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Abstract

The grass tribe Triticeae (=Hordeeae) comprises only about 300 species, but it is well known for the economically
important crop plants wheat, barley, and rye. The group is also recognized as a fascinating example of evolutionary
complexity, with a history shaped by numerous events of auto- and allopolyploidy and apparent introgression
involving diploids and polyploids. The genus Elymus comprises a heterogeneous collection of allopolyploid genome
combinations, all of which include at least one set of homoeologs, designated St, derived from Pseudoroegneria. The
current analysis includes a geographically and genomically diverse collection of 21 tetraploid Elymus species, and a
single hexaploid species. Diploid and polyploid relationships were estimated using four molecular data sets, including
one that combines two regions of the chloroplast genome, and three from unlinked nuclear genes:
phosphoenolpyruvate carboxylase, β-amylase, and granule-bound starch synthase I. Four gene trees were
generated using maximum likelihood, and the phylogenetic placement of the polyploid sequences reveals extensive
reticulation beyond allopolyploidy alone. The trees were interpreted with reference to numerous phenomena known
to complicate allopolyploid phylogenies, and introgression was identified as a major factor in their history. The work
illustrates the interpretation of complicated phylogenetic results through the sequential consideration of numerous
possible explanations, and the results highlight the value of careful inspection of multiple independent molecular
phylogenetic estimates, with particular focus on the differences among them.

Citation: Mason-Gamer RJ (2013) Phylogeny of a Genomically Diverse Group of Elymus (Poaceae) Allopolyploids Reveals Multiple Levels of Reticulation.
PLoS ONE 8(11): e78449. doi:10.1371/journal.pone.0078449

Editor: Jonathan H. Badger, J. Craig Venter Institute, United States of America

Received June 25, 2013; Accepted September 11, 2013; Published November 1, 2013

Copyright: © 2013 Roberta  J. Mason-Gamer. This is an open-access article distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The work was supported by National Science Foundation DEB-9974181 (http://www.nsf.gov). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The author has declared that no competing interests exist.

* E-mail: robie@uic.edu

Introduction

In the simplest scenario, an allopolyploid genome represents
an additive combination of genomes from its contributing
diploid species, so the genomic complement of an allopolyploid
individual should be identifiable on a gene tree that includes
representatives of all of the potential donor species. In reality,
however, there are many factors that complicate the
phylogenetic characterization of allopolyploids. Some are
inherent in the choice of molecular marker. The chloroplast
genome typically represents only the maternal parent in
angiosperms, and can’t be used to identify the full genomic
complement of a polyploid. The highly repetitive internal
transcribed spacers (ITS) of the nuclear ribosomal array have
the potential to reveal multiple genome donors [1-4], but they
are subject to concerted evolution in polyploid genomes [5], so
that one or more of the progenitors’ arrays might be
unrepresented on an ITS gene tree.

These problems can be largely avoided with the use of low-
copy nuclear genes; they are biparentally inherited and are less
likely to undergo gene conversion, so their gene trees have the
potential to reveal all of an allopolyploid’s genome donors. As a
result, phylogenetic analyses of low copy nuclear genes have
been fruitful for clarifying the origins of a wide assortment of
allopolyploid species [6-24]. However, there are numerous
phenomena that can confound the identification of allopolyploid
individuals in phylogenetic analyses of low-copy genes. For
example, polyploidization can be associated with extensive
genome reorganization, including homoeolog loss (e.g.,
[18,25-29]); as a result, one or more homoeologs can be
missing from a given gene tree, and an allopolyploid’s origins
can be obscured. The effect will vary across gene trees
depending on whether the maternal, paternal, or neither copy is
lost. Single-gene duplication, leading to two or more
paralogous copies, can also cause misleading phylogenetic
estimates. Paralogy is potentially detectable, and is even quite
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informative in its own right if gene copies are thoroughly
sampled [20,30-37]. However, unsuspected paralogy coupled
with limited within-individual sampling and/or paralog loss can
result in a confusing gene tree on which each allopolyploid
individual is represented by a random selection of one or more
paralogs. The identification of a polyploid’s progenitors can be
further confounded if the relevant diploids are missing from the
analysis. In these cases, a polyploid will exhibit gene copies
with no clear origin among the diploids. The causes for missing
diploids include sparse sampling, and the more intractable
problem where one or more of a polyploid’s donors are
undiscovered or extinct (e.g., [8,20,23,38-41]).

Speciation following polyploidization will yield monophyletic
clades of polyploids nested within the donor groups, but
subsequent hybridization among them [22,42] will lead to
incongruence within those clades across trees. Polyploid
origins can be even more difficult to unravel when allopolyploid
species form recurrently (e.g., [10,18,43-45]). Subsequent
hybridization among them [19,20,22,46-50] can yield
individuals with alleles indirectly acquired from many different
diploid individuals. Introgression among diploid species prior to
polyploidization [40,47,49,51,52] can lead to similar outcomes,
in which an allopolyploid has obtained gene copies
representing multiple diploid donors. Finally, although a
difference in ploidy level is often viewed as an effective barrier
to gene exchange, there have been numerous reports of
introgression from diploids to polyploids [48,49,53-56], which
can further enrich a polyploid’s genome while obscuring its
phylogenetic history. All of these scenarios - introgression
among polyploids, among diploids prior to polyploidization, and
among ploidy levels – can lead to conflicting placement of a
polyploid’s homoeologs on one or more gene trees; thus,
conflict can be difficult to interpret in terms of specific
phenomena [8,57].

This study focuses on Elymus, a diverse, polyphyletic
assemblage of allopolyploid species in the wheat tribe,
Triticeae Dumort. (A recently-discovered use of the name
Hordeeae in 1820 – I. I. Martinov, Tekhno-Bot. Slovar.: 314,
Aug 1820 – has priority over Triticeae – B. C. J. Dumortier,
Observ. Gramin. Belg.: 82, Jul–Sep 1824. I use the prevailing
name Triticeae here, pending the outcome of a planned
proposal to retain its use [M. E. Barkworth, pers. comm.].)
While wheat is the most familiar allopolyploid in the tribe (and
perhaps among plants), polyploidy has impacted the history of
the entire group – about 75% of the approximately 300 species
are of polyploid origin [58]. Cytogenetic analyses reveal that
the genus Pseudoroegneria (genome designation St) is a
prolific contributor to the tribe’s allopolyploids. The St genome
is found in combination with genomes from numerous other
genera, including Hordeum (genome H), Australopyrum (W),
Agropyron (P), and an unknown donor with genome
designation Y. This heterogeneous group of allopolyploid
combinations is often collectively classified as Elymus sensu
lato, as reflected in numerous major floristic works [59-62].
Under this definition, Elymus comprises StStHH and StStYY
tetraploids, and StStStStHH, StStHHHH, StStStStYY,
StStYYYY, StStHHYY, StStYYWW, and StStYYPP hexaploids
[58,63-78]. This group, while united by their shared St genome,

is obviously polyphyletic, and there has been recent work
toward updating their classification to better reflect differences
in genomic content [79-82]. There are some additional, higher-
order polyploids that include the St genome but are not
classified as Elymus s.l. For example, Pascopyrum smithii
(Rydb.) Á.Löve combines the St and H genomes with the Ns
genome of Psathyrostachys in an StStHHNsNsNsNs
configuration [83]. The St genome also co-occurs with the E
and/or J genomes of Thinopyrum [84-86] in complex hexa- and
decaploid configurations that might also include full or partial
Taeniatherum, Crithopsis, Aegilops, and/or Dasypyrum
genomes [87,88].

The present work is focused primarily on tetraploid species
along with one allohexaploid. As a starting framework, the
included species are provisionally divided into four groups
(Figure 1). The first two groups include the Eurasian and North
American StStHH tetraploids, respectively. Their allopolyploid
origins from Hordeum and Pseudoroegneria were initially
revealed through cytogenetic analyses (e.g., [66,89-92]) and
confirmed in molecular phylogenetic analyses [93-97]. The third
group includes StStYY tetraploids (=Roegneria as used by Yen
et al. [81]) which comprise 30–40 species distributed
throughout central Asia [73]. Cytogenetic
[66,68,71-74,76-78,98-101] and molecular phylogenetic
analyses [40,102,103] clearly show the allotetraploid nature of
these species, and reveal Pseudoroegneria as a genome
donor (St), but they have been largely inconclusive about the
identity of the Y-genome donor. The fourth group includes six
individuals of Elymus repens L. Gould, the sole hexaploid
species (2n=42) included in the study. The species is native to
Europe and Asia, but has become a widespread weed
throughout much of the United States and eastern Canada
[104]. Cytogenetic analyses of its genome content based on
chromosome pairing [105-110] and genomic in situ
hybridization [111] are equivocal individually, but taken
together, they suggest that E. repens has two similar genome
sets derived from Pseudoroegneria and a third set from
Hordeum (StStStStHH). Molecular phylogenetic analyses
provide a more complex picture, suggesting three distinct
donors, and introgression from at least one additional genus
within the tribe [52,112,113], along with apparent contributions
from tribes Bromeae and Paniceae [52], and Poeae [113].

The four provisional polyploid groups have been examined
individually, and here the relationships among them are
investigated using data from two chloroplast DNA regions, and
three single-copy nuclear genes. The specific goals are to
determine: (1) whether the four provisional groups represent
phylogenetically distinct lineages; and (2) whether specific
evolutionary phenomena (homoeolog loss, paralogy, progenitor
extinction, multiple polyploid origins, and/or introgression) can
be identified, or excluded, as explanations for reticulate
patterns beyond allopolyploidy itself.

Materials and Methods

Data sets
The samples include allopolyploid representatives of Elymus

from the four provisional groups, along with a broad sample of
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monogenomic, mostly diploid representatives from throughout
the tribe (Table S1). The chloroplast DNA (cpDNA) data set
(Dataset S1) includes the trnT-trnL-trnF region, and the rpoA
gene. Sequences are derived from several previous analyses
(see Table S1 footnotes) with the addition of new sequences
representing 16 Eurasian StStHH and StStYY tetraploid
Elymus accessions and eight diploid Pseudoroegneria
accessions (Table S1). The trnT-trnL-trnF sequences were
amplified using a and f primers, and sequenced with a, b, c, d,
e, and f primers [114]. The rpoA gene was amplified using
rpoA1 and rpoA2 primers, and sequenced with rpoA1, rpoA2,
rpoA4, rpoA5, rpoA8, and rpoA9 primers [115]. Amplification
and sequencing followed methods previous applied to this tribe
[116].

Each of the nuclear gene data sets – phosphoenolpyruvate
carboxylase (pepC; Dataset S2), β-amylase (Dataset S3), and
granule-bound starch synthase I (GBSSI; Dataset S4) –
combine data from numerous prior analyses (see Table S1
footnotes) that were primarily designed to reveal the
relationships of the individual polyploid groups to their diploid
progenitors. The present analyses were undertaken to further
clarify the relationships among these diverse groups. In
addition, a phylogenetically broader analysis of GBSSI exon
data includes additional representatives of the Pooideae, and a
few representatives of the Bambusoideae (Table S2; Dataset
S5); this analysis was used to clarify the placement of a
divergent clade of sequences from the E. repens hexaploids.

Phylogenetic analyses
Three of the data sets were partitioned for model

specification (Table S3). The chloroplast DNA data were
partitioned by region: the trnT-trnL-trnF region, which consists
primarily of non-coding sequences of the intergenic spacers
and the trnL intron, and the rpoA gene, which consists mainly
of protein-coding sequence. The β-amylase and starch
synthase gene data sets were both partitioned into exons vs.
introns. The phosphoenolpyruvate carboxylase sequences

Figure 1.  Evolutionary scenarios.  Four scenarios
representing separate (a) or partially sequential (b–d) origins of
the four provisional categories of polyploids: StStHH tetraploids
native to North American (blue) and Eurasia (red), Asian
StStYY tetraploids (green), and E. repens hexaploids (purple).
Additional scenarios are conceivable, including recurrent
origins of each group.
doi: 10.1371/journal.pone.0078449.g001

were analyzed under a single model, because over 90% of the
data set represents a single intron, with only small portions of
exons 1 and 2 (59 and 23 bp, respectively). The GBSSI exon
data used in the broader phylogenetic analysis were also
analyzed under a single model.

For each partition, jModelTest [117] was used to select
among 24 candidate models. These include three substitution
models (AC=AG=AT=CG=CT=GT; AC=AT=CG=GT ≠AG=CT;
and AC≠AG≠AT≠CG≠CT≠GT), first under an assumption of
equal nucleotide frequencies: JC [118], K80 [119], and SYM
[120] – and then allowing for unequal nucleotide frequencies:
F81 [121], HKY [122], and GTR [123]. Each of these was
combined with four among-site rate parameters: equal rates,
some proportion of sites invariant (I)[122], gamma-distributed
rate variation (Γ)[124], or I+Γ [125,126]. Input files were
formatted for jModelTest using ALTER [127]; model
parameters were estimated on maximum-likelihood (ML)
estimated trees and models were selected using the Akaike
information criterion [128].

Maximum-likelihood phylogenetic analyses were run under
the selected models using GARLI [129] v. 2.0 (http://
garli.googlecode.com). Fifty analyses were run for each data
set with random starting topologies, for an unlimited number of
generations, and automatic termination following 10,000
generations without a meaningful change in score (ln L
increase of 0.01). The tree with the best score was chosen to
depict each gene tree (Figures 2–6), and for final model
parameter estimates (Table S3). Bootstrap support estimates
were based on 100 ML replicates under the same model and
under the same conditions, except that the change requirement
for search termination was increased from 0.01 to 0.02.

Results

Chloroplast DNA tree
The cpDNA data (Figure 2) place the sequences from all of

the polyploid Elymus individuals into a single weakly-supported
clade, along with Dasypyrum, Pseudoroegneria, and
Thinopyrum. Thus, all species of this fairly diverse, polyphyletic
sample of Elymus species appear to share the same maternal
donor. The consistent placement of Elymus with
Pseudoroegneria on other gene trees (below), and never with
Dasypyrum or Thinopyrum, points to Pseudoroegneria as the
maternal donor to Elymus. Elymus terminal branch lengths are
short and there is very little resolution among the individuals.
The only well-supported groups within the large clade are those
that group the two Dasypyrum villosum individuals (97%) and
the three Thinopyrum individuals (90%); the six E. repens
sequences are grouped with moderate (70%) support. None of
the three pre-defined tetraploid groups (Eurasian StStHH,
North American StStHH, or Asian StStYY) form clades. The
separation of the sole North American Pseudoroegneria
species (P. spicata) from the Eurasian species on the ML tree
lacks meaningful support. Thus, although the addition of 24
species of Elymus and Pseudoroegneria provides a much
broader geographic sample than previous analyses, the tree
reveals little about the role of geography, or the independent
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Figure 2.  Chloroplast DNA gene tree.  The data set (Dataset S1) was partitioned by genome region for a priori model
specification in jModelTest, and simultaneous parameter estimation in GARLI: the trnT-trnL-trnF region (GTR+Γ) and the rpoA gene
(GTR+Γ). This represents the best tree from 50 GARLI search replicates. ML bootstrap results are based 100 GARLI replicates
under the same models as used in the tree searches. Monogenomic representatives of the tribe are in black font; Elymus
representatives are in colored, boldface font. Colors distinguish the four hypothetical Elymus species groups as described in the
text: North American (blue) and Eurasian (red) StStHH tetraploids, Asian StStYY tetraploids (green), and E. repens hexaploids
(purple).
doi: 10.1371/journal.pone.0078449.g002
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Figure 3.  Phosphoenolpyruvate carboxylase gene tree.  The data set (Dataset S2) was treated as a single partition for a priori
model specification in jModelTest (HKY+Γ), and simultaneous parameter estimation in GARLI. This represents the best tree from 50
GARLI search replicates. ML bootstrap results are based 100 GARLI replicates under the same models as used in the tree
searches. Font colors follow Figure 2.
doi: 10.1371/journal.pone.0078449.g003
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Figure 4.  Beta amylase gene tree.  The data set (Dataset S3) was partitioned for a priori model specification in jModelTest, and
simultaneous parameter estimation in GARLI: exons (K80+Γ) and introns (GTR+I+Γ). This represents the best tree from 50 GARLI
search replicates. ML bootstrap results are based 100 GARLI replicates under the same models as used in the tree searches. Font
colors follow Figure 2.
doi: 10.1371/journal.pone.0078449.g004
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Figure 5.  Granule-bound starch synthase I gene tree.  The data set (Dataset S4) was partitioned for a priori model specification
in jModelTest, and simultaneous parameter estimation in GARLI: exons (GTR+Γ) and introns (GTR+Γ). This represents the best
tree from 50 GARLI search replicates. ML bootstrap results are based 100 GARLI replicates under the same models as used in the
tree searches. Font colors follow Figure 2.
doi: 10.1371/journal.pone.0078449.g005
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formation of multiple polyploid combinations, in the patterns of
cpDNA differentiation among the species.

Phosphoenolpyruvate carboxylase
Within the St clade on the pepC tree (Figure 3), the

sequences from both North American and Eurasian StStHH
Elymus are grouped with P. spicata (85%), the only native
North American Pseudoroegneria species. There is little
structure within this clade, and the sequences are very similar
to one another. Sequences from E. repens and the tetraploid
StStYY Asian species are grouped with P. strigosa (100%), a
Eurasian species. The only exception to this involves three
StStYY species: E. antiquus (one out of four individuals), E.
caucasicus, and E. longearistatus; their St sequences are
closer to (though not within) the “wrong” clade in terms of
phylogenetic relationship and genetic similarity. The other three
E. antiquus individuals are in the main group of StStYY
species.

The H-sequences from the North American and Eurasian
StStHH species are closely related to one another (as in the St
clade), and to those from E. repens. They group with diploid H.
californicum and tetraploid H. jubatum (71%), which are both
North American natives. There is little phylogenetic structure
among these sequences, but most of the sequences from the
Elymus tetraploids are closely related to H. californicum and
one genome from H. jubatum, while E. repens is weakly
grouped with the other genome of H. jubatum. Three
sequences, representing E. repens individuals 1, 4, and 5, form
a separate well-supported clade (100%) outside of the main
Elymus clade, with H. chilense and H. stenostachys (both
South American), and H. pusillum (North American). Two of
these individuals, 1 and 5, also have copies in the main clade.

The Y-sequences from the StStYY individuals form a
phylogenetically distinct clade (100%) with a moderately-
supported relationship (71%) with Heteranthelium piliferum.
Elymus antiquus, which was polyphyletic in the St clade, is
strongly monophyletic (96%) in the Y clade. An additional

Figure 6.  Granule-bound starch synthase I exon tree: Pooids and Bambusoids.  The data set (Dataset S5) was treated as a
single partition for a priori model specification in jModelTest (GTR+I+Γ), and simultaneous parameter estimation in GARLI. ML
bootstrap results are based 100 GARLI replicates under the same model. The Triticeae clade represents a small subset of the
individuals in the full GBSSI tree (Figure 5). Elymus repens sequences are highlighted in purple, boldface font.
doi: 10.1371/journal.pone.0078449.g006
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clade, representing a third clade of E. repens sequences of
unknown origin (Figure 3, “UK”), is phylogenetically distinct
from the St, H, and Y sequences. The origin of this clade is
unclear; its association with the Y-sequence clade and H.
piliferum is very weak (<50%). The “UK” and Y sequences are
generally in the same part of the tree, but support for a close
relationship between them, and thus any suggestion that the
“UK” and Y sequences are from the same unknown genome
donor, is weak at best.

Beta-amylase
On the β-amylase tree (Figure 4), the St sequences from the

StStHH and StStYY tetraploids form a clade with North
American P. spicata (76%). The single exception is one E.
caucasicus sequence with a strong (99%) relationship to three
Iranian Pseudoroegneria accessions – two of P. libanotica and
one of P. tauri. The StStHH Elymus / P. spicata relationship
reflects the results on the pepC tree (Figure 3), but the
inclusion of the sequences from the StStYY sequences is in
sharp contrast. The sequences from Eurasian StStHH species
form a weak monophyletic subgroup (61%), while those from
North American StStHH species and from the StStYY species
are polyphyletic. The E. repens St sequences form a
phylogenetically distinct monophyletic group (100%), sister to
the remaining St sequences.

The H sequences of all of the StStHH species form a strong
clade (99%) that is closely related (100%) to one of the
genomes of the tetraploid North American species H. jubatum
(sequences 1b and 2c). As on the pepC tree, some of the
sequences from E. repens form a close relationship (100%)
with those from H. stenostachys and H. pusillum. These in turn
group with H. californicum and the other H. jubatum
homoeologs (sequences 1a and 2a; 96%). In sharp contrast to
the pepC tree, none of the E. repens H sequences group with
those from StStHH tetraploids. One of them (3l) groups (91%)
with two accessions of H. bogdanii representing Tajikistan and
China, and two (4x and 5a) are together (100%) on a long
branch that is not closely associated with any of the sampled
Hordeum species.

The Y-genome sequences from the StStYY tetraploids again
form a phylogenetically distinct clade (100%). In contrast to the
pepC tree, this tree shows no evidence of a relationship
between the Y-genome clade and H. piliferum; furthermore,
they show no clear association with any of the diploid donors.
The E. repens “UK” sequences again form a monophyletic
group (100%), this time within a larger, moderately-supported
(85%) group with Australopyrum, Dasypyrum, and Secale. As
on the pepC tree, the “UK” clade shows no apparent close
relationship to the Y-genome clade of the StStYY tetraploids.

Granule-bound starch synthase
The St-genome sequences from Elymus show close

relationships to three different Pseudoroegneria species
(Figure 5a). First, the St sequences from Eurasian StStHH
tetraploids, and about half of those from the North American
tetraploids, form a monophyletic group (81%) with North
American P. spicata. Sequences from two of the StStYY
species, E. ciliaris and E. semicostatus, are weakly (67%)

linked to this group as well. Second, the remaining sequences
from the North American StStHH tetraploids, most from the
StStYY species, and all from hexaploid E. repens form a clade
with P. strigosa and a single P. spicata sequence (75%). Within
this clade, none of the species groups (StStHH, StStYY, E.
repens) are monophyletic. Finally, the St sequences from three
of the four StStYY E. antiquus individuals are strongly (98%)
grouped with P. tauri and P. libanotica (four accessions, all
representing Iran). These sequences are, at best, only weakly
associated with the main St group.

The relationships among the H-genome sequences from
Elymus and Hordeum (Figure 5b) are complicated. On one
hand, the results partly reflect those on the pepC and/or β-
amylase trees: most of the sequences from the North American
StStHH tetraploids, and several from the Eurasian StStHH
tetraploids, are closely related to the North American Hordeum
species H. jubatum (allotetraploid) and H. californicum (diploid).
On the other hand, the remaining H-genome sequences
(including one from a North American tetraploid, most from the
Eurasian tetraploids, and all from hexaploid E. repens) are
scattered among the other Hordeum species. Some of the
tetraploids’ sequences are grouped with the other genome of
the allotetraploid H. jubatum, suggesting possible involvement
between Elymus and Hordeum at the tetraploid level. The three
remaining sequences from the Eurasian tetraploids (E. sibiricus
1a and 3b, and E. mutabilis 1a) and the E. repens sequences
are on long branches with no clear relationship to any particular
Hordeum species.

The Y-genome sequences of the StStYY tetraploids (Figure
5a) again form a well-supported clade (100%); this tree
uniquely suggests a weak relationship (68%) to Dasypyrum
villosum. The E. repens “UK” sequences form a moderately
supported group (70%). As on the pepC tree, the E. repens
“UK” sequences are very weakly associated with the Y clade,
but again, there is no clear suggestion that they are derived
from the same unknown diploid donor.

The GBSSI tree shows a unique, fourth group of E. repens
sequences very closely associated (99%) with Taeniatherum
(Ta; Figure 5a). All of the E. repens individuals are represented
in this clade, and no related sequence is found in any of the
tetraploids. Thus, the E. repens genome harbors four distinct
GBSSI copies within the Triticeae. In addition, three E. repens
individuals have a divergent fifth GBSSI copy type that falls
outside of the tribe (Figure 6). The sample of non-Triticeae
pooid taxa is limited, but this divergent clade of E. repens
sequences clearly fall outside of the well-supported Triticeae /
Bromeae clade, and apparently within the Poeae.

Discussion

General relationships among lineages
The provisional division of Elymus into four groups (North

American StStHH tetraploids, Eurasian StStHH tetraploids,
Asian StStYY tetraploids, and the Eurasian hexaploid E.
repens) reflects a simple preliminary hypothesis that the groups
represent distinct evolutionary lineages, whether arising
independently from one another (Figure 1a) or partially
sequentially (Figure 1b–d). The placement of Elymus

Phylogenetic Reticulation in Elymus (Poaceae)

PLOS ONE | www.plosone.org 9 November 2013 | Volume 8 | Issue 11 | e78449



 individuals on each the four gene trees can highlight
deviations from the hypothesis that all – or any – of the groups
represent straightforward lineages. In summary, the data
support three independently-derived lineages (Figure 1b): a
combined North American and Eurasian StStHH lineage, the
StStYY species, and E. repens. All three, however, show
complicated phylogenetic patterns, as discussed below under
the heading “Potentially confounding phenomena.”

The cpDNA tree does not distinguish lineages
Of the four trees, the cpDNA tree (Figure 2) is the least

informative with respect to the origins and evolution of the
polyploid lineages, except in its suggestion that E. repens was
derived from one (or multiple similar) maternal donor(s). This is
due largely to lack of resolution within the large
Pseudoroegneria / Elymus clade. All three tetraploid groups are
polyphyletic on this tree, but with support too weak to
convincingly suggest actual polyphyletic origins. This tree,
when considered alone, suggests three potential chloroplast
donors: Dasypyrum, Pseudoroegneria, or Thinopyrum, but
arguments in favor of Pseudoroegneria as the maternal have
already been presented in detail elsewhere [116]. Briefly (1),
there are no cytogenetic or molecular phylogenetic data that
point to either Dasypyrum or Thinopyrum as a contributor to the
Elymus polyploids; and (2) a Dasypyrum / Thinopyrum /
Pseudoroegneria relationship appears on no other
phylogenetic estimates to date, suggesting that Dasypyrum
and Thinopyrum are “misplaced” with Pseudoroegneria on the
cpDNA tree as a result of past introgression.

The North American and Eurasian StStHH tetraploids
are united, but with signs of introgression

Some previous studies suggested separate origins of the
Eurasian and North American StStHH species groups from
Eurasian and North American progenitors, respectively
[97,130,131]. In contrast, the results here point to a North
American origin for both groups. The three nuclear genes,
considered individually and in combination, support a close
relationship between the Eurasian and North American StStHH
tetraploid groups, but with evidence of introgression (Figure
7a). The phosphoenolpyruvate carboxylase and β-amylase
trees generally unite the StStHH tetraploids and are consistent
with a North American origin; their St genomes are closely
related to the North American native diploid P. spicata, and
their H genomes are closely related to the North American
species H. californicum and tetraploid H. jubatum (which itself
has a H. californicum-like donor [38]). The GBSSI tree is more
difficult to interpret, with both the North American Elymus St
sequences, and the Eurasian Elymus H sequences,
polyphyletic. This pattern is seen on only one gene tree, so it is
more likely an indicator of GBSSI introgression than of multiple
origins.

The Asian StStYY tetraploids probably represent a
single evolutionary lineage with subsequent
introgression

The Y-genome of the Asian tetraploids represents a
phylogenetically distinct entity. It does not fit into an existing
genus, as shown here and in earlier studies [132,133]
(although one previously-published gene tree shows a close
relationship between Y-genome sequences and Australopyrum
[103]). The hypothesis that the Y genome is a derivative of the
St genome [134,135] is not supported here. Thus, the
proposed application of separate generic status (Roegneria
[81]) to the cytogenetically distinct StStYY is further justified by
phylogenetic data. The donor of its St genome is unequivocally
Pseudoroegneria, but the nuclear gene trees are in conflict with
regard to which species is the most likely donor. While the
pepC tree points to the Eurasian species P. strigosa as a likely
donor, the β-amylase tree instead indicates P. spicata, placing
the StStHH species in a largely North American clade with the
StStHH species. The sequences are widely polyphyletic on the
GBSSI tree, again suggesting a history of introgression (Figure
7b).

Elymus repens represents a single, very complicated
lineage. In spite of its highly polyphyletic H-genome sequences
on all three nuclear trees (Figures 3–5, 7c), E. repens as
sampled here probably represents a single lineage. This is
supported by numerous shared genetic characteristics,
including a third “unknown” genome (Figures 3–5) and a
Taeniatherum-like GBSSI allele (Figure 5), features that are
also shared by individuals sampled from their native range [52].
Based on its presumed StStStStHH genomic content, the
hexaploid E. repens might conceivably be derived from an
existing tetraploid StStHH lineage, and with the uncertainties
about its donors, it is even difficult to rule out an StStYY
progenitor a priori. The phylogenetic data are inconsistent. For
example, the pepC H-genome sequences (Figure 3) clearly link
E. repens with the StStHH tetraploids and North American
Hordeum species, while the St sequences on the same tree
group E. repens strongly with the StStYY species and a
Eurasian Pseudoroegneria species, P. strigosa. The β-amylase
St and H sequence data (Figure 4) separate E. repens from
both the StStHH and the StStYY tetraploids, while the GBSSI
St sequences places it with individuals from both groups.
Without a consistent relationship between E. repens and the
StStHH or StStYY tetraploids, I tentatively conclude that the
origin of E. repens is independent of the sampled tetraploids.
However, with extensive conflict among data sets, the question
is not fully resolved.

Potentially confounding phenomena
In phylogenetic analyses of allopolyploids and their diploid

relatives, non-conflicting relationships across gene trees
suggest an uncomplicated evolutionary history, while
discordance among trees suggests a history of reticulation
beyond allopolyploidization itself, such as introgression among
polyploid lineages and/or their progenitors. As outlined in the
Introduction, numerous evolutionary phenomena (Table 1) can
affect the placement of polyploids on gene trees. These are
discussed below with respect to the present results from the
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Figure 7.  Summary of Elymus genetic diversity.  The black trees represent diploid phylogenies; basal relationships are poorly
supported on the actual gene trees, so some relationships among St, Y, H, and “UK” are unclear. The colored lines represent
contributions to polyploids; unbroken and dotted lines represent major and minor contributions, respectively. Colors follow Figures
1–5. The St (Pseudoroegneria) and H (Hordeum) species are distinguished as Old World (OW) and New World (NW). a. StStHH
species. The red-and-blue lines indicate where the North American (blue) and Eurasian (red) groups received major contributions
from the same, or phylogenetically similar, donors. The β-amylase and pepC trees suggest fairly straightforward New World origins,
with few minor St- or H-genome contributions. The GBSSI tree shows more complicated origins, especially with respect to
Hordeum’s contribution. b. StStYY species. Without any representative Y-genome diploids, a single donor is hypothesized based on
monophyly and sequence similarity (Figures 3–5). Primary St-genome donors are a mix of New World (β-amylase) and Old World
(pepC and GBSSI), with minor contributions from the alternate region in all three cases. c. Elymus repens. All trees are at least
consistent with a single Old World St-genome contribution. The presence of a third (“UK”) clade on all trees reveals an unknown
genome donor. There is no single, major H-genome contributor, but a mix of multiple contributors. Contributions unique to the
GBSSI tree (from Taeniatherum, and from an unknown species from the tribe Poeae) are consistent with introgression after
polyploidization.
doi: 10.1371/journal.pone.0078449.g007
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wheat tribe analyses, with the caveat that they can be difficult
to pin down individually, not only because some have similar
outcomes, but also because they can act simultaneously and
obscure one another’s effects.

Multiple homologous gene copies (Table 1, 1–4) can mislead
phylogenetic analyses if they are unsuspected, incompletely
sampled, or have undergone copy losses. These include
homoeologs (the homologous gene copies representing
different genome sets in a polyploid), and paralogs (used here
to refer only to copies arising through within-genome gene
duplication). Homoeolog loss following polyploidization (Table
1, 1) has occurred rarely, if at all, for the genes examined.
Occasional homoeologs are missing from some taxa (NR in
Table S1), but at least for these three genes, copy loss is
clearly not widespread in Elymus. The occasional missing
copies might represent individual instances of copy loss, failure
to amplify due to changes at a priming site, or sampling
artifacts; the last of these is the most straightforward
explanation.

Paralogy (Table 1, 2–4) can either complicate or clarify
phylogenetic relationships. If duplicate copies are retained and

are well-sampled (Table 1, 2), paralogy can be detected as
intra-genome polymorphism shared among the species that
have arisen since the duplication occurred. Well-sampled
copies can potentially provide valuable phylogenetic
information. Sparse sampling when paralogy is unsuspected
(Table 1, 3), or random loss of paralogs after duplication (Table
1, 4), will yield similar patterns that are difficult to interpret
[136,137], such as widespread taxon polyphyly, sporadic intra-
individual polymorphism, and discordance among gene trees.
Paralogy does not appear to have major effects in the present
analyses, although it is difficult to entirely rule it out [137],
especially for the GBSSI data set. Initial paralogy assessments
for pepC, β-amylase, and GBSSI were based on information
about copy number from crop grasses, combined with
preliminary phylogenetic analyses of available sequences in
Genbank. The primers for the pepC gene [138] were designed
to amplify a single copy from the small pepC gene family
[139-141], and similarly, the primers for the β-amylase gene
[142] target one copy from a small gene family [143]. Neither
tree shows evidence of multiple paralogs in the form of shared
intra-individual polymorphism or widespread polyphyly. The

Table 1. Phenomena that affect polyploid phylogenies.

Phenomenon

Similar
effect on
all trees?

Affects
diploids or
polyploids? Potential effects Proposed examples

1. Homoeolog loss following
polyploidization

No Polyploids
Placement of polyploid varies depending on
which copy is retained.

Tragopogon [25]; Solanum [18]; Triticum [26]; Review
[29]; Brassica [27]; Brassica, Arabidopsis [28].

2. Paralogy; paralogs retained and
intensively sampled

No Both
Intra-individual polymorphism shared by all
species with duplication; duplicate clades on tree.

Gossypium [33]; Viola [35]; Paeonia [32,36];
Brassicaceae, Cleomaceae [34]; Rosaceae [30];
Gesneriaceae [31]; Viburnum [37].

3. Paralogy; limited paralog
sampling

No Both
Sporadic intra-individual polymorphism,
polyphyletic taxa, incongruence with other gene
trees.

–

4. Paralogy; loss of paralogs No Both
Sporadic intra-individual polymorphism,
polyphyletic taxa, incongruence with other gene
trees.

Mentzelia [20]; Glycine [16].

5. Diploid progenitor(s) extinct,
undiscovered, or unsampled

Yes Polyploids
One or more homoeologs unassociated with any
diploid.

Hordeum [38]; Mentzelia [20]; Cerastium [8];
Cardamine [11]; Elymus [40]; Microserus [41];
Dryopteris [23].

6. Recurrent origins of a polyploid
combination

Yes Polyploids
Polyploid sequences polyphyletic within donor
clades and congruent among gene trees.

Spiranthes [43]; Solanum [18]; Tragopogon [44];
Rosa [10]; Review [45].

7. Introgression among genomically
similar recurrent polyploids

No Polyploids
Polyploid sequences polyphyletic within donor
clades and incongruent among gene trees.

Centauria [47]; Dactylorhiza [48]; Viola [22].

8. Introgression among species
derived from a single polyploid
ancestor

No Polyploids
Polyploid sequences monophyletic within donor
clades and otherwise incongruent among gene
trees.

Spartina [42]; Viola [22].

9. Introgression among genomically
distinct polyploid lineages

No Polyploids
Polyploid sequences broadly polyphyletic across
multiple donor clades and incongruent among
gene trees.

Galeopsis [19]; Mentzelia [20]; Houstonia [46];
Arabidopsis [49]; Elymus [50].

10. Introgression from diploid to
polyploid

No Polyploids
Polyploid sequences polyphyletic within donor
clades and incongruent among gene trees.

Senecio [53]; Dactylorhiza [48]; Arabidopsis [49];
Achillea [54]; Dodecatheon [55]; Betula [56].

11. Introgression among diploids
prior to polyploidization

No Both
Sequences from diploids and their derived
polyploids are polyphyletic and incongruent
among gene trees.

Glycine [51]; Centauria [47]; Arabidopsis [49]; Elymus

[52]; Elymus [40].

doi: 10.1371/journal.pone.0078449.t001
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GBSSI tree is more complicated in terms of taxon polyphyly,
unanticipated gene copies (especially in E. repens),
unexpected relationships among diploid taxa, and occasional
intra-individual polymorphism (e.g., P. spicata). The GBSSI
gene was presumed to be a single copy in the wheat tribe [144]
based on earlier studies in crop grasses [145-149]. Recent
phylogenetic studies in grasses are generally consistent with a
single GBSSI copy [150-154], although duplication was inferred
in Spartina [155]. Based on the general consensus among
existing studies, and the lack of the characteristic pattern of
shared intra-individual polymorphisms on the Triticeae GBSSI
tree that would indicate paralogy, the sequences used to
generate the present GBSSI tree are assumed to be orthologs,
with the complicated patterns resulting from other phenomena.

Allopolyploid sequences that lack clear affinities to extant
diploids could reflect incomplete sampling among diploids, or
that the progenitor is extinct or undiscovered (Table 1, 5). The
Y genome from the Asian tetraploids is phylogenetically distinct
on all three nuclear gene trees (Figures 3, 4, 5a), and
represents a case where the diploid progenitor’s lineage is
probably either extinct or so rare as to have remained
undiscovered. The long-standing interest in the wheat tribe has
led to extensive collection efforts of wild representatives
throughout the world over many decades. Throughout
numerous cytogenetic studies [66,68,71-74,76-78,98-101] and
subsequent phylogenetic analyses [40,102,133], no diploid Y-
genome species has ever been confirmed; the Y genome is a
distinct evolutionary lineage known only as a component of
certain allopolyploid genomes.

A second case of a “missing diploid” involves the
phylogenetically distinct unknown (“UK”) sequence clade from
the hexaploid E. repens. It is present on all three nuclear gene
trees, suggesting that it represents an entire genome of
unknown origin, rather than introgression of a limited number of
loci. It is widespread within E. repens, appearing in individuals
from its native Eurasian range [52] and in introduced plants
from widely-separated sites in the United States [113]. In
contrast to the well-studied Y genome from Asian Elymus, the
“UK” genome is known only from recent phylogenetic analyses
of E. repens, so it is more difficult to determine whether the
missing diploid is best explained as a sampling artifact vs. an
extinct or undiscovered lineage.

If similar polyploid combinations arise recurrently (Table 1,
6), polyploid alleles can be polyphyletic within diploid donor
clades. Given several major assumptions – adequate
phylogenetic resolution, no prior introgression among donor
diploids, no subsequent introgression among polyploids, and
no homoeolog loss – each event will potentially result in a
separate clade of polyploid sequences arising from within each
diploid donor clade. Because entire genomes are involved,
recurrent origins should simultaneously affect multiple nuclear
gene trees in similar ways. While the design the present study
precludes detection of multiple origins from within the same
species, recurrent origins of the broader StStHH or StStYY
combinations are potentially detectable, because there is
enough variation within Pseudoroegneria (St) and Hordeum (H)
to provide phylogenetic signal within each clade (Figures 2–5).
There are several cases where polyploid homolog groups are

in fact polyphyletic, including the St sequences of the StStYY
species (Figures 3, 4, 5a) and the North American StStHH
species (Figures 4, 5a); and the H sequences of the North
American and Eurasian StStHH species (Figure 5b) and of E.
repens (Figures 3, 4, 5b). However, although polyphyly is seen
across multiple trees in some of these cases, the specific
polyphyletic patterns are not shared among the trees; thus, the
patterns look more consistent with multiple independent
introgression events than with recurrent StStHH or StStYY
origins (although subsequent gene exchange among the
lineages could obscure shared patterns that would indicate
multiple origins).

Introgression among species (Table 1, 7–11) can lead to
tree-specific effects and among-tree incongruence. Few of the
phylogenetic patterns observed here are clearly attributable to
introgression within the provisional species groups (Table 1, 7,
8). For example, in the Y-genome clade of the StStYY group,
within-species samples (E. abolinii, E. antiquus, E. caucasicus,
E. ciliaris, and E. semicostatus) are either monophyletic or
consistent with monophyly; gene exchange among StStYY
species would disrupt this. The St sequences from the StStYY
group are more complicated in that they are broadly
polyphyletic on all three trees, but this broad pattern suggests
introgression from outside of the StStYY group, rather than
among species within it. Similarly, placement of the StStHH
species reflects among-group introgression involving β-
amylase (Figure 4) and GBSSI (Figure 5), but there is no clear
evidence of within-group gene exchange. While there is too
little resolution to address gene exchange among the StStHH
species in detail, the consistency of certain relationships across
trees (E. canadensis, E. hystrix, E. riparius, and E. virginicus H
sequences; E. brachyaristatus and E. sibiricus St sequences)
speaks against extensive interspecific gene exchange among
the StStHH species. Elymus mutabilis represents a possible
exception; its placement relative to E. caninus, E. dentatus,
and E. sibiricus hints at a history of either within-group gene
exchange or incomplete lineage sorting.

Introgression from taxa outside of a polyploid group (Table 1,
9–11) will result in polyphyly of a polyploid’s homoeologs
coupled with incongruence among the gene trees, which is a
widespread combination of phenomena here. For example, the
St sequences of the Asian StStYY species are polyphyletic on
all three nuclear trees (Figure 3, 4, 5a), most dramatically so on
the GBSSI tree (Figure 5a), and the details of the patterns
differ among all three trees. In addition, while the pepC tree
(Figure 3) points to the Eurasian P. strigosa as their potential
progenitor, the β-amylase tree (Figure 4) instead places the
North American species P. spicata as their closest diploid
relative (the GBSSI tree is equivocal). Furthermore, the donor
genus Pseudoroegneria is itself polyphyletic on the GBSSI tree
(Figure 5a), and E. antiquus shares an anomalous allele with
P. libanotica and P. tauri, whether through a separate
polyploidization event or through introgression from
Pseudoroegneria into E. antiquus. The broad polyphyly of
these sequences within trees, along with their conflicting
placement among trees, highlight the acquisition of alleles from
outside the StStYY group through introgression. It appears to
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be a one-way process, in that no Y-genome sequences appear
in any other species.

Within the H-genome clade, the Eurasian StStHH species
show little differentiation on the pepC and β-amylase trees
(Figures 3, 4), but are widely polyphyletic on the GBSSI tree
(Figure 5b). The E. repens H homoeologs are polyphyletic on
all three nuclear trees, even though its chloroplast sequences
(Figure 2) and most of its other nuclear homoeologs are either
monophyletic or consistent with monophyly. Both of these
cases can be explained by multiple instances of introgression
from Hordeum into Elymus. Exchange between Hordeum and
Elymus might, but need not, involve gene exchange across
ploidy levels, as there are numerous tetraploid and hexaploid
Hordeum species [58].

Elymus repens not only exhibits introgression from Hordeum,
but from several other sources. A Taeniatherum-like clade of E.
repens sequences appears only on the GBSSI tree (Figure 5a),
and is thus probably a result of introgression. It is found in
native accessions [52] as well as the introduced U. S.
accessions analyzed here. Furthermore, the placement of
Taeniatherum is itself anomalous on the GBSSI tree, away
from its usual position in or near the Triticum/Aegilops group
(Figures 2–4), so Taeniatherum’s GBSSI copy was itself
probably gained through introgression. Whether these two
events were independent or sequential is not clear. The more
distant Poeae-like GBSSI copy (Figure 6), as well as apparent
Bromus- and Panicum-like ITS sequences [52] reveal this
species to be a highly complex entity, with a history of
acquiring genetic material from distant sources.

Finally, introgression among diploid species (Table 1, 11)
can lead to gene-tree incongruence involving both diploids and
their derived polyploids. One possible case was mentioned
above: P. tauri and P. libanotica are outside the main St
sequence group on the GBSSI gene (Figure 5a), along with the
StStYY species E. antiquus. A possible scenario is that P. tauri
and P. libanotica are misplaced due to the acquisition a foreign
GBSSI allele, which was then passed to E. antiquus through
hybridization, or during an independent polyploidization event.
Another possible case involves the diphyletic P. spicata on the
GBSSI tree: one P. spicata allele (6c) is found in a largely
Eurasian clade with P. strigosa and a mix of Eurasian and
North American StStHH species. Thus, P. spicata might have
acquired a Eurasian St allele through introgression, and
passed it into the North American StStHH group through
hybridization or during polyploidization.

Different phenomena have different effects – on polyploids
vs. diploids, and on single gene trees vs. multiple trees – so it
is reasonable to favor some processes over others based on
gene tree topologies. However, different processes can
produce very similar effects, and when they act simultaneously,
they can alter or mask one another’s effects. Thus, as the
discussion above illustrates, the interpretation of trees in terms
of individual evolutionary processes is speculative in all but the
most straightforward situations.

Polyploid Classification
Classification of stable reticulate taxa creates a logical

conundrum in a hierarchical system [156-159], even for the

most straightforward allopolyploid taxa arising from a single
origin, and with no subsequent introgression. The recognition
of an allotetraploid lineage as a separate named genus makes
sense in some ways – from a population standpoint, species
that arise through diversification from a single polyploid
ancestor can be defined as a monophyletic group (e.g., as
applied by [6,22]). On the other hand, recognition of an
allopolyploid lineage as a taxon renders both of the originating
groups paraphyletic [160,161]. For example, even if the
StStHH tetraploids arose very simply via a single origin, their
recognition as Elymus leaves Pseudoroegneria and Hordeum
paraphyletic. As more polyploids are considered (e.g., the
StStYY group and E. repens), the problems with circumscribing
Pseudoroegneria and Hordeum increase. Mindell [162], using
holobiont phylogeny as an example of reticulate evolution,
recommended expanding the definition of groups from which a
composite taxon is derived. Thus, in his example, green plant
chloroplasts would be properly classified within the
Cyanobacteria. Applying this approach to an intergeneric
polyploid lineage – separately classifying the St and H
genomes of Elymus within their ancestral genera
Pseudoroegneria and Hordeum – has some logical appeal,
especially insofar as the St and H homoeologs do not pair at
meiosis, and each genome’s integrity is maintained within the
Elymus polyploid nucleus. This would also open the door to
naming the Y-genome clade, even though it is only known to
exist as a component within larger allopolyploid genomes.
Overall, however, this approach to classification is unintuitive
and impractical when applied to individual plants and taxa. A
simpler approach would be to classify the polyploids and all of
their progenitors as a single genus, thus avoiding the entire
problem of paraphyletic genera. Ultimately, this would result in
defining most or all of the tribe as a single genus, which is not
without precedent [163], although this would do little more than
push the same classification issues to the subgeneric level.
Furthermore, while a single-genus solution might reasonably
be proposed for a more obscure group, it would be unlikely to
gain acceptance for this tribe which, due to its economic
importance, has undergone a long history of close scrutiny
[164] and intense taxonomic focus [165].

Conclusion

Ultimately, the results and discussion presented here might
have done less to clarify the history of Elymus than to highlight
the difficulty of developing a step-by-step, gene-by-gene
reconstruction of the evolutionary events leading to the present
situation (Figure 8). This is appropriate to the final impression I
hope to leave – that of a genetically tangled set of lineages that
are evolutionarily distinct, but are neither entirely separable
from one another, nor fully cohesive individually.
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Figure 8.  Summary diagram of Elymus origins.  Unbroken
lines represent major contributions, and dotted lines show
minor contributions. Colors follow Figures 1–7. The simple
bifurcating division of Pseudoroegneria (St) and Hordeum (H)
progenitor species into Old World (OW) and New World (NW)
lineages is used for illustrative purposes and does not reflect
their true phylogenetic complexity, particularly within Hordeum.
doi: 10.1371/journal.pone.0078449.g008
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