each pair of cancers (Fig 4A). The number of highly interrelated genes

between each pair of cancers clearly reflects the degree of similarities between different cancers

Fig 3. Performance of ADC on three simulated datasets. (A) The t-SNE plot of these datasets with three cell types in total. 80% of

cells in Data 1 and Data 3 are of the same type, 60% of cells in Data 2 and Data 3 are of the same type, and 40% of cells in Data 1 and

Data 2 are of the same type. Each dataset contains 1000 cells and 5000 genes. (B) Heat map of the highly interrelated genes selected

by ADC across Data 1, Data 2 and Data 3 (FDR = 0.05). (C and D) Running time and peak cost of ADC with two datasets with 1

million cells and 10 thousand genes each in no more than 135 mins and under 225 GB of RAM. Each entry of the datasets was

generated with a random variable which obeys uniform distribution. GB indicates the GigaByte.

https://doi.org/10.1371/journal.pcbi.1009548.g003
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(Fig 4A). Hierarchical clustering based on it demonstrates that cancers generated in similar tis-

sues are clustered together, such as GBMLGG and LGG, KIPC and KIRP, COAD and COAD-

READ, SRAD and STES. Further, the two cancer types BRCA and OV occurring most

frequently in women demonstrate great similarity. Besides, we also found a cluster of two

squamous carcinoma, HNSC and CESC, which have been shown to have strong molecular

similarity [26]. All these observations indicate that ADC could gain deep insights into the com-

mon characteristic of cancers.

Clearly, the enriched biological functions of the genes selected from two pairs of cancers

implicate to key cancer hallmarks [27] such as cell-cell adhesion, T cell proliferation, immune

system process and response to interferon-γ, suggesting that these selected genes are indeed

biologically relevant (Fig 4B and 4D). We also constructed gene functional networks by Gene-

MANIA [28] with the physical and genetic interactions of these genes (Fig 4C and 4E). The

hub gene APPL1 of the first network is related with cell cycle [29]. Moreover, it is an immune

cell enhanced gene and the protein encoded by this gene has been shown to be involved in the

regulation of cell proliferation [30]. In the second functional network, the hub gene EMSY is

an oncogene linking the BRCA2 pathway to sporadic breast and ovarian cancer [31] and is

involved in several cancer related biological processes like DNA damage, DNA repair, tran-

scription and transcription regulation. The enriched functional terms of other cancer pairs

also reflects cancer hallmarks (Fig C in S1 Supplementary Materials). These results shows that

ADC indeed could find many strongly associated genes of two cancers.

Highly interrelated genes across cell types reveal their hierarchical lineage

Here we applied ADC to six distinct hematopoietic stem and progenitors from mouse bone

marrow at single cell level (Fig 5A). The numbers of highly interrelated genes of any two cell

types clearly reveal their lineage structure (Fig 5B). As expected, HSC giving rise to all hemato-

poietic lineages, shows distinct differences with other cell types at the end of differentiation

according to the selected genes based on ADC (Fig 5B). For HSC, ADC selected the most cor-

related genes with LMPP than any other cell types, we speculated that LMPP could be directly

derived from HSC, which was confirmed by a recent study [32]. CMP is an early myeloid pro-

genitor cell which differentiates to GMP and MEP, but it shows much more similarities with

its progenitor MPP. Moreover, we found that CMP have more similarities with GMP com-

pared with MEP based on the number of selected genes (182 vs 173). This was first confirmed

by visualization of these cells (Fig D(a) in S1 Supplementary Materials), where CMP clearly

has more cells overlapped with GMP. We further applied an unsupervised clustering method

leiden [33] to identify 13 clusters (Fig D(b) in S1 Supplementary Materials), and CMP shows

similar cell distribution with GMP compared to MEP (Fig 5C), and the cells overlapped

between these two cell types are far more than that between CMP and MEP (Fig 5D). Further,

the CMP and GMP belong to myeloid cells while MEP belong to the erythroid cells, and a

study also shows that CMP and GMP preferentially differentiate into proangiogenic cells com-

pared with MEP [34]. Thus, CMP and GMP should be more similar at the gene expression

level, and the same result has also been observed from the human hematopoietic cell data (Fig

5B). All these results indicate that ADC can capture the true genetic similarities and infer cell

lineage structure using the sparse scRNA-seq data.

Highly interrelated genes across technologies illustrate their inherent

difference

Here we applied ADC to five scRNA-seq datasets of pancreatic islet cells profiled by indrop,

CEL-Seq2, 10X, CEL-Seq, Smart-seq2, respectively. Obviously, common cell types like alpha,
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Fig 4. Highly interrelated genes and their biological functions among 21 cancers. (A) Heatmap of the number of

highly interrelated genes selected by ADC between each pair of cancers (FDR = 0.05). Hierarchical clustering was

performed with the reciprocal value of the number. (B and D) The top ten enriched functional terms of these selected

genes between HNSC and CESC (B), BRCA and OV (D) respectively. (C and E) The gene network constructed with

GeneMANIA using the selected genes between HNSC and CESC (C), BRCA and OV (E) respectively.

https://doi.org/10.1371/journal.pcbi.1009548.g004
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beta, ductal, acinar are shared by these five datasets. Conceptually, highly variables genes

(HVGs) among data should strongly contribute to cell-to-cell variation within relatively

homogeneous cell populations [35]. That is to say, HVGs could depict the cell characteristics

well. However, we find that the top HVGs overlapped among these datasets cannot reflect the

similarities between these technologies (Fig 6A). The two linear amplification methods CEL-

seq and CEL-seq2 are separated in two different clusters irrationally [36, 37]. While the two

droplet-based methods, 10X and indrop, which can profile a mass of cells and have a relatively

low resolutio [38], also shows less similarity than that between 10X and CEL-seq2. Even if we

increased the number of HVGs (Fig E(a-d) in S1 Supplementary Materials), the results still

failed to reveal the relative differences of these technologies. Strikingly, ADC could identify a

number of correlated genes across-technology data, and reveal the technology similarity across

them (Fig 6B). Specifically, CEL-Seq showed the most similarity with its modified version

CEL-Seq2, 10X and indrop were clustered together while other three methods which profiled

genes with a higher resolution showed distinct similarities.

Similarly correlated genes across modalities reveal biological relevant genes

Next we applied ADC to scATAC-seq (using gene activity matrix [39]) and scRNA-seq data-

sets of human peripheral blood mononuclear cells (PBMC) with 8728 cells and 2638 cells

Fig 5. Highly interrelated genes selected by ADC between different cell types along the hematopoietic cell lineage.

(A) A schematic of mouse hematopoietic differentiation. The cells in gray color cell type were not present in our

datasets. (B) Heat map shows the number of highly interrelated genes selected by ADC cross six cell types

(FDR = 0.10). The upper triangular is the result of mouse hematopoietic cells while the lower triangular is the result of

human hematopoietic cell data downloaded from GEO with accession code GSE117498. Unsupervised hierarchical

clustering analysis was performed with the reciprocal value of the number. (C) Confusion matrix of data-driven

clusters representing the percent frequency distribution of immunophenotypically defined cell types. (D) Heat map

shows the dissimilarity of the distributions of the three cell types using the Jensen-Shannon (JS) divergence.

https://doi.org/10.1371/journal.pcbi.1009548.g005
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respectively to select correlated genes across them (Fig 7A). ADC revealed 195 highly related

genes, which are involved in PBMC related biological process like interferon-gamma produc-

tion, leukocyte differentiation, antigen receptor-mediated signaling pathway (Fig 7B) [40, 41].

The hub gene of the network, GNAI2, which regulates the entrance of B Lymphocytes into

lymph nodes and B cell motility within lymph node follicles [42]. Besides, another hub genes

FMNL2, is also enriched in monocytes [30]. All these observations demonstrate that although

scATAC-seq and scRNA-seq data are different types, we can still explore molecular similarities

across these different modalities.

Discussion

With the rapid development of high-throughput sequencing technologies (e.g. RNA-seq,

scRNA-seq, scATAC-seq), a huge number of biological datasets under different conditions

have been profiled. Here we proposed ADC to analyze the pairwise data generated from differ-

ent tissues, conditions or technologies with high efficiency. To our knowledge, this is the first

method to identify highly interrelated genes across different biological datasets.

ADC derived from DC measures the correlation of random variables in arbitrary dimen-

sions. As we shown in the simulation studies, combined with the BH adjustment method, DC

could accurately detect associated variables with high power and low FDR, even there are only

few related dimensions. Moreover, the number of selected genes can reflect the degree of simi-

larity between datasets. ADC is applicable to massive datasets with millions of samples in sev-

eral hours. Extensive tests on four real applications demonstrate its effectiveness. Also, ADC

can find tissue-specific genes which are interrelated across human and mouse, where these

genes capture conserved functions across them (Fig F in S1 Supplementary Materials). Thus,

ADC is expected to be applied to diverse biological datasets under different conditions.

The number k of selected highly correlated genes in each dataset is an important parameter

which could affect the gene sets for DC calculation. We have empirically demonstrated that

the default one work well in the simulation studies and biological applications. Alternatively,

we could provide a more robust version by leveraging the interrelated genes selected by ADC

with different ks. Specifically, we detected the interrelated gene under each k varying from 20

Fig 6. (A) Number of overlapping genes among the top 1000 HVGs of the data from five different technologies,

and (B) Highly interrelated gene selected by ADC between each pair of these datasets (FDR = 0.01). Unsupervised

hierarchical clustering was performed with the reciprocal value of the number in both situations.

https://doi.org/10.1371/journal.pcbi.1009548.g006
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to 40, and we kept genes which were considered as interrelated ones under 21 different ks. The

results are very consistent with the original ones (Fig 6B and Fig E(e) in S1 Supplementary

Materials).

Recently, with the improvement in high-throughput single cell technologies, different

experiments such as chromatin accessibility [43], DNA methylation [44], RNA modification

[45] and gene expression datasets at single cell level are increasing rapidly (Fig G in S1 Supple-

mentary Materials). Many methods have been put forward to process these data [46–48]. Most

importantly, integration analysis to transfer knowledge from one dataset to another has

became increasingly important [49]. For example, Haghverdi et al. [50] used mutual nearest

neighborhoods (MNN) on the orginal data space to find the same cell types. Stuart et al. [23]

improved this methods by performing MNN on the reduced dimension learned by canonical

correlation analysis. However, these methods only focus on the integration problem itself but

Fig 7. Biological functions and network analysis of highly interrelated genes selected by ADC across modalities. (A) Schematic diagram shows

the work flow of performing ADC on the scRNA-seq data and scATAC-seq data (FDR = 0.20). We first converted the scATAC-seq data to a

predicted gene expression matrix. Specifically, we constructed a “gene activity matrix” from scATAC-seq dataset by utilizing the reads at gene body

and 2kb upstream, then ADC was applied to a pseudo gene expression data and a real one. (B) The top enriched functional terms of the genes

selected by ADC. (C) The gene network constructed with GeneMANIA using the top genes selected by ADC.

https://doi.org/10.1371/journal.pcbi.1009548.g007
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ignore whether these datasets can be integrated or not, which may lead to “overcorrection”

[51]. Moreover, they may fail to consider the order of the integration. While ADC can provide

the order of integration based on the number of selected genes, which can help to improve the

integration result. Also, from the perspective of knowledge transfer, given a newly generated

data with limited prior knowledge, we would like to select a most correlated dataset which has

been fully explored as a reference. ADC is a suitable tool under this circumstance since it can

quantitatively measure the degree of similarity between two datasets. Furthermore, ADC can

also uncover interrelated variables at molecular level, which may increase our insights into a

new dataset. Because ADC has no assumption, it can be directly applied to other biological

datasets without any modification. ADC is a valid data-driven method which doesn’t employ

any external information now. It will be an interresting direction to consider external knowl-

edge (e.g., gene ontology) to improve it in future.

Supporting information

S1 Supplementary Materials. Supplementary figures, tables and analysis details. Further

detailed descriptions of the principle of ADC, the computational complexity of ADC, and

more information about the methods and process of data analysis for single-cell RNA-seq

data. Fig A. Simulation experiments on DC combined with the BH method in terms of

Power and FDR (target is 20%). We generated each pair of variables with 3000 and 10,000

dimensions, respectively. Every non-zero entry of the variables was sampled from a beta(2,4)

distribution. (a) Each pair of vectors are dense and k dimensions are shared with a linear trans-

form. (b) Each pair of vectors are sparse with 90% zero entries and k dimensions are shared

with a linear transform. (c) Each pair of vectors are dense and k dimensions are shared with a

log transform. (d) Each pair of vectors are sparse with 90% zero entries and k dimensions are

shared with a log transform. Fig B. Performance of ADC on simulated datasets. (a and b)

Running time and peak menmory cost of ADC with two datasets with 10 thounsand cells and

different number of genes. GB indicates the GigaByte. (c) We applied ADC to data1 and data2

generated by splatter (Fig 3A) under each k from 20 to 40. For each k, we selected top 100

interrelated genes and calculated the number of overlapped top genes for each pair of k. The

result is showed in the boxplot. Fig C. Functional enrichments of selected genes between

five pairs of cancers. (a) BLCA and LUSC, (b) GBMLGG and LGG, (c) KIRC and KIRP, (d)

STAD and STES, and (e) COAD and COADRED. Fig D. PCA plots of hematopoietic stem

cells CMP, GMP and MEP. (a) The cells are colored by the cell types annotated by the combi-

nation of molecular surface markers. (b) The cells are colored by the cell types annotated by an

unsupervised clustering method Leiden. Fig E. Numbers of selected genes across five tech-

nologies for the data with different number highly variable genes. (a) top 2000 genes, (b)

top 3000 genes, (c) top 4000 genes, and (d) top 5000 genes. Unsupervised hierarchical cluster-

ing analysis is performed with the reciprocal value of the numbers. Fig F. Enriched GO terms

of highly interrelated genes between human and mouse done by Metascape. Fig G. The

number of scRNA-seq datasets per month from January 2013 to July 2020. The statistics

was obtained from NCBI Gene Expression Omnibus with key words: “single cell RNA seq” or

“single cell transcriptome” or “single cell gene expression”. Table A. Number of samples of 21

types of cancer. 17 out of 38 types of cancer in TCGA were excluded in our study due to lim-

ited numbers of samples. Table B. Number of cells of six hematopoietic cell types. Table C.

Number of pancreatic islet cells from five different technologies. Table D. Numbers of

PBMC cells from two different sequencing methods.
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