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Short-Wave Sensitive (“Blue”) Cone
Activation Is an Aggravating Factor
for Visual Snow Symptoms
Jenny L. Hepschke, Paul R. Martin and Clare L. Fraser*

Faculty of Health and Medicine, Save Sight Institute, The University of Sydney, Sydney, NSW, Australia

Background and Purpose: Visual Snow (VS) is a disorder characterised by the

subjective perception of black-and-white visual static. The aetiology of this condition is

not known. In our previous work we suggested that there is a link between short-wave

(S or “blue” cone) signals and severity of visual snow symptoms. Therefore we aimed to

further characterise this potential link.

Methods: Patients (n = 22) with classic VS based on the diagnostic criteria and

healthy controls (n = 12), underwent Intuitive Colorimetry (IC) testing (Cerium Visual

Technologies). Twelve hue directions (expressed as angle in CIE 1976 LUV space relative

to D65) were rated on a five-point scale from preferred (relieving, positive score) to

non-preferred (exacerbating, negative score), and overall preferred and non-preferred

angles were chosen.

Results: A non-preferred violet region near the tritanopic confusion line / S-cone axis

(267 deg.) was strongly associated with exacerbation of VS symptoms (range 250–310

deg, mean 276 ± 16, n = 20, Rayleigh p < 0.001). Two subjects with non-preferred

region > 90 deg from mean were considered as outliers. Median rank at hue angle

270 deg was significantly lower than at angle 90 (−1.5 vs. 0.0, p < 0.001, Wilcoxon

non-parametric rank-sum test). Patients showed preference for one of two spectral

regions which relieved VS symptoms: orange-yellow (range 50–110 deg., mean 79 ±

24, n = 14) and turquoise-blue (range (210–250 deg., mean 234 ± 27, n = 8).

Conclusion: Our results show that visual snow symptoms are exacerbated by colour

modulation that selectively increased levels of S-cone excitation. Because S-cone signals

travel on primordial brain pathways that regulate cortical rhythms (koniocellular pathways)

we hypothesis that these pathways contribute to the pathogenesis of this disorder.

Keywords: visual snow, palinopsia, migraine, positive persistent visual disturbance, thalamocortical dysrhythmia,

colour filter

INTRODUCTION

Visual Snow (VS) refers to the persistent visual experience of static in the whole visual field of
both eyes likened to “static analogue television noise” (1) and was originally reported as a positive
visual phenomena experienced by patients with migraine (2). The visual snow syndrome (VSS)
is classified based on a set of diagnostic criteria which capture the spectrum of pathology of
this condition (3, 4). Specifically it is defined as flickering fine achromatic dots with at least one
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associated visual symptom of palinopsia, photopsia, nyctalopia,
and entoptic phenomena as well as non-visual symptoms such as
tinnitus and migraine (3, 5).

Puledda et al. (5) provided a detailed phenotypical and
epidemiological description of over one thousand patients with
VS and VSS. Their study confirmed several aspects of VSS that
had previously been characterised in smaller cohorts including
the lack of gender prevalence, onset early in life and absence of
relationship to prior psychotropic substance use (6–8). It is clear
from all these studies that VS and VSS exists as a continuum and
the frequency of associated non-visual symptoms often carries a
higher symptom severity and burden of disease (5, 9, 10).

The pathophysiology underlying VS remains elusive, but
several hypotheses exist. Cortical hyperexcitability in the visual
system has been suggested as a mechanism based on detection of
cortical hypermetabolism (11, 12), increased lactate presence (13)
and behavioural imbalance between inhibition and excitation
(9, 14). Other reports have considered mechanisms of impaired
sensory processing as evidenced by hypoperfusion on SPECT
(15), hyperexcitability on EEG (16), as well as evidence of reduced
habituation on electrophysiological assessment (17, 18). Most
recently differences in grey matter volume and resting state
functional connectivity in VS patients were identified using MRI
(12, 13, 19).

We have previously hypothesised that VS results from
a thalamocortical dysrhythmia (TCD) of the visual system,
whereby normal thalamo-cortical oscillations are disrupted by
changes in the oscillatory properties of the constituent neural
circuits (20). Specifically we proposed that VS is associated with
abnormalities to the koniocellular (KC) pathways, which include
cells that transmit short-wave (S-cone) signals serving blue-
yellow colour vision. This hypothesis was based on previous
observations of yellow-blue colour preferences in VS patients (8),
and is broadly in line with the thalamocortical synchrony (TCS)
hypothesis (21). The TCS proposes that KC activity entrains or
gates cortical circuits fed by magno- and parvocellular afferent
pathways, thereby rendering otherwise sub-threshold activity in
these visual pathways as visual snow (22, 23).

The present study characterises the colour preferences of VS
patients in more detail, with emphasis on the tritan (blue-yellow)
and protan (red-green) colour axes. Our specific hypothesis
is that S-cone activation, and resultant central koniocellular
pathway modulation, plays a crucial role in the pathogenesis of
visual snow syndrome.

MATERIALS AND METHODS

Participants
Data were collected from 22 VS patients and 12 controls.
Patients underwent a standardised series of questions about
their associated visual and non-visual symptoms. The associated
medical and psychiatric co-morbidities were reviewed or
noted from past medical records. The VS participants were
included only if they had a clinical diagnosis by a Neuro-
ophthalmologist of typical VS according to the diagnostic criteria
by Schankin et al. (3). Participants were excluded if they
were taking psychiatric medication, reported epileptic symptoms

or had a diagnosis of Hallucinogen-persistence perceptual
Disorder (HPPD).

Intuitive Colorimetry
All participants were tested by Intuitive Colorimetry (IC)
as previously described by Wilkins et al. (24) (Figure 3).
Participants were seated in front of an Intuitive Colorimeter
Device (Cerium Visual Technologies) which illuminated a page
of crowded text. The participants were asked to judge whether
a change in the illumination colour had any effect on their
visual snow symptoms (their “visual comfort”). Saturation in
the 12 different hue directions (expressed as angle in CIE
1976 LUV space relative to D65) was slowly increased from
a neutral setting, which was a white similar to daylight (CIE
1976 u′ = 0.21; v′ = 0.75) to one with a moderate strength of
colour or saturation. The hue directions were rated on a five-
point scale from preferred (relieving, positive score), neutral to
non-preferred (exacerbating, negative score). For those hues that
elicited clear exacerbation or relief of visual snow symptoms
the saturation was optimised, usually by asking the patient to
adjust the saturation using amanual dial. The preferred and least-
preferred hues were then compared, typically by forced choice
between two previously selected choices successively presented
by the examiner until a chromaticity had been selected by
the participant.

Analysis
Statistical comparisons of area of preferred and least preferred
spectral regions were made using non-parametric tests with
Matlab. The research procedures complied with the Declaration
of Helsinki and were approved by the Macquarie University
ethics committee (HREC 5201800350). Participants gave written
informed consent.

RESULTS

Epidemiology
The VS cohort consisted of 9 female and 13 male patients with
a mean age of 31.8 ± 11.3 years (range 22–61 y). The average
VS symptom duration was 6.8 ± 2.5 years (range 2–40 years)

TABLE 1 | Frequency of visual and non-visual symptoms of visual snow

participants in line with diagnostic criteria.

Visual snow criteria

Visual symptoms

Visual snow 100%

Palinopsias 95%

Enhanced entoptic phenomena 91%

Photophobia 64%

Nyctalopia 64%

Non-visual symptoms

Tinnitus 86%

Migraine 59%

Tremor 46%
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FIGURE 1 | Preferred and Least preferred hue of control participants expressed as angle in CIE 1976 LUV space (red lines); dotted blue line represents the Tritanopic

confusion line.

FIGURE 2 | Preferred and Least preferred hue of visual snow participants expressed as angle in CIE 1976 LUV space (red lines); dotted blue line represents the

Tritanopic confusion line (S-cone axis).

with four patients reporting symptoms since early childhood.
Associated visual and non-visual symptoms are summarised in
Table 1.

All of the VS cohort fulfilled the diagnostic criteria of classic
achromatic visual snow (3). Associated visual symptoms were
reported with the following frequency; 95% palinopsias, 91%

entoptic phenomena and 64% photophobia and nyctalopia.
Associated non-visual symptoms included 86% tinnitus, 59%
migraine, and 46% tremor.

Healthy controls were eight female and four male volunteers
with a mean age of 38.4 ± 16.2 years (range 22–74 y). In our
control cohort none of the patients experienced VS nor any
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FIGURE 3 | Intuitive Colorimeter (a), Crowded text used in neutral/daylight setting (b) and the most preferred yellow hue 79 deg (c) as well as least preferred

blue-violet hue 276 deg (d).

associated visual symptoms. Five (42%) of the healthy controls
had migraines and none had tinnitus or tremor.

Intuitive Colorimetry Preference
Control volunteers showed a slight preference for one of two
spectral regions which provided “visual comfort” namely red-
orange (range 0–70 deg., mean 12 ± 1, n = 4) and turquoise-
blue (range (180–270 deg., mean 220 ± 35, n = 8). Control
volunteers had no non-preferred region for “visual discomfort”
(see Figure 1).

Patients with VS showed preference for one of two spectral
regions which relieved VS symptoms namely orange- yellow
(range 50–110 deg., mean 79 ± 24, n = 14) and turquoise-
blue (range (210–250 deg., mean 234 ± 27, n = 8). Patients
with VS also showed a strong negative preference for a spectral
blue-violet region which exacerbated VS symptoms (range 250–
310 deg, mean 276 ± 16, n = 20, Rayleigh p < 0.001). Two

subjects with non-preferred region > 90 deg from mean were
considered as outliers. Median rank at hue angle 270 deg was
significantly lower than at angle 90 (−1.5 vs. 0.0, p < 0.001,
Wilcoxon non-parametric rank-sum test) (see Figures 2, 3).

DISCUSSION

We previously reported subjective relief of VS symptoms with
yellow-blue colour filters (8). In this paper we formally classify
colour preferences in VS patients compared to controls. We
confirm a yellow-blue colour preferences for VS participants
compared to controls, with the colour filter acting to relieve
the symptoms. Most striking however was the strong negative
preference or dislike for a blue-violet region (mean 276 ± 16
deg), in a direction close to the tritanopic confusion line. The
tritanopic confusion line is of interest as points along this line
specifically cause different levels of S-cone excitation.
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The S-cones participate in the construction of a blue-
yellow colour opponent channel in the retina, whereby small
and large bistratified cells get ON-sign input from S-cones
(via ON-type S-cone contacting bipolar cells) and OFF-sign
input from medium– and long-wave sensitive cones (via OFF-
type diffuse bipolar cells) (25). These ganglion cells project
predominantly through the koniocellular (KC) layers of the
lateral geniculate nucleus (LGN) to reach supragranular layers
of primary visual cortex (V1). The KC pathways are part of
an evolutionarily ancient group of thalamocortical pathways
that include the paralemniscal somatosensory and tegmental
auditory pathways, and for this reason has been characterised
as a primitive visual system (21, 26–28). In contrast to KC
layers, the main parvocellular (PC) and magnocellular (MC)
layers of the LGN evolved relatively recently, form tightly
topographically organised inputs to layer 4 in V1, and have
been linked to high frequency cortical oscillations (26) and high-
resolution analysis of visual inputs (21). Overall S-cones and
the KC pathway are unique due to the sparse distribution of s-
cones in the retina, their distinct neurotransmitter profiles and
their complex and varied interconnections within the thalamus
giving rise to a range of visual and non-visual pathways (25).
It is important to note that S-cones also contribute to “blue-
off” type responses in intrisically photosensitive melanopsin-
expressing cells (29). This cell population represents a possible
alternative route by which the effects we observe could
be mediated.

The thalamocortical system is comprised of extensive
corticothalamic connections that are arranged into networks
with spatial and temporal organisation through synchronisation
of oscillations thereby creating the complex pathways required
for sensory perception and conscious awareness (20, 30).
When the neuronal integration and synchronisation at
the level of the thalamus is disrupted due to changes in
specific neurons or pathways, either top-down or bottom-
up, then thalamocortical dysrythmia (TCD) may arise.
The model of thalamocortical dysrythmia (TCD) was
first proposed by Llinás et al. (20) to explain common
pathological patterns such as abnormal low-frequency theta
oscillations, persistent gamma activity, and reduced resting-
state alpha activity. Today, TCD is thought to contribute to
diverse neuropathies depending on the localisation of the
dysfunction in the thalamocortical network including migraine,
neuropathic pain and tinnitus (31, 32), Parkinson’s disease and
depression (33, 34).

Components of the VSS have been traced to various areas
in the visual system such as illusionary hallucinations can
be traced to the V1 to V3 visual cortex, palinopsias can be
traced to the parietal lobe coordination system and trailing as
well as after-images can be located in the parietal association
cortex (35). Symptoms affecting different aspect of the visual
system that were traditionally held as distinct, may in fact
be closely related, when considered from the perspective of

TCD as a potential underlying mechanism. In addition the
TCD hypothesis highlights that many non-visual symptoms
affecting VS patients in other sensory domains such as migraine,
tinnitus and tremor, may be explained by a single underlying
pathophysiology (1, 31).

Some form of anatomical or functional disconnect between
thalamus and cortex is thought to be a pre-requisite for
the occurrence of TCD such as lack of afferent input in
phantom pain and functional de-afferentiation in tinnitus
(31, 36). Hyperexcitability of individual neurons may be
a significant enough disruption to lead to TCD (37) and
abnormal KC pathway input may be sufficient to drive the
TCD in VSS.

In the above contexts, the clear dislike of blue light
on the tritanopic confusion line we observed in the VS
patients implicates S-cone activity, carried on KC pathways,
enabling perception of visual snow. Our specific conjecture
here is that activity in PC and MC pathways is increased
by activity in KC cells, resulting in conscious awareness of
sub-threshold visual stimuli. Defining a neurophysiological
substrate for the pathology of VS gives further insights into
this condition, helping patients and physicians work towards
better treatment options. We have previously reported subjective
benefit of blue-yellow coloured lenses causing improvement in
VS symptoms (8). Our results have further defined the specific
wavelengths implicated in VS and thus might help developing
further treatment modalities that may suppress S-cone and
KC activation.
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