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A PRIM approach to predictive-signature
development for patient stratification
Gong Chen,a*† Hua Zhong,b Anton Belousovc and
Viswanath Devanarayand

Patients often respond differently to a treatment because of individual heterogeneity. Failures of clinical trials
can be substantially reduced if, prior to an investigational treatment, patients are stratified into responders
and nonresponders based on biological or demographic characteristics. These characteristics are captured by
a predictive signature. In this paper, we propose a procedure to search for predictive signatures based on the
approach of patient rule induction method. Specifically, we discuss selection of a proper objective function for the
search, present its algorithm, and describe a resampling scheme that can enhance search performance. Through
simulations, we characterize conditions under which the procedure works well. To demonstrate practical uses of
the procedure, we apply it to two real-world data sets. We also compare the results with those obtained from a
recent regression-based approach, Adaptive Index Models, and discuss their respective advantages. In this study,
we focus on oncology applications with survival responses. © 2014 The Authors. Statistics in Medicine published
by John Wiley & Sons Ltd.
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1. Introduction

There is an increasing need of developing predictive signatures to identify right patient population for a
treatment. By enriching responders in a target population, signature-based patient stratification reduces
attrition rate of drug development projects in clinical phases and at the same time helps maximize
patients’ benefit offered by pharmaceutical intervention. In general, a signature captures some biologi-
cal or demographical characteristics of patients. A signature-positive group is a population that satisfies
certain criteria based on a signature. A population that does not meet the criteria is defined as a signature-
negative group. In this paper, we consider a two-arm design situation where patients in the treatment
arm are treated by an investigational treatment and patients in the control arm receive a standard of care
(SOC). We say that a signature has predictive value if patients in a signature-positive group respond better
in the treatment arm than in the control arm, and the treatment effect for patients in the signature-positive
group is greater than the one for signature-negative patients. Therefore, a predictive signature identifies a
subset of patients who should be treated by an investigational treatment rather than an SOC and attempts
to maximize treatment effect in a signature-positive population. Figure 1 provides a motivating example
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Figure 1. The Kaplan–Meier curves for two arms in the ER data set.
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Figure 2. The Kaplan–Meier curves for the signature-positive group (left) and the signature-negative group (right)
in the ER data set.

where treatment and control cohorts have no difference in terms of patients’ survival. After a predictive
signature is learned and applied to patients’ data at baseline, as shown in Figure 2, the signature-positive
patients in the treatment arm have prolonged survival compared with those in the control arm, but we see
a reverse pattern for the signature-negative patients. This example will make a case study discussed in
details in this paper (Section 5).

A promising method that can be applied to signature discovery is patient rule induction method or
PRIM proposed by Friedman and Fisher [1]. PRIM aims at finding bumps in a population ‘space’—a
bump is defined by a subgroup of the population if the subgroup has a relatively high mean value of an
objective function that describes a certain characteristic of the population. When efficacy is the charac-
teristic of interest, bumps or subgroups in PRIM’s formulation should correspond to signature-positive
groups. The way PRIM naturally addresses the patient-stratification problem makes the method a good
candidate approach for learning predictive signatures. Moreover, because PRIM describes a subgroup
by a set of decision rules based on variables obtained for the population, these rules directly define a
signature—this simplicity makes them easily applicable in clinics, which is another desirable property
in signature development. An example of such rules would be as follows: A patient is signature-positive
if his or her target gene’s expression is greater than a threshold and his or her safety biomarker’s protein
level is less than a cutoff. Finally, we note that the word ‘patient’ in PRIM is an adjective, rather than
a noun. It indicates that the rule induction method is not hasty or impulsive, in contrast to aggressive
behaviors of other methods (for example, classification and regression trees (CART)), which had been
discussed and compared with PRIM in [1]. Rather than taking a large step that seems optimal for a current
search iteration, PRIM adopts a smaller step that may be less optimal, but by doing so, it increases the
likelihood for later steps to compensate previous mistakes or utilize structures discovered by earlier steps.
Such patience helps the method induce superior rules than those produced by aggressive approaches.
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Many efforts have been made to directly apply or adapt PRIM for finding prognostic rules in differ-
ent biomedical areas. Because a dose-intensive treatment may only target patients with high risks due to
its associated toxicity, LeBlanc et al. [2] tried to identify these patients by a PRIM-based method with
survival data and six demographical or biomarker variables. They proposed two major operations beyond
PRIM: Additional variable selection and making search follow a pre-determined direction of a variable.
The direction indicates whether a variable is positively or negatively correlated with responses based on
regression. In our study, we do not either assume that such direction is known a priori or determine it in
advance, and we do not impose the constraint that search should follow only one direction of a variable.
Later, LeBlanc et al. [3] simplified their algorithm and changed their objective function from previously
employed hazard rates to hazard ratios based on Cox proportional hazards regression models. Liu et al. [4]
applied PRIM to tissue microarray data on eight biomarkers of patients with renal cell carcinoma for
identifying high-risk patients. They proposed to use deviance residuals (based on martingale residuals of
an intercept-only Cox regression model) as their objective function for PRIM to optimize. Dyson et al. [5]
employed PRIM to choose combinations of genetic and environmental risk factors that define groups of
individuals having significantly different risk levels of ischemic heart disease. Using PRIM, Nannings et
al. [6] discovered subgroups at a very high risk of dying in the population of very elderly intensive-care
patients and revealed important prognostic factors from demographic, diagnostic, physiologic, labora-
tory, and discharge data. For a modified version of PRIM, Polonik and Wang [7] presented theoretical
characterization of its outcomes and derived its convergence rates.

In drug development, the value of a signature substantially increases if it can predict drug response as
opposed to just predicting disease risk. However, it has not been well studied how PRIM can be prop-
erly applied in predictive-signature development. Kehl and Ulm [8] made an attempt to apply PRIM for
identifying such signatures. Nevertheless, their method relies on a strong assumption that a good prog-
nostic model can be built for a control arm. Martingale residuals from fitting the prognostic model in a
treatment arm are used to indicate efficacy, which is optimized by PRIM. Our approach employs a dif-
ferent objective function and thus avoids making that assumption. With respect to simulation design and
case studies, the previous work was concerned with cardiology while our study will shed light on PRIM
application in oncology trials. There are many tree-based methods for patient stratification. They can be
better contrasted to our approach after readers have a good understanding of our objective function and
search algorithm. Therefore, we defer related discussion to Section 6.

In this study, we make the following unique contributions to develop a PRIM-based procedure
searching for predictive signatures with survival data as the measure of clinical outcome:

(1) Choosing an appropriate objective function together with a constraint for the procedure and com-
paring them with the objective function employed by Adaptive Index Models or AIM [9] to
highlight the key advantage of our choice;

(2) Developing the procedure with an automatic parameter tuning step and coupling the procedure
with a resampling scheme to help PRIM achieve more effective signatures;

(3) Investigating the procedure’s performance in some typical scenarios of oncology clinical trials by
simulation and thus characterizing conditions that empower the procedure to function reasonably;

(4) Demonstrating applicability of the procedure in two real-world data sets and comparing its
stratification results with those produced by AIM to present their respective advantages.

This paper is organized as follows. Section 2 considers objective functions and a related constraint for
PRIM in the context of discovering predictive signatures. We then describe our search procedure based
on PRIM’s framework in Section 3. We present results from a simulation study in Section 4 and from two
case studies of real-world data sets in Section 5. We conclude this paper with a discussion in Section 6.

2. Objective function

We begin this section by introducing a model formulation to motivate an objective function and a related
constraint we adopt for PRIM and then compare them with AIM’s objective function to reveal their dif-
ferent implications for identifying predictive signatures. We refer to variables that define a signature
as signature variables and other irrelevant variables as noise variables. Because we focus on appli-
cations with survival data, we describe the formulation with a proportional hazards regression model:
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h(t ∣ T ,X) = h0(t)eL(T ,X), where t is time, T is a treatment factor, and X denotes signature variables. For
a patient indexed by i, a linear hazard score is modeled as follows:

L(Ti,Xi) = 𝛽1Ti + 𝛽2TiZ(Xi), (1)

where Ti = 0 indicates that the patient is in the control arm and Ti = 1 if the patient is in the treatment
arm under a two-arm design, and the signature indicator Z(Xi) = 0 if the patient is stratified into a
signature-negative group and Z(Xi) = 1 for the patient in a signature-positive group. Accordingly, 𝛽1
indicates the treatment effect for the signature-negative group, and 𝛽1 + 𝛽2 suggests the treatment effect
for the signature-positive group. In principle, any signature can define a signature-positive group (and
thus a signature-negative group with complimentary rules) as long as it describes some characteristics of
patients, but the signature may not be predictive. To define a predictive signature, we need to discuss the
following two conditions on the treatment effects:

(1) 𝛽1 + 𝛽2 < 0—the treatment-effect condition;
(2) 𝛽1 + 𝛽2 < 𝛽1, which can be reduced to 𝛽2 < 0—the interaction-effect condition.

The first condition is required to ensure signature-positive patients respond better to an investiga-
tional treatment compared with an SOC. The second condition means that the treatment effect in the
signature-positive group should be greater than the signature-negative group; that is, the hazard ratio in
the signature-positive group is smaller than the one in the signature-negative group. On the other hand, in
practice, the estimates 𝛽1 and 𝛽2 satisfying the inequality 𝛽1 +𝛽2 < 𝛽1 do not guarantee that the statistical
significance of 𝛽1 + 𝛽2 is greater than the significance of 𝛽1. If the sample size of the signature-positive
group is small and thus it leads to a large standard error of 𝛽1 + 𝛽2, the significance of 𝛽1 + 𝛽2 can be less
than the one of 𝛽2, suggesting an undesirable patient stratification. Therefore, to avoid this case, we need
the following constraint: The signature-positive group’s treatment effect should be more significant than
the one of the signature-negative group. We call such a constraint the interaction-effect constraint. Simi-
larly, the treatment-effect condition leads to the requirement that 𝛽1 + 𝛽2 should be significantly smaller
than zero. We refer to the requirement as the treatment-effect requirement. For a signature to be predictive
in practice, it should satisfy both the treatment-effect requirement and the interaction-effect constraint.

To avoid making assumptions of specific models, we adopted the approach of directly employing
p-values of two-sample comparisons to indicate treatment effects. In applications of survival data, we
use one-sided log-rank tests for comparisons. This approach was proposed by Lin et al. [10], but they
were only concerned with the treatment-effect requirement and did not consider the interaction-effect
constraint. We describe our objective function as follows. Let pv+ indicate significance of a one-sided test
that examines whether signature-positive patients respond better to an investigational treatment compared
with an SOC; denote by pv− significance of the same test for patients in a signature-negative group. pv+
and pv− can be used to capture the essence of the treatment-effect requirement and the interaction-effect
constraint. Previously, we specified the two criteria in the setting of regression; now, we conceptually map
the treatment-effect requirement to a small pv+ and map the interaction-effect constraint to the constraint
pv+ < pv−. To achieve a maximally beneficial treatment effect in the signature-positive group, we chose
pv+ as the objective function of PRIM for its optimization. To drive the search toward satisfying the
interaction-effect constraint, we enforce pv+ < pv− in PRIM’s search process. Such enforcement is not
redundant. It is true that the constraint is automatically assured if a minimal pv+ achieved by PRIM is the
global minimum; however, in cases where the minimal value is a local mode, pv+ could be greater than
pv−, and thus, the interaction-effect constraint is violated. Although PRIM can result in a local optimum
with respect to pv+, its stratification is still useful if the interaction-effect constraint holds. Therefore,
the enforcement of the constraint in the search process is designed to help generate desired stratification.
Moreover, when initial search steps start to explore a search space, it is possible that a minimal pv+
used for making local decisions is greater than pv−, and thus, it drives the search toward a potentially
less meaningful direction. Readers may understand this statement better after reading through the search
procedure in Section 3. Although the aforementioned patient property of PRIM can employ later steps to
remedy mistakes made by previous search steps, these mistakes may still lead to less optimal solutions.
We will demonstrate this point in our case study of a real-world data set.

Tian and Tibshirani [9] developed AIM for stratifying population into different risk groups and for
detecting treatment-marker interactions. AIM searches for K covariates x1,… , xK and corresponding cut-
offs c1,… , cK to build an index score w =

∑K
j=1 I(x∗j < cj), where I() is a binary indicator function and

x∗j is either a covariate xj or its negative value −xj. To detect possible treatment-marker interaction, AIM
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maximizes a test statistic testing the treatment-score interaction term Tw in the following linear hazard
score L = 𝛾1T + 𝛾2Tw, where T is a treatment factor with the same definition as in Eq. 1, and w is the
aforementioned index-score variable. The authors suggested that patients can be stratified into a low-
score group and a high-score group by comparing their index scores to median of all index scores. The
high-score group defines a signature-positive group given a negative coefficient of the interaction term,
with the remaining patients forming a signature-negative group; in case the coefficient sign is positive,
the low-score group then defines a signature-positive group. In this way, the score-based patient stratifi-
cation essentially defines Z in Eq. 1, with Z = 1 for patients in the signature-positive group and Z = 0
for the signature-negative patients. Given the definition, the AIM’s formulation can be mapped or trans-
formed into Eq. 1. Because such transformation will not affect any conclusion we draw, we will refer
to the linear hazard score in Eq. 1 as the formulation for further discussion to maintain notational con-
sistency. Also, for simplicity, unless there is a need for detailed specification, we will use the terms the
treatment-effect condition and the interaction-effect condition to indicate two general requirements of a
predictive signature instead of referring to various statistics employed by different approaches for these
two conditions.

By focusing on the treatment-score interaction term, AIM directs the search to optimize the interaction-
effect condition. However, a detected interaction effect may or may not lead to a predictive signature
because the treatment-effect condition is ignored. Specifically, if 𝛽1 +𝛽2 ⩾ 0, as illustrated by the thicker
line in Figure 3 (left), the investigational treatment is no better than the SOC in the signature-positive
group. In this situation, the interaction effect can still be significant if the investigational treatment is sig-
nificantly worse than the SOC in the signature-negative group, as shown in Figure 3 (right). Therefore,
the resulting signature-positive group is not useful for identifying responders to the investigational treat-
ment compared with the SOC; rather, the resulting signature-negative group reveals patients to whom the
investigational treatment is even more harmful. If in this case a predictive signature exists but its interac-
tion effect is less significant than the one just demonstrated, the signature will be missed by the search in
AIM. Hence, AIM or, in general, a method only optimizing the interaction-effect condition has a limited
utility on discovering predictive signatures. On the contrary, our choice of the objective function aims at
enriching responders to an investigational treatment in a signature-positive group and thus does not have
such limitation.

Moreover, even if we assume that AIM or a method can ensure the treatment-effect condition satisfied
while optimizing the interaction-effect condition, its resulting signature can be less desirable than the
one produced by a method optimizing the treatment-effect condition while making sure the interaction-
effect condition satisfied. Let us consider the following example. Imagine that there exist two predictive
signatures for a data set: Signature A has the maximum (treatment-score) interaction effect but a small
beneficial effect of an investigational treatment over an SOC in its signature-positive group; in compar-
ison to signature A, while signature B leads to a much larger or the largest beneficial treatment effect
for signature-positive patients, it has a smaller interaction effect. Clearly, signature B is more help-
ful in identifying patients for maximizing efficacy of the investigational treatment than signature A.
However, signature A would be reported by any method whose result is driven by the optimality of the
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Figure 3. The interaction plots for treatment and signature from different perspectives to show a significant
treatment–signature interaction effect with the lack of a desired treatment effect for signature-positive patients:

Treatment factor as x-axis (left) and signature indicator as x-axis (right).
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interaction-effect condition. Therefore, in order to detect a predictive signature such as signature B, we
recommend the approach that treats the treatment-effect condition as the primary objective function to
be optimized and imposes the interaction-effect condition as a constraint that should not be violated, as
opposed to an approach that treats the interaction-effect condition as the primary objective function and
the treatment-effect condition as the constraint.

3. Search procedure

In this section, we present our procedure based on the PRIM’s framework in the context of searching for
predictive signatures. We also propose an automatic parameter-selection step and a resampling scheme to
improve search performance. For the sake of simplicity, this study is concerned with continuous signature
variables. But this is not a restriction in that with the same objective function, it is easy to extend the
procedure to handle categorical variables in the way discussed by Friedman and Fisher [1].

3.1. The framework

Let us first introduce notation involved in the procedure description (Algorithm 1). Assume that there are
p variables, and let xj denote a variable indexed by j, for j = 1,… , p. Let xjmin and xjmax be the minimum
and maximum values of xj, respectively. xij is the value of xj for patient i. The set of indices of patients
in a signature-positive group is denoted by G+. For patients indexed by G+, xj(𝛼) denotes a quantile of
their xj, corresponding to a probability 𝛼 in the lower tail. Following this convention, xj(0) is the minimum
value of xj and xj(1) the maximum value of xj. For a group of patients indexed by G, PG denotes the p-
value of a one-sided test that examines whether patients receiving an investigational treatment respond
better than patients treated by an SOC. Because the algorithm description employs set operations, we
clarify relevant symbols here. Given two sets A and B, A ∩ B denotes the intersection between A and B;
A ∪ B is the union of the two sets; A∖B denotes the set of elements that belong to A but not to B, and A is
complement of A. With aforementioned notation, we are ready to present the algorithm.

In line 1 of Algorithm 1, PRIM first splits the whole population in a study into two sets, D1 and D2. In
D1, it learns a series of candidates for a signature-positive group, as detailed by lines 2-18. Then, one
of the learned candidates is chosen to be reported if its corresponding grouping in D2 achieves the best
stratification, as indicated by line 19. At this step, by treating decision rules associated with candidates
as models, PRIM essentially utilizes data in D2 to select a final model. We will discuss more on this issue
in Section 3.2. In our simulation study and case studies, we assign an equal number of samples to D1
and D2.

Learning candidates consists of three processes: peeling (lines 4-8), pasting (lines 9-13), and drop-
ping (lines 14-18). While peeling aims at shrinking a candidate to generate a new one, the other two
processes attempt to create new candidates via candidate expansion. Specifically, starting with a trivial
candidate with all patients (line 3), PRIM tries to peel different subsets of patients who have extremely
small or large values of a variable in lines 5-6. A parameter 𝛼 (0 < 𝛼 < 1) specifies the proportion of
patients considered to be peeled in a current candidate group. A peeling occurs if its resulting candidate
has the best stratification, as shown by lines 7-8. The peeling process is repeatedly applied to newly
produced candidates until a pre-defined minimum support (or sample size) of a candidate is reached.
Then, from the smallest or largest values of a variable in the current candidate, PRIM tentatively pastes
patients who have immediate smaller or larger values back to the group, as indicated by lines 10-11.
The amount to be pasted is up to 𝛼 of the current group size. A pasting is actually made if it improves
the stratification most, as suggested by lines 12-13, and pastings are repeated till no improvement can
be gained. Furthermore, PRIM drops a rule that defines the current candidate and thus includes patients
who are previously excluded according to the rule, as shown by lines 15-16. In lines 17-18, a rule is
chosen to be dropped if its removal produces a candidate with the best stratification. Rules are sequen-
tially dropped in this fashion to generate new candidates till no rule can be further dropped. The stop of
the dropping process completes the candidate generation (lines 3-18) for a specific 𝛼 value. Candidate
generation continues for other 𝛼 values as indicated in line 2.

In peeling process, the number of possible peelings (till all data are consumed by peeling) is around
(log C0 − log n)∕(log(1 − 𝛼)), where C0 is a pre-defined minimum support or sample size of signature-
positive groups and n is the sample size of a study. Because there are O(log n) peelings and p potential
signature variables to be examined in one peeling, the number of computing operations is in the order
of O(p log n). The same computational complexity holds for pasting. For the dropping process, the
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complexity is O(p) because at most 2p decision rules are sequentially dropped. After dropping, O(p log n)
candidate rule sets need to be tested in D2. Therefore, the complexity of the algorithm is O(p log n). At the
end of Section 4, we will present PRIM’s running time in a simulation scenario given different number
of variables and different sample sizes.

3.2. Parameter and candidate selection

A final candidate is selected among all candidates learned in the following process: (i) given a value of
𝛼—the parameter controlling the number of patients to be peeled and pasted—the process of peeling,
pasting, and dropping learns a series of candidates (lines 3-18 of Algorithm 1); (ii) different 𝛼 values
induce different series of candidates by repeating the aforementioned learning (line 2). PRIM’s inventors
suggested that a pre-determined 𝛼 value between 0.05 and 0.10 tends to work well because a small 𝛼 value
encourages the search procedure to be patient, the key feature making PRIM superior to other aggressive
approaches. In this case, only the first learning component generates candidates.

Alternatively, they recommended that after applying PRIM with different 𝛼 values, the user can choose
a value that produces a candidate striking a trade-off between a p-value indicating treatment effect in a
signature-positive group (pv+ for patients in the withheld data D2) and the corresponding group size or

© 2014 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2015, 34 317–342
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a trade-off between the p-value and the number of corresponding rules. The former trade-off intends to
increase a signature’s prevalence by sacrificing stratification performance—a larger p-value may allow
more patients to be included in a signature-positive group; the latter balance prefers a simpler rule set
over the one achieving the smallest p-value. With subjective judgment on these trade-offs, the user can
select the candidate and a corresponding 𝛼 value.

As just mentioned, these choices are suboptimal in terms of stratification performance. Our strategy
is to generate multiple series of candidates corresponding to different 𝛼 values (line 2 of Algorithm 1)
and then select a value leading to a candidate that obtains the best stratification performance indicated by
pv+ for patients in D2 (line 19). In this way, the parameter value and the candidate can be automatically
decided. We prescribe the following values for 𝛼: 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.20, 0.30, 0.40,
and 0.50. A finer resolution is used between 0.05 and 0.10 because small 𝛼 values are more likely to
encourage PRIM’s patience and thus lead to a better solution. For an illustration, Figure 4 shows the
minimal pv+ value (among pv+ values of a series of candidates) given each pre-specified value of 𝛼 in
a case-study data set. In this case, 𝛼 = 0.09 and the corresponding candidate achieving the smallest pv+
were selected according to our strategy. It is of note that because pv+ for patients in D2 is employed
for the aforementioned selection, it should not be used as a measure of PRIM’s predictive performance;
instead, we will describe a cross-validation (CV) measure in Section 5 to indicate generalizability of a
learning method in future data.

3.3. Multiple rule sets via covering

In the aforementioned subsections, we have explained how the procedure in Algorithm 1 finds a single
set of conjunctive rules for defining a signature-positive group. As suggested by Friedman and Fisher [1],
the same procedure can be applied repeatedly to discover multiple rule sets via a rule induction approach
called covering [11]. These rule sets can collectively define a signature-positive group. Specifically, we
first exclude signature-positive patients who satisfy existing rules from data and then apply the search
procedure to the remaining patients to learn another set of conjunctive rules. The disjunction of the newly
discovered rules and the previously reported rules defines a new signature-positive group, which is the
union of patients satisfying the new rules and patients satisfying the existing rules. Such repeated applica-
tion stops till no rules can be further found or the treatment effect in a resulting signature-positive group
is less significant than the treatment effect in the original population.

3.4. Resampling

As we will see in the simulation study (Section 4), PRIM’s performance degrades as the number of noise
variables increases. To help the algorithm focus on searching cutoffs for relevant variables, we propose
the following resampling scheme to reduce search scope: PRIM is repeatedly applied to random samples
of original data, and only top k variables that are most frequently returned by PRIM are selected as
candidate variables for further consideration. PRIM then searches for signatures in original data with
selected candidate variables as input variables.
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Figure 4. Minimal pv+’s given different 𝛼 values based on results in the CHOP data set (see the case study in
Section 5). Note that no stratification was generated given 𝛼 = 0.50, and thus, no associated pv+ is visualized.
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Specifically, let 1,2,… ,100 be 100 random samples of original data. Sampling is performed
without replacement. In each sample, we draw 63.2% of original observations. That is the same num-
ber as the average number of distinct observations in a bootstrap sample [12]. Bootstrapping is not
directly utilized because replicated values cause peelings not to exclude the expected number of patients
controlled by 𝛼. Given a random sample h, PRIM proceeds as usual by first splitting h into D1 and
D2 data sets and then searching for signatures. If PRIM reports xj as one of signature variables, an indi-
cator function Ih(xj) = 1. Denote by H(xj) the selection frequency for xj: H(xj) =

∑100
h=1 Ih(xj). After H(xj)

for j = 1,… , p are calculated, they are sorted decreasingly into the list of H(x(1)),… ,H(x(p)), where x(j)
denotes the variable with its selection frequency at the j-th rank. Given the ranking, x(1),… , x(k) are cho-
sen as the input variables for PRIM, and PRIM is applied to original data. The scheme was motivated by
our observation that although PRIM cannot detect exactly a complete set of true signature variables in
the presence of noise variables, it can frequently reveal some of them. The underlying assumption of the
scheme is that variables repeatedly selected by PRIM in random samples of a population are likely to be
true signature variables. For reference later, we call the search procedure coupled with the resampling
scheme as Re-PRIM.

4. A simulation study

4.1. Simulation setup

To study the procedure’s performance under different scenarios, we first describe a simulation setup
as a baseline scenario and then compare it with other scenarios having different parameter settings.
For signature-positive patients, their survival time S in a control arm follows an exponential model
with a parameter 𝜆+ctl, S ∼ exp(𝜆+ctl), and their survival time in a treatment arm S ∼ exp(𝜆+trt). For
signature-negative patients, their survival time S ∼ exp(𝜆−ctl) for the control arm and S ∼ exp(𝜆−trt) for
the treatment arm. Survival time is randomly right-censored with probability 0.2. We assume 𝜆+trt =
0.05, 𝜆+ctl = 𝜆−trt = 𝜆−ctl = 0.1. The hazard ratio 𝜆+trt∕𝜆

+
ctl = 0.5 indicates a reasonable treatment effect

for the signature-positive group while the ratio 𝜆−trt∕𝜆
−
ctl = 1 represents no treatment effect for the

signature-negative group.
Two signature variables were simulated from a uniform distribution: X1,X2 ∼ U(0, 1). The conjunctive

rules of 0.2 ⩽ x1 ⩽ 0.9 and 0.2 ⩽ x2 ⩽ 0.9 define a patient to be a signature-positive patient if his or her x1
and x2 values fall into the ranges. Later, we would also check the situation where the number of signature
variables is increased to four. The percentage of signature-positive patients is known as prevalence. The
prevalence given the aforementioned rules is around 50%. In addition to the signature variables, we also
considered some noise variables as input variables of PRIM. A noise variable is generated from the
same uniform distribution but is not involved in a signature definition. Denote by pn the number of noise
variables. We examined settings where pn = 0, 2, 4, 6, 8, 32, 128. With 32 or 128 noise variables, we tested
the algorithm in the limit of its working conditions. It is less feasible to involve much more variables than
the range we consider here for PRIM to properly identify predictive signatures in the settings of clinical
trials. This is due to the challenges of limited sample size and realistic effect sizes in these applications.
On the other hand, according to our experiences, it is not atypical that in an analysis task a signature is
requested to learn from 8 or 10 variables. We will also evaluate PRIM’s performance with eight variables
for two real-world data sets later. In another study of rule-based subgroup identification [13], Lipkovich
et al. conducted their simulation study in a similar scale in terms of the number of variables (given a
sample size 900) with continuous responses, reflecting the same challenges as we face. We consider the
total number of patients or the sample size n = 200, 400, 800, 1600, and 3200. For every setting, an
equal number of patients were assigned to each arm in each signature group. The range of sample sizes
demonstrates situations of large clinical phase II or III studies. As we will see later in this section, less
than 200 samples are not sufficient for PRIM to work for most of settings involving noise variables.

We refer to the aforementioned parameter settings as scenario 1. Later, we will report results on sce-
narios with a different number of signature variables, different prevalence, and a different effect size.
Please see Table I for reference. The settings of these scenarios will be detailed when their results are
presented. For each scenario, we simulated 1000 data sets and provided their performance summary. We
compared the approach of collecting a single set of conjunctive rules (by applying the search procedure
once) with the approach of collecting multiple rule sets by covering. They share similar performance in
the simulation study. We will discuss results from the former approach because it allows us to directly
compare estimated lower and upper bounds for signature variables with their true values. The minimum
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Table I. The parameter settings of different scenarios in simulation study.

Scenario ID 𝜆+trt 𝜆+ctl 𝜆−trt 𝜆−ctl Signature variables Lower bound Upper bound

Scenario 1 0.05 0.10 0.10 0.10 x1, x2 0.20 0.90
Scenario 2 0.05 0.10 0.10 0.10 x1, x2, x3, x4 0.00 0.85
Scenario 3 0.05 0.10 0.10 0.10 x1, x2 0.05 0.90
Scenario 4 0.025 0.10 0.10 0.10 x1, x2 0.20 0.90

support of signature-positive groups was set at 20 for controlling stop of peelings. To give an idea about
how fast the implemented procedure is, we recorded its running time for all the data sets in scenario 4
and will report timing summary when we discuss results in that scenario.

4.2. Performance measures

After PRIM is applied to a simulated data set, one can imagine three possible scenarios of how well it
detects true signature variables: (i) all true signature variables are captured, and no additional (noise) vari-
ables enter a signature; (ii) besides all true signature variables, some noise variables are returned; and (iii)
the algorithm reports only some (or none) of true signature variables, possibly along with noise variables.
The last two situations indicate partially correct results. To examine different degrees of correctness, we
define different performance measures. The number of exact detection, nE, counts cases where the first
situation happens in each simulation parameter setting. lEi and uEi are respective means of detected lower
bounds and upper bounds of a signature variable xi in 1000 simulated data sets. The number of inclusive
detection, nI , reports the number of cases where all signature variables are captured by a final rule set,
which reflects the first and the second scenarios. Correspondingly, lIi and uIi are the respective means of
detected lower and upper bounds of xi. The number of marginal detection, nMi, is the number of cases
where a signature variable xi is ever detected in all three situations. lMi is the mean of detected lower
bounds of xi, and uMi is the mean of detected upper bounds.

As an overall measure for patient stratification, classification measures such as sensitivity or recall
rsens, specificity rspec, and precision rprec are reported. In the framework of a two-class problem, signature-
positive patients are defined as observations in a positive class (or success class), and signature-negative
patients are labelled as observations in a negative class (or failure class). Given these two classes,
rsens denotes the proportion of true signature-positive patients detected among true signature-positive
patients; rspec is defined as the proportion of true signature-negative patients detected among true
signature-negative patients; rprec is the proportion of true signature-positive patients detected among
signature-positive patients claimed by the procedure. Note that rsens, rspec, and rprec were computed in
testing data rather than training: A signature was first learned from one data set and then applied to other
data sets in the same simulation setting, and performance measurements in testing data sets were aver-
aged to evaluate generalizability of a method. For example, given a scenario of 200 samples in a data
set, a signature is learned from the data set and then is used to stratify samples in the other 999 data sets
under the same simulation parameter setting (with 200 samples in each of the testing data sets). After
stratification, the numbers of true/false positives and true/false negatives are collected for each testing
data set. Based on the classification results, sensitivity, specificity, and precision are calculated—these
three numbers are corresponding to the signature learned from one data set. Because there are 1000 data
sets in each parameter setting, the aforementioned process is repeated for 1000 learned signatures. The
results are then averaged for the 1000 signatures.

Because the goal of patient stratification is to identify a subpopulation having an improved treatment
effect, a direct performance check is to examine whether the p-value indicating the treatment effect is
improved or not in a signature-positive group. Specifically, let pv denote the p-value of a one-sided test
that examines whether patients receiving an investigational treatment respond better than patients treated
by an SOC; given pv+ and pv−, respectively, generated from the same test for patients in a signature-
positive group and in a signature-negative group (as previously defined in Section 2), we check whether
pv+ is smaller than pv, that is, whether we observe a better efficacy in the signature-positive group; we
also calculate pv− to see whether the interaction-effect constraint pv+ < pv− holds in a stratification.
Consistent with the calculation of the classification measures, p-values were computed in each testing
data set, resulting 999 p-values of each type (for example, pv+) for a learned signature and thus 1000×999
p-values of each type for 1000 learned signatures in each parameter setting. Medians of p-values of each
type were reported as performance measures because of skewness of p-value distributions.
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Table II. The results of exact and inclusive detections in scenario 1 for PRIM.

n pn nE lE1 lE2 uE1 uE2 nI lI1 lI2 uI1 uI2

200 0 790 0.20 0.19 0.86 0.86 790 0.20 0.19 0.86 0.86
400 0 860 0.21 0.21 0.86 0.86 860 0.21 0.21 0.86 0.86
800 0 883 0.20 0.20 0.89 0.87 883 0.20 0.20 0.89 0.87
1600 0 937 0.19 0.19 0.90 0.90 937 0.19 0.19 0.90 0.90
3200 0 988 0.19 0.19 0.91 0.90 988 0.19 0.19 0.91 0.90

200 2 101 0.17 0.16 0.89 0.89 653 0.15 0.16 0.89 0.89
400 2 150 0.17 0.17 0.90 0.91 714 0.18 0.18 0.89 0.89
800 2 245 0.17 0.18 0.92 0.91 785 0.18 0.18 0.90 0.90
1600 2 430 0.17 0.16 0.92 0.92 877 0.17 0.17 0.91 0.91
3200 2 661 0.18 0.18 0.92 0.92 974 0.18 0.18 0.91 0.91

200 4 45 0.18 0.15 0.93 0.90 548 0.13 0.13 0.91 0.91
400 4 79 0.18 0.18 0.91 0.92 628 0.16 0.17 0.90 0.90
800 4 173 0.17 0.17 0.93 0.93 702 0.16 0.16 0.91 0.91
1600 4 308 0.17 0.16 0.93 0.93 797 0.16 0.16 0.92 0.92
3200 4 604 0.17 0.17 0.92 0.92 954 0.17 0.18 0.92 0.92

200 6 24 0.19 0.16 0.92 0.89 462 0.12 0.12 0.92 0.91
400 6 47 0.17 0.18 0.91 0.93 538 0.15 0.14 0.91 0.91
800 6 133 0.17 0.17 0.92 0.92 638 0.16 0.15 0.91 0.91
1600 6 286 0.16 0.15 0.93 0.94 738 0.16 0.16 0.92 0.92
3200 6 599 0.17 0.18 0.92 0.93 952 0.17 0.18 0.92 0.92

200 8 23 0.14 0.17 0.91 0.92 393 0.11 0.11 0.92 0.92
400 8 40 0.17 0.17 0.94 0.94 489 0.14 0.13 0.92 0.91
800 8 115 0.17 0.16 0.93 0.93 575 0.15 0.14 0.92 0.92
1600 8 256 0.17 0.17 0.94 0.95 710 0.16 0.16 0.93 0.93
3200 8 594 0.17 0.18 0.93 0.93 935 0.17 0.17 0.93 0.93

200 32 1 0.01 0.21 0.91 1.00 136 0.08 0.07 0.94 0.94
400 32 8 0.18 0.20 0.96 0.95 221 0.08 0.08 0.94 0.94
800 32 36 0.16 0.16 0.96 0.95 289 0.11 0.10 0.94 0.94
1600 32 141 0.16 0.15 0.95 0.95 424 0.13 0.13 0.95 0.94
3200 32 493 0.17 0.17 0.94 0.95 786 0.16 0.16 0.94 0.94

200 128 0 — — — — 20 0.05 0.04 0.95 0.94
400 128 0 — — — — 35 0.06 0.06 0.96 0.97
800 128 4 0.12 0.10 0.94 0.94 87 0.07 0.07 0.96 0.95
1600 128 37 0.14 0.15 0.98 0.98 141 0.11 0.11 0.96 0.96
3200 128 352 0.17 0.17 0.97 0.97 517 0.16 0.16 0.96 0.96

4.3. A baseline scenario

When no noise variable is involved (settings with pn = 0 in Table II), even with a sample size n =
200, PRIM can well detect true signature variables and corresponding lower and upper bounds exactly.
However, when noise variables are also given as input, the number of exact detection nE substantially
drops. For example, there are only 45 hits of 1000 runs in exact detection for n = 200 and pn = 4.
To achieve a reasonable exact-detection rate and accurate bound estimation in the presence of noise
variables, sample sizes need to be no less than 3200 for pn ⩽ 8, as highlighted by bold fronts in Table II.
On the other hand, requiring a smaller sample size for inclusive detection, the procedure can return true
signature variables and their bounds in a considerable number of runs, for example, nI = 714 for the
setting with n = 400 and pn = 2; nI = 702 for n = 800 and pn = 4. There are also a good number of
hits (nI = 786) with the sample size 3200 for 32 noise variables. This partially correct detection can also
be observed for marginal detection. Because of the partial detection, the procedure achieves reasonably
high rsens, rspec, and rprec (see bold fonts in Table III). As a reference for comparison, stratification results
from a random procedure are listed in braces in the table. The procedure randomly selects variables and
their bounds to create signatures under the constraint of the same minimum support of signature-positive
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Table III. The results of marginal detection and stratification in scenario 1 for PRIM.

n pn nM1 nM2 lM1 lM2 uM1 uM2 rsens rspec rprec pv pv+ pv−

200 0 894 895 0.21 0.20 0.86 0.85 0.70 (0.47) 0.76 (0.71) 0.76 (0.60) 8.4E-03 1.2E-02 1.7E-01
400 0 929 931 0.21 0.21 0.86 0.86 0.72 (0.44) 0.78 (0.73) 0.81 (0.60) 2.7E-04 3.3E-04 1.2E-01
800 0 938 945 0.20 0.20 0.89 0.88 0.80 (0.42) 0.79 (0.74) 0.82 (0.59) 8.7E-07 1.6E-07 1.3E-01
1600 0 971 966 0.19 0.18 0.90 0.90 0.90 (0.43) 0.83 (0.74) 0.86 (0.60) 4.7E-12 4.3E-15 1.7E-01
3200 0 994 994 0.19 0.19 0.91 0.90 0.94 (0.41) 0.89 (0.74) 0.90 (0.58) 3.7E-22 7.5E-31 2.1E-01

200 2 804 794 0.16 0.17 0.89 0.88 0.61 (0.33) 0.71 (0.84) 0.70 (0.68) 8.4E-03 2.0E-02 1.0E-01
400 2 839 850 0.18 0.18 0.88 0.89 0.63 (0.25) 0.73 (0.90) 0.74 (0.70) 2.7E-04 1.1E-03 4.9E-02
800 2 889 880 0.18 0.18 0.90 0.90 0.73 (0.21) 0.73 (0.93) 0.77 (0.71) 8.7E-07 1.0E-06 4.9E-02
1600 2 940 933 0.17 0.17 0.91 0.91 0.85 (0.19) 0.76 (0.93) 0.80 (0.70) 4.7E-12 6.9E-14 7.9E-02
3200 2 985 989 0.18 0.18 0.91 0.91 0.92 (0.18) 0.85 (0.94) 0.88 (0.72) 3.7E-22 1.1E-29 1.5E-01

200 4 729 709 0.15 0.15 0.91 0.91 0.57 (0.28) 0.68 (0.83) 0.65 (0.61) 8.4E-03 2.7E-02 8.5E-02
400 4 769 789 0.16 0.17 0.90 0.91 0.58 (0.22) 0.70 (0.90) 0.69 (0.67) 2.7E-04 2.1E-03 3.2E-02
800 4 834 842 0.17 0.16 0.91 0.91 0.71 (0.17) 0.68 (0.93) 0.72 (0.68) 8.7E-07 2.3E-06 3.4E-02
1600 4 900 886 0.17 0.16 0.92 0.92 0.83 (0.14) 0.71 (0.95) 0.77 (0.71) 4.7E-12 3.0E-13 5.3E-02
3200 4 973 981 0.17 0.18 0.92 0.92 0.92 (0.09) 0.82 (0.97) 0.85 (0.70) 3.7E-22 5.5E-29 1.3E-01

200 6 659 651 0.13 0.13 0.91 0.91 0.54 (0.26) 0.66 (0.77) 0.62 (0.55) 8.4E-03 3.2E-02 7.3E-02
400 6 698 723 0.15 0.15 0.91 0.91 0.57 (0.17) 0.67 (0.86) 0.66 (0.57) 2.7E-04 2.8E-03 2.6E-02
800 6 801 786 0.16 0.15 0.91 0.92 0.68 (0.13) 0.66 (0.89) 0.70 (0.59) 8.7E-07 4.7E-06 2.1E-02
1600 6 869 857 0.16 0.16 0.93 0.92 0.82 (0.11) 0.68 (0.91) 0.74 (0.60) 4.7E-12 7.0E-13 4.9E-02
3200 6 969 982 0.17 0.18 0.92 0.92 0.91 (0.08) 0.81 (0.94) 0.84 (0.64) 3.7E-22 1.8E-28 1.1E-01

200 8 608 598 0.11 0.12 0.92 0.92 0.53 (0.32) 0.64 (0.71) 0.60 (0.54) 8.4E-03 3.4E-02 7.0E-02
400 8 663 671 0.14 0.14 0.92 0.92 0.56 (0.20) 0.65 (0.83) 0.64 (0.58) 2.7E-04 3.2E-03 2.4E-02
800 8 753 752 0.15 0.15 0.93 0.92 0.69 (0.13) 0.63 (0.91) 0.67 (0.63) 8.7E-07 5.6E-06 2.2E-02
1600 8 849 839 0.16 0.16 0.93 0.93 0.81 (0.08) 0.66 (0.95) 0.73 (0.66) 4.7E-12 1.5E-12 3.7E-02
3200 8 962 972 0.17 0.17 0.93 0.93 0.91 (0.05) 0.78 (0.98) 0.82 (0.68) 3.7E-22 3.8E-28 1.2E-01

200 32 321 330 0.09 0.09 0.94 0.94 0.48 (0.29) 0.59 (0.71) 0.53 (0.49) 8.4E-03 5.0E-02 5.1E-02
400 32 426 430 0.09 0.09 0.94 0.94 0.51 (0.21) 0.59 (0.79) 0.56 (0.49) 2.7E-04 7.2E-03 1.2E-02
800 32 506 503 0.12 0.11 0.95 0.95 0.63 (0.14) 0.54 (0.86) 0.58 (0.49) 8.7E-07 3.3E-05 5.9E-03
1600 32 654 648 0.13 0.13 0.95 0.95 0.81 (0.10) 0.51 (0.90) 0.63 (0.49) 4.7E-12 1.1E-11 2.4E-02
3200 32 879 895 0.16 0.16 0.94 0.94 0.91 (0.07) 0.68 (0.93) 0.75 (0.49) 3.7E-22 1.1E-26 1.2E-01

200 128 131 117 0.07 0.06 0.95 0.95 0.44 (0.36) 0.58 (0.64) 0.50 (0.49) 8.4E-03 6.0E-02 4.2E-02
400 128 151 185 0.06 0.07 0.95 0.95 0.47 (0.33) 0.56 (0.67) 0.51 (0.49) 2.7E-04 1.2E-02 8.1E-03
800 128 268 279 0.09 0.09 0.96 0.96 0.60 (0.33) 0.47 (0.67) 0.53 (0.49) 8.7E-07 7.8E-05 3.1E-03
1600 128 394 371 0.11 0.11 0.96 0.96 0.78 (0.33) 0.39 (0.67) 0.56 (0.49) 4.7E-12 1.6E-10 5.6E-03
3200 128 712 725 0.15 0.15 0.96 0.96 0.92 (0.32) 0.52 (0.68) 0.67 (0.49) 3.7E-22 4.8E-25 1.4E-01

groups as the one specified for PRIM. In this comparison, PRIM is much more sensitive and more precise
than the random procedure while being reasonably specific. Comparing to sample sizes needed for good
classification results, a larger sample size is required to observe an improved efficacy in a signature-
positive group as indicated by pv+ < pv (Table III). For example, in the case of no noise variable, n = 800
rather than n = 200 is necessary for pv+ to be less than pv. For pn = 8, n = 1600 is required. When
pn goes up to 32 and 128, n = 3200 becomes the only sample size, which makes it possible to observe
improved treatment effects for signature-positive patients. We observed pv+ < pv− for all sample sizes,
which indicates the interaction-effect constraint generally holds in the results.

4.4. Resampling in the baseline scenario given 32 noise variables

As shown in Table IV, when Re-PRIM with k = 2 is applied to the cases of pn = 32, it substantially
improves the performance of PRIM under every sample-size condition listed in Table II. In another way
of understanding the results, we note that Re-PRIM needs less samples to make accurate detection: For
exact detection, with n = 1600 instead of n = 3200, the method can detect the signature for 600 out
of 1000 runs. With respect to stratification accuracy and p-values, the performance with n = 1600 in
Table V is also much superior to the one (with n = 1600 and pn = 32) in Table III, where resampling was
not employed. These results represent an ideal situation where the number of true signature variables is
assigned to k, the parameter of Re-PRIM for determining the number of selected variables as final input
of PRIM. If a larger k value is pre-specified, results are expected not to be better than those given an
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Table IV. The results of exact detection in scenario 1 for Re-PRIM given pn = 32.

n pn nE lE1 lE2 uE1 uE2

200 32 30 0.16 0.20 0.87 0.88
400 32 77 0.21 0.19 0.87 0.86
800 32 261 0.21 0.20 0.89 0.88
1600 32 600 0.19 0.19 0.90 0.90
3200 32 936 0.19 0.19 0.90 0.90

Note: The results of inclusive detection are not shown because they are the same as those
of exact detection when the number of input variables for the final learning is constrained
to the number of true signature variables.

Table V. The results of marginal detection and stratification in scenario 1 for Re-PRIM given pn = 32.

n pn nM1nM2 lM1 lM2 uM1 uM2 rsens rspec rprec pv pv+ pv−

200 32 200 218 0.20 0.20 0.86 0.86 0.54 0.57 0.55 8.4E-03 3.9E-02 6.6E-02
400 32 312 310 0.21 0.21 0.86 0.86 0.59 0.58 0.59 2.7E-04 3.1E-03 2.6E-02
800 32 537 533 0.20 0.19 0.89 0.88 0.72 0.61 0.67 8.7E-07 3.3E-06 2.8E-02
1600 32 793 765 0.19 0.18 0.90 0.90 0.86 0.72 0.78 4.7E-12 7.6E-14 8.0E-02
3200 32 971 965 0.19 0.19 0.90 0.91 0.93 0.87 0.89 3.7E-22 1.4E-30 2.0E-01

equivalent number of input noise variables. When the number of true signature variables is greater than a
prescribed value of k, the resampling scheme induces bias by enforcing rule simplification while it reduces
instability. Therefore, their trade-off decides whether the scheme can enhance PRIM’s performance. In
practice, cross-validation can be employed to choose an optimal parameter value in terms of predictive
performance.

4.5. A scenario with more signature variables

We next investigate a scenario where the number of signature variables increases from two to four (sce-
nario 2 in Table I). x3 and x4 are the additional signature variables. To maintain prevalence around 50%,
the rules are tuned to be 0 ⩽ xi ⩽ 0.85, for i = 1, 2, 3, 4. In this situation, a much larger sample size is
required for PRIM to return proper results for both exact detection and inclusive detection (Table VI) in
comparison with the baseline scenario (Table II). For example, n = 3200 (instead of n = 200) is needed
for the detection given no noise variable. Such a large sample size does not empower either the exact
detection or inclusive detection after four or more noise variables are added. A minimal sample size 1600
is also required by marginal detection given pn ⩽ 8, and n = 3200 is needed given pn = 32 (Table VII). To
achieve satisfactory classification performance, n = 800 is necessary for the cases of pn ⩽ 8, and again,
n = 3200 is demanded when pn is increased to 32. To achieve improved p-values in signature-positive
groups, the method needs at least 1600 samples given pn ⩽ 8 and 3200 samples for pn = 32. As previously
seen in the baseline scenario, Re-PRIM with k = 4 considerably boosts exact detection (Table VIII) in
comparison to the results without involving resampling-based variable selection (Table VI). The method
also substantially enhances marginal detection and stratification performance (Table IX).

4.6. A scenario with increased prevalence

To cover the scenario with a larger signature-positive population, we increased prevalence from 50%
to 72% by decreasing the lower bound of a signature variable from 0.20 to 0.05 while keeping other
parameter values the same (see scenario 3 in Table I). The increased positive signals in the data lead to
the following changes in stratification results: On average, rsens and rprec are increased by 9% and 20%,
respectively, while rspec is decreased by 9%. Other results are similar to previous ones (Tables II and III).

4.7. A scenario with a relatively large effect size

We change 𝜆+trt from 0.05 to 0.025, making a scenario where the effect size is increased twice as much as
in the baseline scenario. This change decreases the hazard ratio in the signature-positive group from 0.5
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Table VIII. The results of exact detection in scenario 2 for Re-PRIM given pn = 32.

n pn nE lE1 lE2 lE3 lE4 uE1 uE2 uE3 uE4

200 32 0 — — — — — — — —
400 32 0 — — — — — — — —
800 32 12 0.02 0.04 0.01 0.05 0.84 0.85 0.86 0.85
1600 32 78 0.01 0.03 0.03 0.02 0.84 0.85 0.85 0.85
3200 32 463 0.01 0.01 0.01 0.01 0.85 0.85 0.85 0.85

to 0.25 (scenario 4 in Table I). As highlighted in Table X, PRIM only needs n = 800 to achieve similar
results in Table II for pn = 2 or 4 in exact detection. That is, only one quarter of the previously required
sample size is needed. Similarly, it asks for n = 1600, one-half of the previous sample size to make
better detection given pn = 6 or 8. With 1600 samples, the method can achieve good results for pn = 32
or 128, which is not obtainable even with 3200 samples in the baseline scenario. Sample sizes are also
reduced by at least one-half for inclusive detection. The similar situation holds for marginal detection
and stratification (Table XI). For example, given pn = 8, n = 400 is sufficient for satisfactory results.
That is, PRIM works well with one-fourth of the corresponding required sample size in Table III. With
many noise variables as in the case of pn = 128, the method also performs reasonably given n = 1600.

Figure 5 shows the running time of the method, the averages for 1000 data sets in each parameter
setting of scenario 4. We conducted the simulations with R version 3.0.2 in computing servers that have
dual Intel E5-2650L processors and at least 64 GB memory. Our program can finish within a few minutes
given pn = 8 and n = 3200 and return results in a couple of hours when pn increases to 128. As suggested
by the algorithmic complexity O(p log n) (see discussion at the end of Section 3.1), the running time
approximately shows logarithmic growth as sample size increases and linear growth given the increasing
number of variables.

We summarize PRIM’s performance in the simulation study as follows. PRIM can perform well in
exact detection with hundreds of samples given no presence of noise variables, but this becomes less
impressive as the number of true signature variables increases. However, given a few thousand samples
that might be available in large phase III or even phase II trials, PRIM is capable of detecting at least some
of true signature variables and thus stratifying a good number of patients into right groups in the presence
of a moderate number of noise variables (up to 32 noise variables in our simulation study). Coupling
with the proposed resampling scheme, PRIM can achieve satisfactory results with a substantially less
number of samples. In scenarios having a relatively large but still realistic effect size, PRIM asks for no
more than 1000 samples to accurately detect cutoffs and a few hundred samples to reasonably stratify
patients given a small number of noise variables; moreover, it needs less than 2000 samples to perform
well given 100 noise variables or so. Overall, the simulation study provides a general idea on conditions
that enable PRIM to propose a relevant stratification of patients for therapy, such as manageable number
of input variables and required sample sizes given different effect sizes.

5. Two case studies of real-world data sets

5.1. The data

We apply PRIM, Re-PRIM, and AIM to two real-world data sets collected by Loi et al. [14] and Lenz
et al. [15], respectively. As part of the first study, gene expression was measured on an Affymetrix whole
genome microarray platform for 414 patients with estrogen receptor (ER)-positive breast carcinomas.
Among them, 137 patients received no systemic adjuvant treatment, and 277 patients received adjuvant
tamoxifen only. To phrase the case in our terms, we refer to the untreated population as the control arm and
the tamoxifen-treated population as the treatment arm even though the cohorts involved are not part of a
single randomized trial. Relapse-free survival with right censoring was used as the clinical endpoint. We
excluded 21 patients from analysis because their event indicators were missing. All the data are available
at the Gene Expression Omnibus or GEO database with ID GSE6532. The other retrospective study [15]
profiled gene expression (by Affymetrix chips) of 414 patients with diffuse large-B-cell lymphoma—
181 patients received a combination chemotherapy with cyclophosphamide, doxorubicin, vincristine, and
prednisone (CHOP), and 233 patients received rituximab in addition to CHOP (R-CHOP). To standardize
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Table X. The results of exact and inclusive detections in scenario 4 for PRIM.

n pn nE lE1 lE2 uE1 uE2 nI lI1 lI2 uI1 uI2

200 0 884 0.18 0.18 0.89 0.89 884 0.18 0.18 0.89 0.89
400 0 929 0.19 0.19 0.90 0.90 929 0.19 0.19 0.90 0.90
800 0 969 0.19 0.19 0.91 0.90 969 0.19 0.19 0.91 0.90
1600 0 997 0.19 0.19 0.91 0.90 997 0.19 0.19 0.91 0.90
3200 0 1000 0.20 0.20 0.90 0.90 1000 0.20 0.20 0.90 0.90

200 2 266 0.17 0.17 0.93 0.91 762 0.16 0.16 0.91 0.90
400 2 430 0.17 0.17 0.92 0.92 850 0.17 0.17 0.91 0.91
800 2 630 0.18 0.18 0.92 0.92 941 0.18 0.18 0.91 0.91
1600 2 784 0.19 0.19 0.91 0.91 997 0.19 0.19 0.91 0.91
3200 2 775 0.19 0.20 0.90 0.90 1000 0.20 0.20 0.90 0.90

200 4 176 0.16 0.16 0.93 0.93 687 0.14 0.14 0.91 0.92
400 4 334 0.17 0.16 0.93 0.93 789 0.17 0.16 0.92 0.92
800 4 580 0.17 0.17 0.92 0.93 925 0.17 0.17 0.92 0.92
1600 4 741 0.19 0.19 0.91 0.91 996 0.19 0.19 0.91 0.91
3200 4 772 0.19 0.19 0.90 0.90 1000 0.19 0.20 0.90 0.90

200 6 130 0.15 0.15 0.93 0.94 624 0.13 0.14 0.92 0.92
400 6 300 0.17 0.16 0.93 0.93 733 0.16 0.15 0.93 0.93
800 6 542 0.18 0.18 0.92 0.93 886 0.17 0.17 0.92 0.92
1600 6 771 0.19 0.19 0.92 0.91 994 0.19 0.19 0.91 0.91
3200 6 796 0.19 0.19 0.90 0.90 1000 0.19 0.19 0.90 0.90

200 8 82 0.15 0.17 0.92 0.94 526 0.13 0.13 0.93 0.93
400 8 259 0.17 0.16 0.94 0.93 677 0.15 0.15 0.93 0.93
800 8 531 0.18 0.18 0.92 0.93 862 0.17 0.17 0.92 0.93
1600 8 748 0.19 0.19 0.92 0.92 992 0.19 0.19 0.91 0.91
3200 8 795 0.19 0.19 0.91 0.91 1000 0.19 0.19 0.90 0.90

200 32 15 0.15 0.17 0.95 0.95 202 0.10 0.10 0.95 0.95
400 32 112 0.15 0.15 0.95 0.95 374 0.12 0.12 0.95 0.94
800 32 406 0.16 0.17 0.95 0.95 693 0.16 0.16 0.94 0.94
1600 32 747 0.18 0.18 0.93 0.92 960 0.18 0.18 0.92 0.92
3200 32 820 0.19 0.19 0.91 0.91 999 0.19 0.19 0.91 0.91

200 128 3 0.23 0.17 0.94 1.00 36 0.09 0.07 0.96 0.97
400 128 24 0.15 0.13 0.96 0.95 103 0.11 0.11 0.95 0.96
800 128 218 0.17 0.17 0.97 0.97 346 0.15 0.15 0.96 0.96
1600 128 721 0.18 0.17 0.94 0.94 884 0.17 0.17 0.94 0.94
3200 128 890 0.19 0.19 0.91 0.91 998 0.19 0.19 0.91 0.91

terms, we refer to the group treated with CHOP as the control arm and the group treated with R-CHOP
as the treatment arm. Clinical responses are given by overall survival with right censoring. These data
can also be downloaded from the GEO database with ID GSE10846.

5.2. Procedure setup

We first present results of PRIM and Re-PRIM by only employing a single set of (conjunctive) rules and
then discuss the utility of covering (multiple rule sets). The number of selected variables for Re-PRIM,
k, is set at two given limited sample sizes in these two data sets. We applied the AIM implementation
in the published R package AIM: To allow AIM to have an option analogous to pasting in PRIM, we
specified AIM’s parameter backfit = TRUE; to permit two splits for each variable as in PRIM, the
parameter maxnumcut was set at two; we assigned 0.05 to mincut to make AIM’s minimum cutting
proportion comparable with the minimum value of 𝛼 in PRIM; other parameters kept their default values.
The aforementioned parameter settings make the AIM procedure more flexible than its default version
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Table XI. The results of marginal detection and stratification in scenario 4 for PRIM.

n pn nM1 nM2 lM1 lM2 uM1 uM2 rsens rspec rprec pv pv+ pv−

200 0 943 941 0.19 0.18 0.89 0.89 0.83 (0.47) 0.77 (0.71) 0.81 (0.60) 4.6E-006 1.4E-006 1.4E-001
400 0 962 967 0.19 0.19 0.90 0.90 0.88 (0.44) 0.82 (0.73) 0.85 (0.60) 1.4E-010 6.7E-013 1.5E-001
800 0 985 984 0.19 0.19 0.91 0.90 0.93 (0.42) 0.87 (0.74) 0.89 (0.59) 3.2E-019 9.7E-026 1.7E-001
1600 0 999 998 0.19 0.19 0.91 0.90 0.96 (0.43) 0.93 (0.74) 0.94 (0.60) 5.4E-037 4.4E-053 1.7E-001
3200 0 1000 1000 0.20 0.20 0.90 0.90 0.97 (0.41) 0.96 (0.74) 0.96 (0.58) 7.5E-072 1.3E-107 1.8E-001

200 2 880 863 0.16 0.17 0.91 0.90 0.76 (0.33) 0.71 (0.84) 0.74 (0.68) 4.6E-006 6.4E-006 5.8E-002
400 2 920 927 0.17 0.17 0.92 0.91 0.85 (0.25) 0.75 (0.90) 0.79 (0.70) 1.4E-010 5.5E-012 9.4E-002
800 2 970 971 0.18 0.18 0.91 0.91 0.92 (0.21) 0.83 (0.93) 0.86 (0.71) 3.2E-019 1.1E-024 1.2E-001
1600 2 999 998 0.19 0.19 0.91 0.91 0.96 (0.19) 0.91 (0.93) 0.92 (0.70) 5.4E-037 3.7E-052 1.6E-001
3200 2 1000 1000 0.20 0.20 0.90 0.90 0.97 (0.18) 0.96 (0.94) 0.96 (0.72) 7.5E-072 2.0E-107 1.8E-001

200 4 829 813 0.15 0.15 0.91 0.92 0.72 (0.28) 0.67 (0.83) 0.70 (0.61) 4.6E-006 1.5E-005 3.5E-002
400 4 890 894 0.17 0.16 0.92 0.92 0.84 (0.22) 0.71 (0.90) 0.76 (0.67) 1.4E-010 1.7E-011 6.3E-002
800 4 967 958 0.17 0.17 0.92 0.92 0.91 (0.17) 0.80 (0.93) 0.83 (0.68) 3.2E-019 4.5E-024 9.8E-002
1600 4 998 998 0.19 0.19 0.91 0.91 0.95 (0.14) 0.91 (0.95) 0.91 (0.71) 5.4E-037 1.0E-051 1.4E-001
3200 4 1000 1000 0.19 0.20 0.90 0.90 0.97 (0.09) 0.95 (0.97) 0.95 (0.70) 7.5E-072 3.1E-107 1.9E-001

200 6 785 779 0.14 0.14 0.92 0.92 0.70 (0.26) 0.65 (0.77) 0.68 (0.55) 4.6E-006 2.4E-005 2.5E-002
400 6 845 873 0.16 0.15 0.93 0.93 0.83 (0.17) 0.68 (0.86) 0.74 (0.57) 1.4E-010 3.4E-011 5.6E-002
800 6 937 947 0.17 0.17 0.92 0.92 0.90 (0.13) 0.77 (0.89) 0.82 (0.59) 3.2E-019 1.2E-023 8.6E-002
1600 6 998 996 0.19 0.19 0.91 0.91 0.95 (0.11) 0.90 (0.91) 0.91 (0.60) 5.4E-037 2.1E-051 1.4E-001
3200 6 1000 1000 0.19 0.19 0.90 0.90 0.98 (0.08) 0.95 (0.94) 0.95 (0.64) 7.5E-072 3.3E-107 2.0E-001

200 8 712 728 0.14 0.13 0.93 0.93 0.69 (0.32) 0.62 (0.71) 0.65 (0.54) 4.6E-006 3.3E-005 2.1E-002
400 8 818 836 0.16 0.15 0.93 0.93 0.82 (0.20) 0.65 (0.83) 0.72 (0.58) 1.4E-010 6.5E-011 4.3E-002
800 8 930 930 0.17 0.17 0.92 0.93 0.90 (0.13) 0.76 (0.91) 0.81 (0.63) 3.2E-019 1.9E-023 8.7E-002
1600 8 998 994 0.19 0.19 0.91 0.91 0.95 (0.08) 0.89 (0.95) 0.90 (0.66) 5.4E-037 4.9E-051 1.3E-001
3200 8 1000 1000 0.19 0.19 0.90 0.90 0.97 (0.05) 0.95 (0.98) 0.95 (0.68) 7.5E-072 4.8E-107 2.0E-001

200 32 452 415 0.11 0.11 0.95 0.95 0.62 (0.29) 0.53 (0.71) 0.57 (0.49) 4.6E-006 1.6E-004 6.4E-003
400 32 584 632 0.12 0.12 0.95 0.95 0.79 (0.21) 0.49 (0.79) 0.62 (0.49) 1.4E-010 9.3E-010 1.6E-002
800 32 833 844 0.16 0.15 0.94 0.94 0.91 (0.14) 0.62 (0.86) 0.72 (0.49) 3.2E-019 3.9E-022 1.1E-001
1600 32 982 978 0.18 0.18 0.92 0.92 0.95 (0.10) 0.83 (0.90) 0.86 (0.49) 5.4E-037 2.1E-049 1.4E-001
3200 32 1000 999 0.19 0.19 0.91 0.91 0.97 (0.07) 0.94 (0.93) 0.94 (0.49) 7.5E-072 3.7E-106 1.9E-001

200 128 181 182 0.10 0.09 0.96 0.96 0.58 (0.36) 0.47 (0.64) 0.51 (0.49) 4.6E-006 3.8E-004 3.0E-003
400 128 336 336 0.11 0.11 0.96 0.96 0.75 (0.33) 0.39 (0.67) 0.55 (0.49) 1.4E-010 6.8E-009 4.4E-003
800 128 595 603 0.14 0.14 0.96 0.96 0.90 (0.33) 0.44 (0.67) 0.62 (0.49) 3.2E-019 4.2E-020 5.7E-002
1600 128 932 949 0.17 0.17 0.94 0.94 0.95 (0.33) 0.73 (0.67) 0.79 (0.49) 5.4E-037 3.7E-047 1.7E-001
3200 128 1000 998 0.19 0.19 0.91 0.91 0.98 (0.32) 0.92 (0.68) 0.92 (0.49) 7.5E-072 6.9E-105 2.4E-001

Sample size

R
un

ni
ng

 ti
m

e 
(in

 s
ec

on
ds

)

200
400

800
1600

3200

0
2
4
6
8

50
10

0
15

0

0
10

00
20

00
30

00
40

00

Sample size

R
un

ni
ng

 ti
m

e 
(in

 s
ec

on
ds

)

200
400

800
1600

3200

32
128

Figure 5. Running time of PRIM for scenario 4 (given different noise variables).

and thus lead to a fair comparison with PRIM. To stratify patients by AIM, we followed the approach
suggested by its inventors (see details in Section 2): Given index scores computed by AIM, patients are
stratified into a low-score group and a high-score group depending on whether a patient’s score is greater
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than the median score or not. These two groups can be defined to be signature-positive and signature-
negative groups according to coefficient sign of the treatment-score interaction term in AIM’s regression
model.

5.3. Candidate gene selection

As mentioned before, it is a typical scenario that a few biomarker candidates are pre-determined based
on prior knowledge for predictive-signature development. To mimic this scenario, we randomly drew a
subset of observations from a data set and selected eight candidate genes by genome-wide analysis of
association between gene expression and clinical responses in the subset. This subset of data would not
be utilized any more after the selection of the candidates. Predictive signatures were developed with the
selected candidates in remaining data. We refer to the remaining data as the ER data set and the CHOP
data set for the two cases, respectively. The following selection procedure was employed to choose eight
candidate genes based on the data of 196 patients randomly sampled from the first study [14]: (i) a
Cox proportional hazards model was fitted with expression profiles of a gene as a single predictor for
the patients in the treatment arm and in the control arm separately; (ii) a gene was included for further
consideration if its hazard ratio ⩽ 0.5 or ⩾ 2 for the treatment arm, but for the control arm, its hazard
ratio is in between 0.5 and 2 and the p-value for the regression coefficient ⩾ 0.5 with a two-sided test;
(iii) the genes retained were then ranked according to their p-values in the treatment arm, and top eight
genes were selected. The conditions in the second step intend to select genes whose expression profiles
are substantially associated with the patients’ survival in the treatment arm but not associated with the
response in the control arm. These genes have the potential to be interacted with treatments and thus meet
the interaction-effect condition. For the other study, eight candidate genes were similarly chosen based
on the data of 207 patients randomly drew. They served as basis of predictive-signature development in
the remaining data.

5.4. Performance measures

Figure 1 shows that two arms have no differentiation in responses in the ER data set (logrank
p-value = 0.54). Based on a predictive signature learned by PRIM, patients were stratified into signature-
positive and signature-negative groups. The signature-positive patients tend to respond better to the inves-
tigational treatment than the SOC, while the signature-negative patients reverse the pattern (Figure 2). It
is of note that p-values from two-sample tests on these signature-positive or signature-negative patients
are not valid measures to quantify predictive performance of PRIM because the data had already been
explored for signature-learning—the separation between the curves simply illustrates training results.
We adopt p-values based on 5-fold CV to quantify a method’s predictive performance. In the CV pro-
cess, a data set is randomly splitting into five subsets. In each fold, a method learns a signature from
four subsets, and then based on the signature, patients in the remaining subset are labelled to be either
signature-positive or signature-negative. Specifically, PRIM splits the four subsets into D1 and D2 to
learn a signature from them, and similarly, the data in the four subsets serve as the input of Re-PRIM for
signature-learning; after a signature is obtained, it is used to stratify patients in the remaining subset. To
stratify all patients in the five subsets, the learning is repeated five times.

After all patients are stratified into signature-positive or signature-negative groups, a p-value is cal-
culated for each group based on a one-sided two-sample test that examines whether an investigational
treatment is better than an SOC. We refer to such p-values as CV p-values. CV p-values are similar to
p-values presented in a pre-validation scheme by Tibshirani and Efron [16], which attempted to quan-
tify significance of learned predictors and facilitate a fair comparison between a learned predictor and
pre-defined covariates. Because of variability in random splittings, 5-fold CV is repeated for 100 random
splits. In addition to p-values, we calculated hazard ratios for signature-positive or signature-negative
groups in the CV process because they are helpful references for comparing an investigational treatment
with an SOC. We refer to such hazard ratios as CV hazard ratios.

As presented earlier, the data explored for candidate genes selection were not used later. Therefore, the
aforementioned CV was only applied to data that were never used for pre-selection of candidate genes—
if it were applied to data including the samples from which candidate genes were selected, CV p-values
would be a biased measure of predictive performance of a method. In addition, for CV p-values to be a
proper measure of predictive performance of Re-PRIM, all steps in Re-PRIM including the resampling
procedure for selecting candidate signature variables and PRIM for learning a final signature should only

336

© 2014 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2015, 34 317–342



G. CHEN ET AL

be applied to training data (four subsets of data in the case of a 5-fold CV) rather than all data in every
fold of CV.

P-values and hazard ratios calculated in aforementioned CV process help reduce overoptimistic esti-
mation because of using the same data twice (for both training and testing) and thus provide realistic
estimation of predictive performance of a method. However, because these CV quantities are essentially
based on retrospective analysis, they cannot replace the role of p-values or hazard ratios calculated based
on randomized controlled trials (RCTs). To obtain a valid p-value or hazard ratio to confirm efficacy in
a population with signature-positive status, investigators should conduct an RCT for that population. To
validate the predictive value of a signature, an RCT is also needed to examine the lack of efficacy in a
population with signature-negative status.

5.5. The results

Figure 6 shows the distributions of 100 CV p-values for signature-positive groups and 100 CV p-values
for signature-negative groups from PRIM’s results in the ER data set. Compared with the original p-value
0.54, the CV p-values for pv+ substantially shift to smaller values (with 93% of the CV p-values less
than 0.54). This indicates that the stratification can potentially improve efficacy. In addition, the majority
of CV p-values for pv+ are less than 0.2 while the majority of CV p-values for pv− are greater than 0.8.
This demonstrates that the procedure is able to enrich the responders to the investigational treatment in
signature-positive groups while it includes most of responders to the SOC in signature-negative groups.
Because of skewness of the distributions, which is typical according to our empirical observations, we
recommend to report median of CV p-values to represent their center and median absolute deviation to
indicate variation. Similarly, we also report median and median absolute deviation of CV hazard ratios.
Denote by pmcv+ the median of the CV p-values for signature-positive groups and pmcv− for signature-
negative groups. Let HRmcv+ be the median of the CV hazard ratios for signature-positive groups and
HRmcv− be the one for signature-negative groups. They are listed in Table XII for reference.

Figure 7 illustrates the performance of Re-PRIM: It is not as good as PRIM, with more large CV
p-values for signature-positive groups and more small CV p-values for signature-negative groups. Re-
PRIM’s pmcv+ is also substantially larger than PRIM’s pmcv+ while its pmcv− is smaller—neither makes
the method more favorable in this case.

Figure 8 shows the results from AIM. The distributions share similar skewness with those in Figure 6.
Compared with the distribution of CV p-values for signature-positive groups resulted from PRIM
in Figure 6, the distribution from AIM significantly shifts to larger values (p-value = 7.05 × 10−6 by
Wilcoxon rank sum test). This indicates that the treatment effect is much less obvious in AIM’s signature-
positive groups than in PRIM’s signature-positive groups. Consistently, we also observed that AIM
resulted in larger pmcv+ and HRmcv+ than PRIM (Table XII). Therefore, PRIM is more desirable in max-
imizing efficacy for signature-positive patients. On the other hand, with respect to CV p-values for
signature-negative groups, AIM produces significantly larger values than those obtained by PRIM (p-
value = 3.34×10−7). This suggests that although the signature-negative patients defined by both AIM and
PRIM tend to respond better to the SOC than the investigational treatment, yet this response difference
is considerably larger in AIM’s stratification than in PRIM’s. Along the same line of such observations,
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Figure 6. The distributions of CV p-values for PRIM in the ER data set: The left histogram is for pv+ and the
right one for pv−.
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Figure 7. The distributions of CV p-values for Re-PRIM in the ER data set: The left histogram is for pv+ and the
right one for pv−.
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Figure 8. The distributions of CV p-values for AIM in the ER data set: The left histogram is for pv+ and the right
one for pv−. Note that because the method only returned valid results from 47 out of the 100 random splits but
exited for other splits due to internal errors in the package AIM, illustrations and discussion were only based on

the valid results.

HRmcv− is substantially higher from AIM than from PRIM (Table XII). These reflect the discussion in
Section 2 that AIM only focuses on the treatment-score interaction without considering which signature
group leads to that interaction. We also report, nm+, the median of sample sizes of signature-positive
groups in Table XII. AIM often generates a larger signature-positive group (nm+ = 148) in contrast to
PRIM (nm+ = 80). This is useful when larger prevalence is required by real-world applications.

In the CHOP data set, Re-PRIM is able to reduce the number of signature variables from six in PRIM’s
rules to two with similar performance, as indicated by pmcv+, pmcv−, HRmcv+, and HRmcv− (Table XII).
Suggesting a stratification that can enhance efficacy, 73% of Re-PRIM’s CV p-values for pv+ are less
than 0.025, the p-value indicating the significance of the original treatment effect. The CV p-values for
pv+ are also significantly smaller than those from AIM (p-value = 7.99 × 10−11), demonstrating better
enrichment of responders to the treatment in signature-positive groups than that in AIM’s results. Similar
to the situation in the ER data, AIM generated larger CV p-values for pv− than those in Re-PRIM and
PRIM, and it produced considerably larger signature-positive groups in this case (see nm+ in Table XII).
Note that we only discussed valid results returned by AIM from 85 out of the 100 random splits because
the procedure in the AIM package exited with errors for the other random splits of the data set in CV.

Employing the covering strategy, PRIM included more patients in signature-positive groups for the
two data sets while maintaining similar treatment effects to those obtained by a single set of rules (see
PRIM (M) in Table XII). In contrast to Re-PRIM using a single set of rules, Re-PRIM with multiple
sets of rules achieved similar results (except higher prevalence) in the ER data set (see Re-PRIM and
Re-PRIM (M) in Table XII), but in the CHOP data set, the method attained significantly better results as
indicated by higher prevalence (p-value = 3.24 × 10−11) and smaller CV p-values for signature-positive
groups (p-value = 2.48 × 10−4), along with larger CV p-values (p-value = 4.43 × 10−6) and hazard ratios
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(p-value = 1.97 × 10−4) for signature-negative groups. Although the increased prevalence by Re-PRIM
(M) is still lower than the one from AIM, its enlarged CV p-values for signature-negative groups are
significantly greater than those obtained by AIM (p-value = 2.48 × 10−2), along with significantly larger
CV hazard ratios (p-value = 4.45 × 10−3). Overall, we observed some case-dependent advantages to
employ multiple rule sets generated by the covering strategy.

As mentioned in Section 2, the interaction-effect constraint is not redundant partially because, without
enforcing the constraint, the search procedure can initially be misled by a local decision that was based
on a minimal pv+ with pv+ > pv− and ends up with a less optimal solution. In search for a signature
in the CHOP data set, such situation indeed occurred (with 𝛼 = 0.2): While the original signature or
rule set (selected according to PG, the stratification significance in D2 in line 19 of Algorithm 1) has
pv+ = 0.016 and pv− = 0.62, pv+ increases to 0.036 with pv− decreasing to 0.52 for the signature obtained
by the search procedure without enforcing the interaction-effect constraint. This is because, without the
enforcement, the procedure chose a signature-positive group that violated the constraint at the first search
step. Therefore, it is necessary to ensure the constraint satisfied in the search process.

6. Discussion

In the simulation study, we presented a unimodal situation where signature-positive patients are central-
ized in one location of the population space. A much more challenging situation would be multimodal,
with signature-positive patients located in more than one location. Besides the factors we considered to
affect the performance of PRIM, number of modes and their relative positions and magnitudes may also
impact final results. Although a single set of conjunctive rules are more feasible to implement and thus
may be preferred by users in clinics, it is clear that such rules are not expressive enough to describe a
multimodal situation well. It is interesting for a future study to examine whether the covering strategy
with multiple rule sets can capture multiple modes accurately.

Another type of p-values examines whether signature-positive patients in a treatment arm respond
better than signature-negative patients in a control arm. Such a p-value is relevant because in an ideal
situation, a patient should receive a treatment based on positiveness of a predictive-signature-based diag-
nostic test—he or she should be treated by an investigational treatment only if his or her signature test is
positive, and he or she may need to receive an SOC given a negative test result. Denote a p-value of this
type by pve. Given a predictive signature, we cannot always expect pve to be small and its corresponding
test to be significant. It is true that pve will be small if signature-negative patients treated by the SOC
share the same survival profiles as signature-positive patients receiving the SOC; however, pve can be
large if the former tends to live longer than the latter (for example, the case illustrated in Figure 2), that
is, signature-positiveness actually indicates poor-prognosis. In our simulation study, signature-positive
patients have the same survival profiles as signature-negative patients in the control arm, indicating that
pve should be similar to pv+ and thus should be less than pv.

Many tree-based methods have been developed to identify subgroups that have maximal differential
treatment effects by recursively partitioning population. Several examples are Negassa et al. [17], Su
et al. [18], and Lipkovich et al. [13]. They essentially aimed at maximizing significance of the interaction-
effect condition (either through test statistics or p-values), which does not always lead to a predictive
signature as discussed in Section 2. Besides this category of objective functions, in the subgroup iden-
tification based on differential effect search (SIDES) method, Lipkovich et al. [13] proposed a different
one as the optimization criterion for splits inside a tree—significance of the treatment-effect condition in
any one of two child nodes generated by a split. This is similar to our objective function. However, this
objective function ignores the interaction-effect condition. Although they suggested a hybrid approach
that attempts to incorporate this condition into an objective function by maximizing either the afore-
mentioned significance or significance of the interaction-effect condition, the goal of this approach is a
mixture and is less clear than the one of our constrained-optimization approach. Unlike the interaction-
trees approach [18], which is concerned with treatment effect on the entire covariate space, SIDES
focuses on treatment effect in specific areas of interest (and ignores complete estimation in the rest of
the space)—such focal search is in essence similar to PRIM’s bump hunting. To restrict search space,
SIDES only allows a variable to define a subgroup in one direction with its cutoff (by either greater
than or no less than the cutoff). PRIM permits both directions and thus is more expressive. Working
with binary responses, Foster et al. [19] proposed a method called ‘Virtual Twins’ (VT) to identify a
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subgroup that has an improved treatment effect. Under the same two-arm design as in our study, VT
first estimates a responding probability of an individual given the treatment he or she received and a
responding probability of the same individual in a hypothetical scenario where he or she were treated by
the other treatment that he or she did not actually receive. Such estimation is performed for all patients
through a random-forest model with treatment factor and other covariates as input. Given the estimation,
the difference between two probabilities of an individual can be calculated as a new response indicat-
ing an estimated treatment effect for the individual. Finally, a CART model is built with covariates to
predict these new responses and thus specifies decision rules for identifying a subgroup with an enhanced
treatment effect. The idea of the VT approach is very interesting, but it faces a great challenge that the
random-forest model needs to accurately estimate responding probabilities given a real treatment or a
counterfactual one.

Drug development is paying more and more attention to predictive signatures that stratify patients
into groups, with the hope that signature-positive patients respond better to investigational treatments
than SOC regimens. PRIM is a natural approach to this problem because its bump-hunting formula-
tion fits exactly into the scenario of patient stratification—bumps are corresponding to signature-positive
patients, and associated rules define a signature. It is also attractive because of its returning simple rules
and its patient-search property: The former makes rules discovered by PRIM easily and directly appli-
cable to patients by clinicians or other medical practitioners; the latter induces better decision rules than
aggressive approaches. In this study, we proposed a search procedure based on PRIM’s framework for
predictive-signature development and suggested a parameter-selection step and a resampling scheme to
improve the search. We investigated the procedure’s performance by simulating typical situations where
the procedure is expected to be applied and provided guidance on conditions under which the procedure
can find relevant rules and reasonably stratify patients into different signature groups. By searching for
signatures in two real-world data sets, we demonstrated that PRIM has a good potential for patient stratifi-
cation in practice. In addition, we discussed the advantage of the objective function we adopted for PRIM
by contrasting it to AIM’s objective function, compared results of these two methods in the real-world
data, and illustrated their respective superiorities in these scenarios. In summary, this paper provides a
general and practical recipe for applying PRIM to predictive-signature development in oncology studies
with survival responses.
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