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We present a newmethod for removing artifacts in electroencephalography (EEG) records during Galvanic Vestibular Stimulation
(GVS).Themain challenge in exploiting GVS is to understand how the stimulus acts as an input to brain. We used EEG to monitor
the brain and elicit the GVS reflexes. However, GVS current distribution throughout the scalp generates an artifact on EEG signals.
We need to eliminate this artifact to be able to analyze the EEG signals during GVS. We propose a novel method to estimate the
contribution of the GVS current in the EEG signals at each electrode by combining time-series regression methods with wavelet
decomposition methods. We use wavelet transform to project the recorded EEG signal into various frequency bands and then
estimate the GVS current distribution in each frequency band.The proposedmethodwas optimized using simulated signals, and its
performance was compared to well-accepted artifact removal methods such as ICA-based methods and adaptive filters.The results
show that the proposed method has better performance in removing GVS artifacts, compared to the others. Using the proposed
method, a higher signal to artifact ratio of−1.625 dBwas achieved, which outperformed othermethods such as ICA-basedmethods,
regression methods, and adaptive filters.

1. Introduction

Brain stimulation by means of electrical currents has been
employed in neurological studies for therapy purposes for
many years [1–5]. However, the ability to analyze the ongoing
neural activities during the stimulation is limited due to the
artifact generated by GVS. The leakage of the stimulation
current through the scalp generates an additional electrical
potential with a much higher amplitude than that of the
neural activities. As a result, higher artifactual potentials are
collected by the EEG electrodes, especially in the neighbour-
hood of stimulation areas.The stimulation artifacts which are
superimposed on the EEG signals are the main obstacle in
understanding the effects of the GVS interactions with neural
circuitries in different brain regions. Analyzing the EEG sig-
nals during GVS stimulation is of high importance, as it pro-
vides information on how it affects the neural activities. For
instance, in suppressing the symptoms of some neurological
disorders using GVS, researchers are interested in eliciting
GVS responses in different brain regions. Furthermore, to be

able to perform GVS studies in closed-loop mode, where the
delivered GVS stimuli are adjusted in response to ongoing
neural activities, it is necessary to remove the stimulation
artifacts from neural activities signals. An experimentally
measured example of EEG signals contaminated with the
GVS artifacts is illustrated in Figure 1.

Considering that the frequency spectra of the neural
signals and GVS artifacts overlap, filtering the frequency
components of GVS artifacts results in the loss of the original
neural signals.The fourmajor EEG frequency bands areDelta
(the lowest frequency band up to 4Hz),Theta (4Hz to 8Hz),
Alpha (8Hz to 12Hz), and Beta (12Hz to 30Hz). In order to
analyze and understand the effect of GVS on EEG patterns, it
is essential to be able to remove the artifact signals from the
frequency band of interest, before establishing any GVS-EEG
interaction models.

There are various methods to remove different types of
artifacts, such as myogenic artifacts [6–9], ocular artifacts
[10–15], extrinsic artifacts such as MRI induced artifacts in
simultaneous EEG/fMRI studies [16], stimulation artifacts
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Figure 1:Measured EEG data during 72 seconds of GVS stimulation
and 60 seconds before and after applying the GVS.

[17–20], and general artifacts and signals that have noncere-
bral origin [21, 22]. One of themost commonly usedmethods
to remove artifacts from EEG signals is the Independent
Component Analysis (ICA). Generally, in the component-
basedmethods such as ICA, the EEG signals are decomposed
into statistically independent and uncorrelated terms; the
artifact components are then identified and filtered out, and
the EEG signals can be reconstructed from the neural compo-
nents without artifacts. However, applying ICA to remove the
GVS stimulation artifacts is challenging, particularly when
we increase the amplitude of the GVS over 1mAwith a signal
to artifact ratio less than −35 dB. We will discuss this in more
detail later in the section “Comparison of the performance of
different artifact removal methods”.

We propose a novel method for GVS artifacts removal
by combining time-series regression methods and wavelet
decompositionmethods. To enhance the precision of the arti-
fact estimation using regression models, the models should
account for the complex behavior of the GVS interactions
in the frequency domain. So we decomposed the recorded
EEG and GVS signals into different frequency bands and
then used regression models to estimate the GVS artifacts
in each frequency band. We used multiresolution wavelet
analysis to decompose nonstationary EEG signals in the time-
frequency plane. Both the discrete wavelet transform (DWT)
and the stationary wavelet transform (SWT) algorithms were
employed, and the results were compared. To estimate the
GVS current distribution through the scalp using time-
series regression methods based on biophysical models, we
used and compared the performance of different parametric
regression models, such as discrete-time polynomials, non-
linear Hammerstein-Wiener, and state-space models.

In this study, we firstly used simulated data to assess and
optimize the performance of the proposed method using
various regression models and different wavelet algorithms.
The resulting optimizedmethodwas then applied to real data.
We compared the results of the proposed method and other
methods, such as ICA, using both simulated and real data.
This paper is organized as follows: Section 2 provides a
detailed description of the equipment and set-up, the data
simulation, the signal processing methods, and the compar-
ison of their performances. Section 3 shows the results of

Table 1: EEG channels.

ch1 ch2 ch3 ch4 ch5 ch6 ch7 ch8 ch9 ch10
FP1 FP2 F7 F3 Fz F4 F8 T7 C3 Cz
ch11 ch12 ch13 ch14 ch15 ch16 ch17 ch18 ch19 ch20
C4 T8 P7 P3 Pz P4 P8 O1 O2 Ref

the proposed artifact removal method, and in Section 4, we
discuss the proposedmethod, its results, and suggestedworks
for the future.

2. Materials and Methods

2.1. Equipment and Setup. The EEG recording was carried
out with a NeuroScan SynAmps2 system, with 20 electrodes
located according to the international 10–20 EEG system
(Table 1) and with a sampling frequency set to 1 kHz.

The GVS signal was applied using a Digitimer DS5 iso-
lated bipolar current stimulator. This stimulator can generate
a stimulation current with a waveform proportional to the
controlling voltage applied to its input. The waveform was
generated using LabVIEWand sent to the stimulator through
a National Instrument (NI) Data Acquisition (DAQ) board.
In this study, we applied a zero-mean pink noise current, with
a 1/𝑓-type power spectrum within a frequency range of 0.1 to
10Hz and duration of 72 seconds. We kept the amplitude of
the delivered stimuli lower than the feeling threshold, in the
range of 100 𝜇A to 800𝜇A, with the root mean square values
between 60𝜇A and 450 𝜇A. The stimulator is equipped with
a data acquisition device to record the delivered stimulus,
which allows us to make a continuous record of the delivered
stimulation current and voltage.We recorded the EEG signals
during the stimulation, 60 seconds before and 60 seconds
after the stimulation. The EEG data for these experiments
were acquired by our collaborator in the Pacific Parkinson’s
Research Centre. Nine healthy subjects (6 males, 3 females),
between the ages of 21 and 53 yr, with no known history of
neurological disease or injury, participated in this study. All
subjects were asked to relax, remain still, and concentrate
on a focal point on the screen in front of them so that
less myogenic and ocular artifacts occur. Also, under resting
conditions, there are less variations in the head impedance
[23], which is important for data acquisition in this study.

2.2. Simulated Data. To quantitatively assess and optimize
the performance of the proposed method and compare the
accuracy of different methods in removing the GVS artifacts
from the EEG recordings, we used simulated data. The simu-
lation study was carried out by combining the clean (artifact
free) EEG recordings with the simulatedGVS contamination.
To simulate the actual process of the GVS contamination, we
paid attention to the physical structure of the electrode-skin
interface and the electrical impedance of the head between
the points that the EEG and the GVS electrodes are placed.
As the skull impedance is much higher than scalp impedance
[23], we can assume that the GVS current mainly distributes
through the scalp. The skin and the electrode-skin interface
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Figure 2: Electrical equivalent circuit for the electrode-skin inter-
face and the underlying skin [24].

can be modeled using a resistive-capacitive circuit [24], as
shown in Figure 2.

In this electrical equivalent circuit, 𝐸ℎ𝑒 is the half cell
potential of the electrode/gel interface, and the parallel com-
bination of resistive 𝑅𝑑 and capacitive 𝐶𝑑 components repre-
sents the impedance associated with the electrode-gel inter-
face. 𝑅𝑠 is the series impedance associated with the resistance
of the electrode gel. 𝐸𝑠𝑒 is the potential difference across the
epidermis, whose impedance is represented by the resistance
𝑅𝑒 and capacitance 𝐶𝑒. In general, the dermis and the subcu-
taneous layer under it behave as an equivalent pure resistance
𝑅𝑢.Thedeeper layers of the skin, containing vascular, nervous
components and hair follicles, contribute very less to the
electrical skin impedance, but sweat glands and ducts add an
equivalent parallel RC network (represented by broken lines
in Figure 2) and a potential difference between sweat glands,
ducts, dermis, and subcutaneous layers [24]. If we neglect the
pure resistance of the deeper layers of skin and the resistance
of the electrode gel, we can simplify the impedance structure
as follows:

𝑍 (𝑠) ≈ (

𝑅𝑑

𝑠𝑅𝑑𝐶𝑑 + 1

+

𝑅𝑒

𝑠𝑅𝑒𝐶𝑒 + 1

‖

𝑅𝑝

𝑠𝑅𝑝𝐶𝑝 + 1

) . (1)

This equation can be rewritten as

𝑍 (𝑠) ≈

𝑠𝐵1 + 𝐵0

𝑠

2
𝐴2 + 𝑠𝐴1 + 1

, (2)

where 𝑠 is the complex frequency variable,𝐴2,𝐴1, 𝐵2, and 𝐵1
represent specific combinations of 𝑅𝑑, 𝑅𝑒, 𝑅𝑝, 𝐶𝑑, 𝐶𝑒, and 𝐶𝑝
for each electrode. This model-based identification approach
suggests the following relation between the injected GVS
current and the collected EEG voltage at a given electrode:

𝐸𝑚 = 𝑋in
𝑠𝐵1 + 𝐵0

𝑠

2
𝐴2 + 𝑠𝐴1 + 1

+ 𝐸 +𝑊noise, (3)
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Figure 3: Fit percentage between the simulation output and the
measured EEG at each channel.

where 𝐸𝑚 is the measured EEG, 𝑋in is the injected GVS
current, 𝐸 is the original neural signals or EEG without arti-
fact, and𝑊noise is the measurement noise. We simulated this
impedance structure to be able to compute the GVS contri-
bution at each EEG channel output:

𝐸

∗

𝑚
= 𝑋in

𝑠𝐵1 + 𝐵0

𝑠

2
𝐴2 + 𝑠𝐴1 + 1

, (4)

where 𝐸∗
𝑚
represents the GVS artifacts in the measured EEG

signals. The simulated impedance structure between GVS
electrodes and all 19 EEG electrodes was used to calculate the
output voltage due to the GVS current (the GVS artifact) at
each EEG electrode (Figure 3).

The fit percentage is a measure of the relative energy
fraction in the simulated GVS artifact calculated as given by:

fit = 100(1 −

∑ (𝐸𝑚 (𝑡) − 𝐸

∗

𝑚
(𝑡))

2

(∑ (𝐸𝑚 (𝑡) −mean(𝐸𝑚 (𝑡))
2
))

) . (5)

The results show that the fitness of simulated GVS artifact
is higher at the EEG electrodes which are closer to the GVS
electrodes and it is lower at further channels like channel
15 (Pz), channel 10 (Cz), channel 5 (Fz), channel 1 (FP1),
and channel 2 (FP2). According to (2), we can assume that
the skin impedance model is a low-order, continuous-time
transfer function with one zero and two poles. To simulate
the skin impedance structure, we used an iterative nonlinear
least-squares algorithm to minimize a selected cost function
taken as the weighted sum of the squares of the errors.
This algorithm has been applied to real measured data, and
the parameters of the impedance model were identified for
each EEG electrode. For instance, the simulated electrical
equivalent impedance for channel 18 (O1, occipital) has been
calculated as:

𝑍 (𝑠) = 𝐾𝑝

1 + 𝑠𝑇𝑧

𝑠

2
𝑇

2
𝑤
+ 2𝑠𝜁 ⋅ 𝑇𝑤 + 1

(6)

with 𝐾𝑝 = −40921, 𝑇𝑤 = 0.10848, 𝜁 = 4.7863, and
𝑇𝑧 = −2.3726. We used this modeled impedance to simulate
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Figure 4: The fit percentage for the simulated GVS artifact at channel 18 for time intervals (a) 1 sec, (b) 2 sec, (c) 5 sec, (d) 7 sec, (e) 10 sec,
and (f) 14 sec.

the output signal due to scalp propagation between channel
18 and the GVS electrodes (the simulated GVS artifact) which
is the dominant term of the total measured EEG signals, with
a high fit percentage of about 87%.

We calculated the impedance models using the entire
EEG data collected in each trial (70 seconds). To address
the concern about the time-variant properties of the scalp
impedance, we computed the impedance models for shorter

time intervals (e.g., 1s, 2s, 5s, 7s, 10s, and 14s) and analyzed the
fitness of the simulated GVS artifact with the measured EEG
data (Figure 4).

The results show that the fitness of the models does not
vary for different lengths of time intervals, and for different
time intervals it is very close to the fitness of the outputmodel
using the entire 70 seconds EEG data, which is around 87%.
The above results indicate that the impedance of the scalp can



Computational and Mathematical Methods in Medicine 5

be represented by one transfer function for the entire trial. To
simulate the measured EEG data during the GVS, we com-
bined the simulated GVS artifacts with the clean EEG data
collected right before the GVS is applied, in order to get a
global data set with known EEG and GVS artifact compo-
nents. This facilitates a quantitative comparison of the effec-
tiveness of the method in removing the undesirable artifact
signals.

2.3. Regression-Based Methods for Artifact Removal. The
injected GVS current and the EEG signals are recorded con-
currently by the measurement system, while the GVS current
distribution through the scalp contaminates the recorded
EEG signals. We can use the recorded GVS current as a refer-
ence to identify the GVS artifacts in the measured EEG sig-
nals. To identify the GVS artifacts in the contaminated EEG
signals, we applied time-series regression methods using dif-
ferent model structures. One class of model structures is the
discrete-time polynomial models, described by the following
general equation:

𝐴 (𝑞) 𝑦 (𝑡) =

𝐵 (𝑞)

𝐹 (𝑞)

𝑢 (𝑡) +

𝐶 (𝑞)

𝐷 (𝑞)

𝑒 (𝑡) . (7)

Here 𝑢(𝑡) is the recorded GVS current, 𝑦(𝑡) is the esti-
mated GVS artifact, and 𝑒(𝑡) is a white noise (mean = 0, vari-
ance = 𝜎

2) which represents the stochastic part of the model.
𝐴(𝑞), 𝐵(𝑞), 𝐶(𝑞), 𝐷(𝑞), and 𝐹(𝑞) are polynomials in terms
of the time-shift operator q which describe the influence of
the GVS current and measurement noise on the EEG data.
Model structures such as ARMAX, Box-Jenkins, andOutput-
Error (OE) are the subsets of the above general polynomial
equation. In ARMAX model 𝐹(𝑞) and 𝐷(𝑞) are equal to 1, in
Box-Jenkins 𝐴(𝑞) is equal to 1, and in Output-Error model
𝐴(𝑞), 𝐶(𝑞), and𝐷(𝑞) are equal to 1.

Another class of model structures is Hammerstein-
Wiener model, which uses one or two static nonlinear blocks
in series with a linear block. This model structure can be
employed to capture some of the nonlinear behavior of
the system. The linear block is a discrete transfer function,
represents the dynamic component of the model, and will be
parameterized using an Output-Error model similar to the
previous model. The nonlinear block can be a nonlinear
function such as dead-zone, saturation, or piecewise-linear
functions. As we have not observed any dead-zone or satura-
tion type of nonlinearity in our data, we chose the piecewise-
linear function by which we can break down a nonlinear sys-
tem into a number of linear systems between the breakpoints.

We also used state-space models in which the relation
between the GVS signals, noise, and the GVS artifacts are
described by a system of first-order differential equations
relating functions of the state variables, noise, and the GVS
signal to the first derivatives of the state variables and Output
equations relating the state variables and the GVS signal to
the GVS artifact.

2.4. Adaptive Filtering Methods for Artifact Removal. Adap-
tive filtering is another approach to remove artifacts. This
method is specifically suitable for real time applications.

The adaptive filter uses the received input data point to refine
its properties (e.g., transfer function or filter coefficients) and
match the changing parameters at every time instant. These
filters have been employed to remove different EEG artifacts
[25].

In our application, the primary input to the adaptive filter
system is the measured contaminated EEG signal 𝐸𝑚(𝑛) as a
mixture of a true EEG 𝐸𝑡(𝑛) and an artifact component 𝑧(𝑛).
The adaptive filter block takes the GVS current 𝑖GVS(𝑛) as the
reference input and estimates the artifact component.The fil-
ter coefficients ℎ𝑚 are adjusted recursively in an optimization
algorithm driven by an error signal:

𝑒 (𝑛) = 𝐸𝑚 (𝑛) −
̂

𝐸GVS (𝑛) = 𝐸𝑡 (𝑛) − [𝑧 (𝑛) −

̂

𝐸GVS (𝑛)] , (8)

where

̂

𝐸GVS (𝑛) =
𝑀

∑

𝑚=1

ℎ𝑚 ⋅ 𝑖GVS (𝑛 + 1 − 𝑚) .
(9)

Because of the function of vestibular systemwhichmodulates
the stimulation signals [26], there is no direct linear correla-
tion between the true EEG 𝐸(𝑛) and the GVS current 𝑖GVS(𝑛).
On the other hand, there is a strong correlation between
the GVS artifact 𝑧(𝑛) and 𝑖GVS(𝑛), so we can calculate the
expected value of 𝑒2 as follows:

𝐸 [𝑒

2
(𝑛)] = 𝐸 [(𝐸𝑚 (𝑛) −

̂

𝐸GVS (𝑛))
2

]
(10)

or

𝐸 [𝑒

2
(𝑛)] = 𝐸 [𝐸

2

𝑡
(𝑛)] − 𝐸 [(𝑧 (𝑛) −

̂

𝐸GVS (𝑛))
2

] . (11)

And as the adjustment of the filter coefficients does not
affect the 𝐸[𝐸2

𝑡
(𝑛)], therefore minimizing the term 𝐸[(𝑧(𝑛) −

̂

𝐸GVS(𝑛))
2
] is equivalent to minimizing 𝐸[𝑒2(𝑛)].

Among the various optimization techniques, we chose the
Recursive Least-Squares (RLS) and the Least Mean Squares
(LMS) for our application. In the section “Comparison of
the performance of different artifact removal methods”, we
compared the results of adaptive filters with those of the other
methods.

2.5. Wavelet Decomposition Methods. In this section, we
explain how we employ the wavelet methods to enhance the
performance of our artifact removal method. The applied
GVS current in this study is a pink noise with frequency band
of 0.1–10Hz. Both the GVS current and the EEG data are
acquired at the sampling rate of 1000Hz. After antialiasing
filtering, the signals are in a frequency range of 0–500Hz.
The following is the power spectrumof theGVS current using
Welch’s method (Figure 5).

As shown above, the main GVS frequency components
are in the range of 0.1 to 10Hz. To achieve the best fit between
the estimated GVS contribution and the measured EEG at
each EEG channel, we broke down the recorded GVS current
and the contaminated EEG data into various frequency
bands by means of wavelet analysis and estimated the GVS
artifacts in each frequency band.Wavelet transform is able to
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Table 2: Frequency bands for approximation and details components.

L1 L2 L3 L4 L5 L6
Approximation 0–250 0–125 0–62.5 0–31.25 0–15.75 0–7.87
Details 250–500 125–250 62.5–125 31.25–62.5 15.75–31.25 7.87–15.75

L7 L8 L9 L10 L11 L12
Approximation 0–3.93 0–1.96 0–0.98 0–0.49 0–0.24 0–0.12
Details 3.93–7.87 1.96–3.93 0.98–1.96 0.49–0.98 0.24–0.49 0.12–0.24
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Figure 5: The GVS current power spectrum.

construct a high resolution time-frequency representation of
nonstationary signals like EEG signals. In wavelet transform,
the signal is decomposed into a set of basis functions,
obtained by dilations and shifts of a unique function 𝜓 called
themother or the prototypewavelet, as opposed to a sine wave
which is used as the basis function in the Fourier Transform.
When the signals are discrete, the discrete wavelet transform
(DWT) algorithm can be applied, and the set of basis func-
tions are defined on a “dyadic” grid in the time-scale plane as

𝜓𝑗,𝑘 (𝑡) = 2

−(𝑗/2)
𝜓 (2

−𝑗
𝑡 − 𝑘) , (12)

where 2

𝑗 governs the amount of scaling and 𝑘2

𝑗 governs
the amount of translation or time shifting. The wavelet
transform is the inner product of the basis wavelet functions
and the signal in the time domain. In the DWT algorithm,
the discrete time-domain signal is decomposed into high
frequency or details components and low frequency or
approximation components through successive low pass and
high pass filters. For multi resolution analysis, the original
signal is decomposed into an approximation and details parts.
The approximation part is decomposed again by iterating
this process; thus one signal can be decomposed into many
components. The basic DWT algorithm does not preserve
translation invariance. Consequently a translation of wavelet
coefficients does not necessarily correspond to the same
translation of the original signal.This nonstationary property
originates from the downsampling operations in the pyram-
idal algorithm. The algorithm can be modified by inserting
2

𝑗
− 1 zeros between filters coefficients of the layer 𝑗, instead

of down-sampling. This modified version of the DWT
algorithm is called stationary wavelet transform (SWT), and it
can preserve the translation invariance property. In this study,
we applied both DWT and SWT, to decompose the EEG
signals using different mother wavelets such as Symlet and
Daubechies of different orders. Both the GVS current and the
simulated EEG signals were decomposed into 12 levels, and
thus we have the frequency bands for approximation and
detail components, shown in Table 2.

2.6. ICA-Based Methods for Artifact Removal. Independent
Component Analysis (ICA) is a statistical method used to
extract independent components from a set of measured
signals. This method is a special case of the Blind Source Sep-
arationmethods, where the 𝐾 channels of the recorded EEG
signals (𝐸(𝑡) = 𝑒1(𝑡), . . . , 𝑒𝐾(𝑡)) are assumed to be a linear
combination of 𝑁(𝑁 ≤ 𝐾) unknown independent sources
(𝑆(𝑡) = 𝑠1(𝑡), . . . , 𝑠𝑁(𝑡)):

𝐸 (𝑡) = 𝑀𝑆 (𝑡) , (13)

where 𝑀 is the unknown mixing matrix defining weights
for each source contributions to the EEG signals recorded at
each channel. In ICA, the measured 𝐾 channel EEG signals
are taken into an 𝑁 dimensional space and projected onto a
coordinate frame where the data projections are minimally
overlapped and maximally independent of each other. There
are various algorithms with different approaches to find the
independent components, such as minimizing the mutual
information or maximizing the joint entropy among the data
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Figure 6:The ICA component attributed to the stimulus artifact, 72
seconds in the middle.

projections. The ICA algorithm we used in this study is
the extended Infomax algorithm [27] which is a modified
version of the Infomax algorithm proposed by Bell and
Sejnowski [28]. It uses a learning rule that switches between
different types of distributions such as Sub-gaussian and
Super-gaussian sources. The extended Infomax algorithm is
implemented in EEGLABMATLAB toolbox [29] and widely
used to analyze EEG studies. The ICA was applied to the
measured EEG set to find the GVS artifacts components.
To remove the GVS artifact we need to find all components
that are attributed to the GVS applied to the subject. These
components can be identified by calculating the correlation
coefficient between the ICA components and the GVS signal.
The temporal structure of the GVS artifact components is
also different from the other components as, during the time
that the GVS is applied, a large amplitude artifact appears
(Figure 6).

We tried two approaches to remove the artifact. The
first approach is to zero out the artifact signals from the
components that account for the GVS parasitic influence
and obtain a new cleaned-up source matrix ̂𝑆(𝑡). The second
approach is to apply a threshold on the artifact components,
in order to extract the artifact spikes and set them to zero.The
thresholdwas set at three standard deviations above themean
of the EEG signal without the artifact (e.g., the signal before
applying the GVS), and all data points with amplitude over
the threshold were set to zero.Thus we obtained a new source
matrix, ̂𝑆(𝑡), with the modified components.The threshold at
3 standard deviations of the original neural signals enables
us to keep a major part of the original neural activities
untouched as much as possible (Figure 7).

Eventually, we reconstruct ICA-corrected EEG signals as:

̂

𝐸 (𝑡) = 𝑀

̂

𝑆 (𝑡) ,
(14)

where ̂𝐸(𝑡) is the new data set which represents the estimated
artifact-free data.

2.7. The Proposed Artifact Removal Method. In the proposed
method, we decomposed the EEG andGVS current signals in
12 frequency bands (Table 2), and then using the regression
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Figure 7: The ICA component attributed to the stimulus artifact
after applying the threshold.

methods, we estimated the GVS artifact components in each
frequency band. Figure 8 shows the process for detecting
GVS artifacts. As shown in this flowchart, in each frequency
band, the GVS artifacts are detected through a regression
analysis, where the GVS signals are taken as the reference
signals.

The estimated GVS artifact frequency components are
subtracted from the contaminated EEG frequency compo-
nents. The wavelet decomposition enables us to focus on
the frequency bands of interest and calculate the estimated
GVS artifacts in each frequency band independently; thus
the regression method can deal better with some nonlinear
behaviors of the skin in the frequency domain. This wavelet-
based time-frequency analysis approach enhances the perfor-
mance of the artifact removal method.The cleaned-up signal
is reconstructed from the proper frequency components of
the estimated GVS signal components in the frequency range
of interest (e.g., 1 Hz to 32Hz). We calculated the correlation
coefficients between the GVS signals and the estimated GVS
artifacts reconstructed from different frequency bands, and
we observed that the regression results improve when we
reconstruct the estimated GVS artifact components from
corresponding frequency bands separately.

The result of the correlation analysis is tabulated in
Table 3. In this analysis, the real data from channel O1,
occipital EEG, was decomposed into 12 frequency bands,
using the SWT algorithm with the mother wavelet db3, and
the GVS current was estimated using OE regression model of
order 2.We calculated Pearson’s correlation for the correlation
analysis as

Corr (𝑢, 𝑦) =
Cov (𝑢, 𝑦)
𝜎𝑢 ⋅ 𝜎𝑦

, (15)

where 𝑢(𝑡) is the recorded GVS current and 𝑦𝑖(𝑡) is the esti-
mated GVS artifact reconstructed from different frequency
components.

The result shows that the correlation between the GVS
signal and the estimated GVS artifact significantly increases
by using wavelet decomposition method. We applied the
wavelet transform to remove frequency components lower
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Table 3: Correlation between the GVS signal and the estimated GVS artifact reconstructed from different frequency components.

Estimated GVS artifact without
wavelet decomposition

Estimated GVS artifact
from 0.12Hz to 250Hz

Estimated GVS artifact
from 0.24Hz to 125Hz

Estimated GVS artifact
from 0.49Hz to 62.5Hz

Correlation 0.6960 0.8463 0.9168 0.9725
Estimated GVS artifact from
0.49Hz to 31.25Hz

Estimated GVS artifact
from 0.49Hz to 15.75Hz

Estimated GVS artifact
from 0.98Hz to 31.25Hz

Estimated GVS artifact
from 0.98Hz to 15.75Hz

Correlation 0.9776 0.9769 0.9899 0.9899
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Figure 8: Flowchart of the process for detecting GVS artifacts in the proposed method.

than 0.98Hz and higher than 31.25Hz, which are not of the
main interest, and the correlation between theGVS signal and
estimated GVS artifact was increased up to 0.9899.

We employed both SWT andDWTalgorithms in the pro-
posed artifact removal method.The difference between SWT
and DWT algorithms was briefly explained in the wavelet
analysis section. We also used various regression models to
estimate the GVS artifact. To assess the performance of the
proposed method using different algorithms and models, we
applied our method to the simulated data and examined
the cleaned-up EEG signals in comparison with the original
artifact-free EEG signals. For this assessment, not only did we
calculate the correlation between the artifact-removed EEG
signals and the original artifact-free EEG signals, but also we
measured the fitness of the artifact-removed signals based
on the normalized residual sum of squares which is sometime
introduced as the normalized quadratic error defined by

RSS𝑁 =
∑ (𝐸𝑜 (𝑡) −

̂

𝐸𝑜 (𝑡))

2

∑(𝐸𝑜 (𝑡) −mean (𝐸𝑜 (𝑡)))
2
,

(16)

where 𝐸𝑜(𝑡) represents the original artifact-free signal and
̂

𝐸𝑜(𝑡) is the artifact-removed signal.

We measured the performance of the proposed method
based on the correlation (15) and the normalized residual
sum of squares (16).The choice for the wavelet algorithm and
mother wavelet was made such that the performance of the
artifact removal method is maximized. To compare different
wavelet algorithms and mother wavelets, we employed a
number of mother wavelets from two different wavelet
families which have been commonly used in EEG signal pro-
cessing, Daubechies (𝑑𝑏3, 𝑑𝑏4, and 𝑑𝑏5) and Symlets (𝑠𝑦𝑚3,
𝑠𝑦𝑚4, and 𝑠𝑦𝑚5). Both SWT and DWTwere used with these
motherwavelets in the proposed artifact removalmethod and
applied to the simulated data. We tabulated the normalized
residual sum of squares and the correlation between the
artifact-removed signals and the original artifact-free signals
in the frequency range lower than 31.25Hz (Table 4).

The results show that SWT algorithm has a superior
performance compared to DWT algorithm, and between dif-
ferent mother wavelets both Daubechies and Symlet wavelets
with order of 4 performed better than the others.

Another step to improve the performance of the method,
is finding an optimum regression method to calculate the
estimated GVS artifacts as accurate as possible. We used
three different classes of model structure, Output-Error (OE)
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Table 4: Correlation and normalized residual sum of squares between the artifact-removed signals and the original artifact-free EEG signals
for simulated data using different wavelet decomposition algorithms.

DWT db3 DWT db4 DWT db5 DWT db6 DWT sym3 DWT sym4 DWT sym5 DWT sym6
Corr. 0.8781 0.9023 0.9155 0.9242 0.8781 0.9023 0.9156 0.9242
RSS
𝑁

0.5517 0.4870 0.4503 0.4255 0.5517 0.4870 0.4503 0.4255
SWT db3 SWT db4 SWT db5 SWT db6 SWT sym3 SWT sym4 SWT sym5 SWT sym6

Corr. 0.9932 0.9933 0.9933 0.9932 0.9932 0.9933 0.9933 0.9932
RSS𝑁 0.1710 0.1700 0.1705 0.1714 0.1710 0.1700 0.1705 0.1714

Table 5: Correlation and normalized residual sum of squares
between the artifact-removed signals and the original artifact-free
EEG signals for simulated data using different models for estimating
the GVS artifacts.

OE2 OE3 OE4 OE5 NLHW2
Corr. 0.9933 0.9933 0.9933 0.9822 0.9934
RSS𝑁 0.1700 0.1701 0.1704 0.2267 0.1711

SS2 SS3 SS4 NLHW3 NLHW4
Corr. 0.9933 0.8105 0.7466 0.9926 0.9851
RSS𝑁 0.1704 0.7628 0.9174 0.1230 0.1725

as a simple special case of the general polynomial model,
Hammerstein-Wiener with the piecewise-linear function,
and Space-State models, which were all introduced in the
“Regression-based approach” section. We employed these
models with different orders in the proposed artifact removal
method and applied the proposed method using each of
these models to the simulated data. In order to compare the
performance, we used SWTwith Daubechies 4 to decompose
the contaminated signals, estimated the GVS artifact using
different models, and then assessed the performance in terms
of the correlation and the normalized residual sum of squares
between the original artifact-free signal and the artifact-
removed signal reconstructed in the frequency range lower
than 31.25Hz. The results are tabulated in Table 5.

For nonlinear Hammerstein-Wiener models we used the
piecewise-linear function and broke down the EEG signal
into a number of intervals. We tried a various number of
intervals and observed that, with 4 intervals (or less), we
could get the highest correlation and the least residual.

The results show that, between all those models, both
Output-Error and nonlinear Hammerstein-Wiener have bet-
ter performance. We employed these regression models to
maximize the performance of the proposed method, then we
applied the proposed method to the real data.

We also used two ICA-based methods for removing the
artifact: filtering out the artifact components and applying a
threshold on the artifact components amplitude to remove
the artifact spikes beyond the threshold.

To assess the performances of the ICA methods on the
simulated data, we calculated both the correlation and the
normalized residual sum of squares between the artifact-
removed EEG signals and the original artifact-free EEG
signals.

We compared the ICA-based methods with the pro-
posed methods using the Output-Error and nonlinear

Table 6: Correlation and normalized residual sum of squares
between the artifact-removed signals and the original artifact-free
EEG signals for simulated data using the proposedmethod and ICA-
based methods.

Removing
the ICA
artifact

component

Applying
threshold to
the ICA
artifact

component

SWT decom-
position with
DB4 modeled
with OE2

SWT decom-
position with
DB4 modeled
with NLHW2

Corr. 0.6445 0.6171 0.9933 0.9934
RSS𝑁 0.9567 1.0241 0.1700 0.1711

Table 7: Correlation between the GVS signals and the estimated
GVS artifact extracted from EEG signals for real data using the
proposed method and ICA-based methods.

Removing
the ICA
artifact

component

Applying
threshold to
the ICA
artifact

component

SWT decom-
position with
DB4 modeled
with OE2

SWT decom-
position with
DB4 modeled
with NLHW2

Corr. 0.6859 0.6858 0.8743 0.8743

Hammerstein-Wiener models order 2, along with 12-level
STW decomposition with DB4 mother wavelet (Tables 6 and
7).

2.8. Comparison of Different Artifact Removal Methods. We
applied different artifact removal methods on real EEG data
acquired during application of GVS. We used the data from
channel O1 (occipital EEG) of different subjects in EEG/GVS
studies. We applied stimulation signals of different ampli-
tudes in our experiments and observed consistent results
from these experiments. By calculating the correlation coef-
ficients between the GVS signals and the estimated GVS arti-
facts, we compared the performance of these methods. First
we compare ICA-based, regression-based, and adaptive filters
without using the wavelet analysis.Then we use the proposed
method where the wavelet analysis was employed to improve
the performance of our artifact removal method.

The best algorithms for ICA-based methods, best models
for regression-based methods and best filters for adaptive
filtering methods were selected. Between different ICA algo-
rithms (as mentioned in the section “ICA-based artifact
removal methods”), the extended Infomax showed better
results. Between regression-based methods (as previously
introduced in the section “Regression-based artifact removal
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Table 8: Correlation between the GVS signals and the estimated
GVS artifact extracted from EEG signals for real data using different
methods.

Method Correlation
ICA-Infomax method (remove the artifact
component) 0.6859

ICA-Infomax method (threshold the artifact
component) 0.6858

Regression method with OE2 0.7673
RLS Adaptive filter (forgetting factor: 0.99997,
length: 2) 0.7615

LMS Adaptive filter (adaptation gain: 0.5, length: 3) 0.7010

Table 9: Correlation between theGVS signal and the estimatedGVS
artifact reconstructed from different frequency components for real
data.

Frequency band Correlation
Estimated GVS artifact without wavelet
decomposition 0.7673

Estimated GVS artifact from 0.12Hz to 250Hz 0.8463
Estimated GVS artifact from 0.24Hz to 125Hz 0.9168
Estimated GVS artifact from 0.49Hz to 62.5Hz 0.9725
Estimated GVS artifact from 0.49Hz to 31.25Hz 0.9776
Estimated GVS artifact from 0.49Hz to 15.75Hz 0.9769
Estimated GVS artifact from 0.98Hz to 31.25Hz 0.9899
Estimated GVS artifact from 0.98Hz to 15.75Hz 0.9899

methods”), OE order 2 showed better performance, and
between adaptive filters (as previously introduced in the
section “Adaptive filtering methods for artifact removal”),
RLS filterwith the forgetting factor of 0.99997, the filter length
of 2, LMS filter with the adaptation gain of 0.5, and the filter
length of 3 had better performance. We tabulated (Table 8)
the correlation between the GVS signals and the estimated
GVS artifacts.

The results show that, between all the above methods,
the regression-based methods are able to estimate the GVS
artifacts with higher correlation with the original GVS sig-
nals. Thus, we employed the regression-based method along
with the wavelet analysis in our proposed method to achieve
the best performance in removing GVS artifact. The wavelet
decomposition method improves the estimation of the GVS
artifacts in both correlation performance and robustness.
This is due to the separate transfer function estimations for
each frequency band, aspect that makes it less prone to non-
linear skin behavior or to other noise sources. Furthermore,
with wavelet decomposition, we can filter out the frequency
components that are not of interest. Removing those fre-
quency components can improve the results of the regression
analysis as well. The cleaned EEG data is reconstructed from
the frequency range of interest (e.g., 1 Hz to 32Hz).

Using a correlation analysis, we show how the wavelet-
based time-frequency analysis approach enhances the per-
formance of the artifact removal method. We calculated
the correlation coefficients between the GVS signals and
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Figure 9: Correlation between the GVS signal and the estimated
GVS artifact using the proposed method (red) and the ICA method
(blue) for different GVS amplitudes.

the estimated GVS artifacts reconstructed from different
frequency bands (tabulated in Table 9). We observed that by
focusing on the frequency components of interest, for exam-
ple, between 1Hz to 32Hz, we could achieve much higher
correlation between the estimated and original GVS signals.

As shown in Table 9, after removing the frequency bands
lower than 0.98Hz and larger than 31.25Hz, which were out-
side our interest at the present time, the correlation between
the GVS signal and the estimated GVS artifact significantly
increases from 0.7673 to 0.9899 by using wavelet decomposi-
tion method.

So far, we showed the proposedmethod has superior per-
formance than the other methods when it is applied to low-
amplitude stochastic GVS signals up to 1mA.We also applied
our artifact removal method to EEG/GVS data sets collected
by our other collaborator in the Sensorimotor Physiology
Laboratory, where higher amplitude pink noise GVS up to
3100 𝜇Awas applied in the EEG/GVS studies. In one data sets,
pink noise GVS in a wide range of amplitudes from 100 𝜇A
to 3100 𝜇A (each 300 𝜇A) was applied, and the EEG/GVS
data were collected. We compared the performance of the
proposed method and the extended Infomax ICA method.
The results show that while the performance of the ICA
method deteriorates as the GVS amplitude is increased, the
proposed method provides a robust performance (Figure 9).

3. Results

In the section “The proposed artifact removal method”, we
optimized the proposed method using the simulated data.
To find the optimum algorithms for signal decomposition,
we compared the SWT and DWT decomposition algo-
rithms using different mother wavelets (the results shown in
Table 4), and to achieve better estimation of theGVS artifacts,
we employed different model structures (results shown in
Table 5).

In the optimized algorithm, we employed the SWT
decomposition algorithm using DB4 mother wavelet and
decomposed the signals into 12 frequency bands.This enabled
us to separate the GVS artifact into different frequency bands
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Figure 10: The fit percentage of the detail components of the
estimated GVS artifacts using the OE model order 2 in each
frequency band.

1 2 3 4 5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency bands

C
or

re
lat

io
n 

co
effi

ci
en

t 

Figure 11: The correlation between the detail components of the
estimated GVS signals and the GVS signals for the simulated data
using the OE model order 2 in each frequency bands.

and estimate the artifact using a time-domain regression
model. The comparison of the different model structures
shows that the Output-Error (OE) and the nonlinear Ham-
merstein-Wiener order 2 have similar performances, better
than the other models.

In the previous section, we compared the performance of
different methods and observed that how the combining of
wavelet decomposition and regression analysis (Table 9) can
improve the performance of the artifact removal method for
GVS/EEG studies.

Using the proposed method, we can focus on specific
frequency bands and remove the GVS artifact with better
performance in each frequency band, separately. Figures 10
and 11 show the fit percentage (5) and the correlation (15)
between the detail components of the estimated GVS signals
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Figure 12: The occipital EEG channel data after applying the
proposed artifact removal method using the frequency components
lower than 64Hz.
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Figure 13: The occipital EEG channel data after applying the
proposed artifact removal method using the frequency components
between 1Hz to 32Hz.

and the GVS signals for the simulated data in the frequency
bands introduced in Table 2.

The results show that for frequency components L6 to
L10, which correspond approximately to 8–16Hz, 4–8Hz,
2–4Hz, 1-2Hz, and 0.5–1Hz bands, we can achieve higher
performance in rejecting the GVS artifacts separately. One
of the reasons of the robustness of the method is building
separate equivalent transfer functions for the GVS signals for
each frequency band which helps in maintaining the perfor-
mance of the algorithms for a large range of GVS intensity
levels and frequency ranges. To illustrate the importance of
the wavelet analysis, we depicted the artifact-removed signals
using different frequency components (Figures 12, 13, and 14).

Figure 14 shows that whenwe use specific frequency com-
ponents to estimate the GVS artifacts, we can significantly
suppress the GVS artifact and achieve high signal to artifact
ratio (SAR). SAR is defined as the ratio of the signal amplitude
to the artifact amplitude in decibels (dB). We can achieve an
SARof−1.625 dB in the frequency range of 1Hz–16Hz,while,
using the frequency components in the range of 1Hz–32Hz
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Figure 14: The occipital EEG channel data after applying the
proposed artifact removal method using the frequency components
between 1Hz to 16Hz.

(Figure 13), we can obtain a SAR of −10.498 dB; using the fre-
quency components in the range of 1Hz–64Hz (Figure 12),
we have an SAR of −13.863 dB. In the original contaminated
EEG signals, without removing the GVS artifact (Figure 1),
the SAR is −32.189 dB.

4. Discussion

In the section “Simulated data”, we showed that by simulating
the skin impedance and estimating the transfer function of
the skin (one function for the whole frequency range), we
could reconstruct a major portion of the GVS artifact. As an
example, for channel 18, around 87% of the GVS artifact was
reconstructed (Figure 3), thus we could simulate the contam-
inated EEG signals to assess the performance of the proposed
method.

Using the wavelet decomposition, we were able to recon-
struct up to 96% of the GVS artifact components in some
frequency bands, especially in the frequency range of theGVS
signals (Figure 10).

We showed that the use of the wavelet decomposition can
improve the time domain regression approach to estimate the
GVS artifacts. By means of the combination of the regression
andwavelet analysis in the proposed artifact removalmethod,
we were able to focus on different frequency bands and
significantly improve the SAR of the contaminated EEG data
in specific frequency bands.

The proposed method and the ICA-based methods
behave differently in rejecting the GVS artifact. We observed
a high correlation between the estimated GVS artifacts and
the original GVS signals using the proposed method, but we
could not obtain a good correlation using the ICA-based
methods.

As illustrated earlier, we cannot completely remove the
GVS contamination in all frequency ranges (e.g., over 16Hz).
Removing the whole GVS artifacts remains a problem for the
future approaches.

In this study we also observed that nonlinear Ham-
merstein-Wienermodel of the second order, using piecewise-
linear blocks with 4 breakpoints (or less), provided the same

performance as the Output-Error model of the second order.
This implies that the relationships between the GVS artifacts
at the EEG electrodes and the injected GVS current are linear
and remain constant over the entire epoch. Our simulation
study results also showed that the impedancemodels between
the EEG electrodes and the GVS electrodes remain constant
over the entire epoch (Figure 4) and using short epochs
would not improve the fitness of the impedance models and
the estimation of the GVS artifacts. As a matter of fact, it may
even worsen the estimation of time-domain characteristics.

We also showed that, when we apply the proposed
method to remove the GVS artifacts, less distortion is intro-
duced in the cleaned EEG signals, compared to the distortion
that the other methods (e.g., ICA-based methods) introduce.
Furthermore, using the proposed method, we do not need
to collect and process all EEG channels as in the ICA-
based analysis; therefore it is much faster than the ICA-based
methods. This allows us to have a simple experimental setup
for collecting EEG signals with less EEG channels for theGVS
studies which makes the preparation for the data acquisition
session take less time before the subject gets tired, and more
myogenic and ocular artifacts are introduced. Compared
to the ICA methods, the proposed method is easier to be
implemented in a real time system for future applications.
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