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ABSTRACT:

Dynamin superfamily proteins are multidomain

mechano-chemical GTPases which are implicated in

nucleotide-dependent membrane remodeling events. A

prominent feature of these proteins is their assembly-

stimulated mechanism of GTP hydrolysis. The molecular

basis for this reaction has been initially clarified for the

dynamin-related guanylate binding protein 1 (GBP1)

and involves the transient dimerization of the GTPase

domains in a parallel head-to-head fashion. A catalytic

arginine finger from the phosphate binding (P-) loop is

repositioned toward the nucleotide of the same molecule

to stabilize the transition state of GTP hydrolysis. Dyna-

min uses a related dimerization-dependent mechanism,

but instead of the catalytic arginine, a monovalent cation

is involved in catalysis. Still another variation of the GTP

hydrolysis mechanism has been revealed for the

dynamin-like Irga6 which bears a glycine at the corre-

sponding position in the P-loop. Here, we highlight con-

served and divergent features of GTP hydrolysis in

dynamin superfamily proteins and show how nucleotide

binding and hydrolysis are converted into mechano-

chemical movements. We also describe models how the

energy of GTP hydrolysis can be harnessed for diverse

membrane remodeling events, such as membrane fission

or fusion. VC 2016 The Authors. Biopolymers Published by

Wiley Periodicals, Inc. Biopolymers 105: 580–593, 2016.
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INTRODUCTION

P
roteins of the dynamin superfamily utilize the

energy of GTP hydrolysis to perform some type of

mechanical work which is mostly exploited for the

remodeling of cellular membranes.1,2 Therefore,

these proteins are considered as mechano-chemical

enzymes. The first cloned dynamin superfamily gene was

that of the interferon-inducible myxovirus resistance (Mx)

gene.3 Shortly after, a gene with related sequence, VPS1, was

identified due to its role in vacuolar sorting in yeast.4 In

1989, the protein dynamin was discovered as a microtubule-

associated protein.5 Subsequently, the dynamin gene was

cloned from a rat brain cDNA library6 and was shown to

correspond to the Drosophila shibire locus.7,8 Temperature-
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sensitive alleles of shibire were known to affect endocytosis at

the fly synapse resulting in paralysis due to depletion of syn-

aptic vesicles.9,10 Today, dynamin is well-known for its func-

tion in catalyzing the scission of clathrin-coated vesicles

from the plasma membrane (reviewed in Ref. 11).

Several additional members of the dynamin superfamily

have been identified over the years: Dynamin-1-like protein

(DNM1L) is implicated in the scission of mitochondria.12

Optic atrophy type 1 (OPA1 or mitochondrial genome mainte-

nance protein 1/Mgm1p in yeast) mediates the fusion of the

inner mitochondrial membrane and is involved in cristae for-

mation,13–16 whereas mitofusins/fuzzy onions (Fzo1p) execute

the fusion of the outer mitochondrial membrane.17,18 Besides

the Mx proteins, also the dynamin-related guanylate binding

proteins (GBPs) and the 47 kD immunity-related GTPases

(IRGs) are induced by interferons.19,20 GBPs mediate immu-

nity against several microbial and viral pathogens, but also reg-

ulate cell adhesion and migration,21 whereas IRGs are best

characterized in mice and were shown to convey the clearance

of intracellular pathogens, such as Toxoplasma gondii.22 Atlas-

tins/Sey1p are phylogenetically most closely related to GBPs

and catalyze the fusion of endoplasmic reticulum (ER) tubules

in higher eukaryotes and yeast, respectively.23,24 A family of

dynamin-related ATPases, the Eps15-homology domain con-

taining proteins (EHDs), are involved in various membrane

trafficking pathways originating from the plasma membrane or

from internal membrane systems.25 Dynamin-related proteins

were also identified in bacteria, where they are thought to

mediate bacterial membrane remodeling events, for example,

during cell or thylakoid division.26,27 Furthermore, dynamin-

like LeoA from a pathogenic E. coli strain has been assigned a

role in the secretion of bacterial vesicles for enhancing the

release of toxins.28

In this article, we introduce structural features of dynamin

superfamily proteins and explain their various mechanisms of

GTP hydrolysis, using GBP1, dynamin and Irga6 as examples.

We show for selected members how GTP hydrolysis is con-

verted into a large-scale conformational change of the adjacent

helical bundle. Furthermore, we explain models how the

energy of GTP hydrolysis is exploited for various membrane

remodeling events.

COMMON BIOCHEMICAL AND
STRUCTURAL FEATURES OF DYNAMIN
SUPERFAMILY PROTEINS
A unifying feature of dynamin superfamily protein is their abil-

ity to assemble into regular oligomers on appropriate tem-

plates. For example, dynamin can self-assemble around

microtubules or the neck of clathrin-coated vesicles into regu-

lar rings or helices.29 Similar ring-like or helical structures can

be reconstituted in vitro using artificial tubular membrane

templates.30–32 Also MxA,33,34 DNM1L,35,36 EHD2,37 OPA1,38

and BDLP39 can form helical oligomers on the surface of

membranes.

Due to their low nucleotide affinities, dynamin superfamily

members do not require guanine nucleotide exchange factors

for catalyzing nucleotide release. Furthermore, they display a

relatively high basal rate of GTP hydrolysis. For example, dyna-

min, MxA and GBP1 have basal GTP hydrolysis rates of 1-5

min21 at 378C.40–42 These rates cooperatively increase with the

protein concentration.41,43–45 In the presence of appropriate

templates, the GTPase activity can be further enhanced, for

example, for dynamin, a> 100-fold increase in GTPase rate

was observed in the presence of tubular membrane tem-

plates.31,46 Thus, GTPase activities of unassembled dynamin

superfamily proteins are often inhibited in solution, and auto-

inhibitory restraints are relieved when the proteins are

recruited to their physiological site of action.

Recent full-length or almost full-length crystal structures of

dynamin,47–49 MxA,50 MxB,51 DNM1L,52 GBP1,44,53 atlas-

tin,54–56 Irga6,57,58 Sey1p,59 EHD2,37 BDLP,26 and LeoA28 have

revealed the architecture of dynamin superfamily proteins

(Figure 1). The most highly conserved region in these proteins

is their amino-terminal extended or large GTPase domain.

Thus, dynamin’s GTPase domain has various insertions com-

pared to the Ras-like minimal GTPase domains,61 which are

also found in the closely related MxA and DNM1L. In the

more distantly related GBP1, atlastin, EHD2 and BDLP, these

extensions differ in length and position. Consequently, the typ-

ical size of a GTPase domain in dynamin superfamily proteins

comprises about 300 residues, compared to 170 residues in

Ras-like GTP-binding proteins.

As in many regulatory GTP-binding proteins, five motifs

in the GTPase domain (G1-G5) are involved in nucleotide-

binding (Figure 2A).63 The G1 motif forms the P-loop with

the consensus GxxxxGKS/T. It tightly wraps around the b-

phosphate and contributes with the terminal serine/threo-

nine to the binding of a Mg21 ion which is crucial for GTP

hydrolysis in many ATPases and GTPases. Also a direct con-

tact of the conserved Thr of the G2 motif and a direct or

water-mediated contact by the conserved Asp in the G3 motif

participate in Mg21-binding. In addition, residues in these

motifs directly contact the c-phosphate. Accordingly, the two

regions encompassing these motifs undergo c-phosphate-

dependent conformational changes and have therefore been

termed the switch regions. Compared to Ras-like GTPases,

dynamin superfamily proteins do not possess a catalytic glu-

tamine following the G3 motif, but instead a hydrophobic

residue. In GBP1, this Leu101 points away from the
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FIGURE 1 Domain architecture of selected dynamin superfamily proteins. (A) In the schematic

domain architecture, numbers refer to the amino acid sequence of human dynamin 1. The crystal struc-

ture of the nucleotide-free dynamin 1 dimer (pdb 3SNH)47 shows a four domain architecture. Stable

dimerization is mediated via the highly conserved stalk interface-2. The PRD was not present in the crys-

tallized construct. MxA50 and DNM1L52 show a highly related structure and assembly mode. (B) Domain

architecture of human GBP1 and crystal structure of the GMPPNP-loaded monomer (pdb 1F5N).53 The

flexible C-terminus carrying the farnesylation site (CaaX) was not resolved in the structure. (C) Domain

architecture of murine EHD2 and structure of the AMPPNP-bound EHD2 dimer (pdb 4CID).60



FIGURE 2 Catalytic mechanism of dynamin superfamily proteins. (A) Sequence alignment of dynamin

superfamily proteins in the G1–G4 motifs. Conserved canonical residues are highlighted in black or dark

gray, other conserved residues in light grey. The catalytic arginine and serines in the P-loop are shown in

red. For DynA from B. subtilis, the sequence of both GTPase domains is shown. (B–D) Dynamin superfam-

ily proteins activate their GTPase by dimerizing in a parallel, head-to-head fashion. This leads to rearrange-

ment of catalytic residues in cis. Mg21-ions are shown as green and Na1-ions as purple spheres. (B) The

GDP-AlF2
3 bound LG-domain dimer of hGBP1 (pdb 2B92).42 (C) The GDP-AlF2

4 -bound GG construct

of dynamin (pdb 2X2E).62 (D) GMPPNP-bound Irga6 (pdb 5FPH). Due to expression in E. coli, the pro-

tein lacks the N-terminal myristoylation. At the right, details of the interactions of the G1–G5 motifs in the

catalytic site are shown, with hydrogen bonds indicated by dashed lines. The Na1-ion in dynamin is addi-

tionally contacted by main chain contacts from Gly60 and Gly62 from switch I (not shown here).



nucleotide toward the hydrophobic core of the protein and

may stabilize the conformation of switch II. Similar confor-

mations were later shown for other dynamin proteins. An

aspartate in the G4 motif mediates specific binding to the gua-

nine base. The consensus N/TKxD is differently conserved as

RD in GBPs and atlastins.54,55,64 In EHD proteins, the con-

served aspartate in G4 is engaged in auto-inhibitory interac-

tions with the tail of the carboxy-(C-)terminal Eps15

homology domain (EH domain), and a methionine directly

following the G4 motif sterically restricts binding of the amino

group of the guanine base.37 Consequently, EHDs use ATP

instead of GTP as a substrate. Residues in the G5 motif are not

well conserved between different dynamin families and interact

in various ways with the guanine base and/or ribose.

The LG-domain is often followed by one or several helical

bundles. Sometimes, these helical bundles include elements

from the N-terminal region of the GTPase domain. For exam-

ple, in the bundle signaling element (BSE) of dynamin and in

the helical bundle of EHD2, one or two helices are derived

from the N-terminal region, respectively (Figures 1A and 2C).

The second helical element in dynamin is called the stalk. It

was shown to mediate the assembly of dynamin, MxA and

DNM1L into a helical filament by providing three distinct

assembly interfaces41,49,52 (reviewed in ref. 2). The stalk pro-

vides additional regulatory interaction sites for the BSE (as

shown for MxA and dynamin) and for the PH domain (as

shown for dynamin).47,50 Furthermore, based on crystal pack-

ing and mutagenesis, another conserved interface of the stalk

has been suggested to mediate higher order assembly of

DNM1L.52 Interestingly, the position of this stalk interface cor-

responds to that of the PH domain binding binding site in

dynamin (see also below), so alternative functions of this inter-

action site may be envisaged for the different members. In

many cases, the C-terminal helix of the helical bundles folds

back to the GTPase domain, allowing a tight coupling of nucle-

otide binding/hydrolysis and oligomerization.

In many dynamin superfamily members, the membrane

binding site is located at the tip of the helical domain. For

example, in dynamin, a specialized pleckstrin homology (PH)

domain mediates the binding to phosphatidyl-inositol phos-

phates containing membranes, whereas Mx and DNM1L have

large, membrane-binding loop regions at this position34,36,52,65

and EHD2 a polybasic helix.37 Atlastin, mitofusin, and bacte-

rial dynamin-like protein (BDLP) contain transmembrane

sequences at the tip of their helical domains. One OPA1/

Mgm1p isoform bears an N-terminal transmembrane

sequence, which is, however, not required for efficient lipo-

some binding and tubulation in vitro.66 Instead, OPA1/

Mgm1p may also contain a membrane-binding domain at the

tip of the stalk.67 GBPs and IRGs have N- and C-terminal lipid

attachment motifs, respectively.

Some dynamin superfamily members possess additional

interaction domains or motifs. For example, a proline-/argi-

nine-rich domain (PRD) at the C-terminus of dynamin medi-

ates its recruitment to clathrin-coated pits by binding to Src-

homology 3 (SH3) domain containing BAR (Bin–Amphiphy-

sin–Rvs) domain proteins,68 whereas an EH domains in EHDs

is thought to regulate assembly and/or membrane recruitment

by binding to linear Asn-Pro-Phe (NPF) motifs of target pro-

teins (Figure 1).37

GBP1 AND ATLASTIN1 EMPLOY AN
INTERNAL ARGININE FINGER FOR GTP
HYDROLYSIS
The mechanism of the stimulated GTPase reaction was first

revealed for GBP1 using a combination of structural and bio-

chemical studies with a truncated LG-domain construct.42

This construct retains the basic properties of nucleotide-

binding and cooperative GTP hydrolysis and dimerizes in the

presence of GTP and GDP-AlF2
4 and GMP-AlF2

4 , but not in

the absence of nucleotide or the presence of GMP. As a unique

property, GBP1 can hydrolyze GTP in two consecutive cleavage

reactions to GMP and the LG-domain dimerizes also in the

presence of GMP-AlF2
4 .42,69,70

X-ray structures of the truncated LG-domain construct

were determined in the presence of a nonhydrolysable GTP

analogue 50-guanylyl imidodiphosphate (GMPPNP), the

transition state analogues GDP-AlF2
4 , GMP-AlF2

4 , and

GMP.42 With the exception of the GMP-bound structure, all

of the truncated LG-domain structures showed parallel head-

to-head GTPase domain dimers (Figure 2B). The highly con-

served dimerization surface, the G-interface, is formed across

the nucleotide-binding site. This interface involves the P-

loop, the two switch regions which are stabilized in the

dimer, and several additional loop regions, including a loop

following the G4 motif that directly contacts the guanine

base of the opposing molecule. The switch I region interacts

with another large loop, the guanine cap, which then binds in

trans to the opposing monomer.71 The ordering of the switch

regions in the transition state structures leads to the reposi-

tioning of Thr75 from switch I which, via a main chain inter-

action and together with the adjacent Ser73, positions a

catalytic water molecule (Figure 2B).42

A surprising involvement of the third residue in the P-loop,

Arg48, was identified.42,45 During dimerization, the side-chain

of Arg48 rearranges toward the transition state mimic AlF2
4

within the same molecule. It appears to stabilize the negative

charge during the transition state of GTP hydrolysis and thus
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acts as an internal catalytic arginine finger. Mutation of Arg48

did not abolish dimerization, but completely interfered with

GTP hydrolysis while the S73A mutant displayed a strongly

reduced and non-cooperative GTP hydrolysis. Interestingly,

the complete catalytic machinery retained its positions in the

GMP-AlF2
4 bound structure, but the a-phosphate of the GMP

was shifted toward the position of the b-phosphate in the

GDP-AlF2
4 bound structure. This plasticity of nucleotide bind-

ing within the catalytic site appears to be a unique feature of

GBP1 within the dynamin superfamily allowing it to employ

the same set of catalytic residues for GTP and GDP hydrolysis.

A similar dimerization-dependent mechanism of GTP

hydrolysis was found for the close relative of GBP1, atlastin. An

atlastin1 construct encompassing the GTPase domain and three

helices of the adjacent helical bundle was crystallized in two

GDP-bound states,54,55 and later, in the presence of GMPPNP

and GDP-AlF2
4 .56 In all of these structures, atlastin dimerized

via the G-interface, although only GMPPNP and GDP-AlF2
4

led to stable dimerization in solution.54,55 Also in this construct,

the corresponding arginine from the P-loop stabilized the tran-

sition state of GTP hydrolysis. However, the arginine in atlastin

may have a dual role since in the GDP-bound structures, it par-

ticipates in the G-interface. Consequently, the R77E mutation

impaired binding of GTP analogues and prevented GTP hydro-

lysis as well as dimerization,54,55 whereas the R77A mutation

interfered only with GTP hydrolysis.56

DYNAMIN EMPLOYS A CATALYTIC CATION
FOR GTP HYDROLYSIS
The crystal structure of a dynamin GTPase domain construct

including a truncated version of the adjacent BSE (the so-called

GTPase-GED (GG) fusion protein) revealed the catalytic mech-

anism of GTP hydrolysis (Figure 2C).62 In solution, GDP-AlF2
4 ,

but no other nucleotide, promoted stable dimerization. Accord-

ingly, the GDP-AlF2
4 -bound GG-construct was found to dimer-

ize in the crystals via the G-interface in a parallel head-to-head

fashion. Similar to GBP1, both switch regions, the trans stabiliz-

ing loop and the dynamin-specific loop participate in the

assembly. Furthermore, Asp211 from the G4-loop contacts the

guanine base of the opposing molecule in trans. A catalytic

water molecule is stabilized by a main chain interaction of

Thr65 in switch I; Thr65 had previously been shown by muta-

tional studies to be crucial for catalysis, but its mutation to ala-

nine did not grossly affect nucleotide binding.72 Importantly, a

conserved serine (Ser41) from the third position in the P-loop

corresponding to Arg48 in GBP1 and two glycines from switch I

were demonstrated to interact with a monovalent catalytic cat-

ion (sodium or potassium) which directly contacts the AlF2
4 -

anion.62 This cation was proposed to stabilize the transition

state of GTP hydrolysis in a similar manner as the equivalent

arginine in GBP1. Sequence comparisons indicate that the serine

is conserved in many dynamin superfamily proteins, such as

DNM1L, Vps1p, MxA, mitochondrial OPA1 and mitofusin pro-

teins, EHDs, and several bacterial dynamins (Figure 2A). Fzo1p

from yeast and a few other dynamin family members display an

Asn at the corresponding position which is reminiscent of the

potassium-specific P-loop of MnmE, a GTPase involved in

tRNA modification.73 This suggests that cation-dependent GTP

hydrolysis may be a general feature of dynamin superfamily

members, unless they carry an Arg in the P-loop, as seen in

GBPs and atlastins.74 However, the classification in cation- and

Arg-dependent dynamin GTPases does not strictly follow evolu-

tionary or functional conservation. Sey1p from yeast and RHD3

from Arabidopsis thaliana have a serine at the third position of

the P-loop although sequence comparisons identify them as

GBP/atlastin-related proteins.24,59 Furthermore, some GBPs as

well as the close atlastin-homologue neurolastin that has only

recently been described as a dynamin homologue75 have a histi-

dine at the respective position, which in principle could play a

similar role as the catalytic arginine by counteracting negative

charge during the transition state of GTP hydrolysis.

FURTHER VARIATIONS IN THE GTPASE
MECHANISM
Another variation of the GTPase mechanism has been

described for the dynamin-related Irga6 GTPase, which dis-

plays cooperative GTP hydrolysis and GTP-dependent oligo-

merization in solution.76 Full-length crystal structures in the

nucleotide-free and GDP-bound form revealed the basic archi-

tecture of the Irga6 GTPase, including a relatively small GTPase

domain of �200 residues and an adjacent helical bundle

formed by sequences N- and C-terminal of the GTPase

domain.57 Also a GMPPNP-bound crystal structure was

obtained by soaking the nucleotide into nucleotide-free crys-

tals. While this approach resulted in structural insights into

GMPPNP binding, it did not allow large scale structural rear-

rangements of Irga6 molecules in the crystals; for example, in

none of these crystals, the nucleotide-dependent G-interface

was formed. Extensive mutagenesis data indicated that residues

in the G-interface participate in the GTP hydrolysis mecha-

nism.77 Furthermore, Glu106 from the switch I regions was

shown to be essential for catalysis. Unexpectedly, also the 30

OH of the ribose was demonstrated to be crucial for

nucleotide-mediated assembly. A similar involvement of the 30

OH group was seen before for the signal recognition particle

and its receptor, two GTPases which dimerize in an anti-

parallel, head-to-tail fashion.78,79 Consequently, an analogues

head-to-tail dimerization mechanism was proposed for Irga6.
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However, a recent structural analysis of a GMPPNP-bound

non-oligomerizing Irga6 mutant, containing mutations outside

the GTPase domain, indicates that also Irga6 dimerizes in a

parallel head-to-head fashion, similar to all other dynamin

superfamily proteins (Figure 2D).58 In this moderate resolu-

tion structure, the switch I of Irga6 contacts the 20 and 30 OH

groups of the ribose in the opposing protein. This contact, in

turn, leads to the rearrangement of switch I and the reposition-

ing of Glu106 toward the magnesium ion where it appears to

replace the catalytic threonine from G2 in other GTPases (Fig-

ures 2A and 2D). Interestingly, Irga6 bears Gly79 at the third

position in the P-loop. During catalysis, this glycine could

form a main chain hydrogen bond to the bridging oxygen

between the b- and c-phosphates to stabilize the transition

state of GTP hydrolysis. Alternatively, it may also be involved

in the stabilization of a catalytic cation. Further structural anal-

yses of Irga6 in the presence of a transition state mimic are

required to unequivocally demonstrate the function of Gly79.

Not only dynamin superfamily proteins, but also septin

GTPases80,81 and septin-related GTPase, such as Toc3482 and

the GTPases of immunity-associated proteins (GIMAPs)83,84

dimerize in a parallel head-to-head fashion and use related

mechanisms of GTP hydrolysis. In fact, phylogenetic compari-

sons including analysis of the higher order assembly indicate

that septins and dynamins originate from a common

membrane-associated dimerizing ancestor.83 Also other

GTPases, such as the SRP or MnmE, use dimerization-

dependent GTPase mechanisms.85,86 However, their dimeriza-

tion modes differ and they are phylogenetically not closely

related to the dynamin superfamily within the GTPase phylog-

eny, suggesting a convergent evolution.

CONTROL OF GTPASE DOMAIN
DIMERIZATION
How is GTPase domain dimerization and thus, the GTPase

function controlled to prevent futile cycles of GTP hydrolysis?

Recent structural analyses of the auto-inhibited dynamin tet-

ramer indicate that two of the four GTPase domains form

intermolecular contacts to the PH domains of an adjacent

dimer.49 In this position, they are sterically restricted to engage

in GTPase domains contacts. On membrane recruitment, the

PH domains reposition toward the lipid surface and are there-

fore thought to release the auto-inhibitory contacts. Similar

intermolecular auto-inhibitory contacts may exist for other

dynamin superfamily proteins. For example, a monomeric

MxA variant shows increased GTPase activity compared to its

tetrameric wild-type counterpart.41 In the auto-inhibited

EHD2 dimer, a regulatory EH domain was shown to block the

G-interface by delivering its C-terminal tail into the

nucleotide-binding site.37 On membrane binding, the EH

domain was proposed to be released from the GTPase domain

to bind to interaction partners or to stabilize the EHD2

oligomer. Furthermore, the N-terminal eight residues of EHD2

were shown to fold back into a hydrophobic pocket of the

GTPase domain (Figure 1C).60 In the presence of membranes,

the N-terminus switches into the lipid bilayer, as demonstrated

by electron paramagnetic resonance studies. This switch

appears to negatively control membrane binding, since an

EHD2 variant without the N-terminus showed increased

membrane recruitment in a fibroblast cell line.60

BDLP from the cyanobacterium Nostoc punctiforme does

not show a lipid-stimulated GTPase reaction.26 It bears a lysine

residue at the third P-loop position. However, as many other

bacteria, Nostoc strains have several dynamin-like proteins in

their genomes, some of which contain a serine at the corre-

sponding P-loop position. Accordingly, it has been speculated

that heterodimerization with another member may control the

GTPase function of these BDLPs.27,87 Such a hypothesis is sup-

ported by the architecture of DynA from Bacillus subtilis,

which is composed of a tandem of two BDLP units, both of

which carrying a serine at position three in their P-loops. For

this protein, cooperative GTP hydrolysis and interaction with

membranes has been shown.27 Also for IRGs, it has been dem-

onstrated that one subfamily containing a GMS variation in

the terminal sequence of their P-loops controls the GTPase

function of the second subfamily via heterodimerization.88

CONFORMATIONAL CHANGES INDUCED BY
GTP HYDROLYSIS
How are the structural changes induced by GTP hydrolysis

translated into a mechanical force? For a few dynamin super-

family proteins, full-length structures or structures of the

GTPase domain and the adjacent helical domain were deter-

mined in different nucleotide-loading states and showed

remarkable structural rearrangement on GTP hydrolysis and/

or phosphate release. Interestingly, compared to the GTPase

domain dimerization interface, these structural changes vary

quite considerably between the different members.

Although no stable dimerization was found in solution for

the dynamin-GG construct in the presence of GMPPCP and

GDP,62 dimeric crystal structures were obtained for these

states, which were likely induced by the high protein concen-

tration during crystallization.32,89 The BSE adopts two strik-

ingly different conformations relative to the GTPase domains,

when comparing the GDP- and GDP-AlF2
4 -bound forms to

the GMPPCP-bound structure (Figure 3A): In the GDP-bound

structure, the BSE tightly folds against the backside of the

GTPase domain representing the closed conformation, whereas
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FIGURE 3 Nucleotide- and/or lipid binding-induced structural changes in dynamin superfamily

proteins. (A) GDP and GMPPCP-bound structures of dynamin dimers (pdbs 5D3Q, 3ZYC).32,89

Note the large-scale rearrangement of the BSE versus the GTPase domains around a conserved hinge

at Pro294 (orange). At the bottom, the two structures were superimposed along their guanine bases.

For clarity, only the region encompassing b1–b4 is shown, and the G4 and G5 motifs. (B) Structure

of atlastin in the GDP-bound (3Q5E)54 and GMPPNP-bound forms (4IDP).56 The superposition is

shown in the same style as in A). (C) GDP-bound (pdb 2J68)26 and GMPPNP-bound BDLP struc-

tures (2W6D).39 The GMPPNP-bound structure was obtained by fitting the domains of the GDP-

bound form into a cryo-EM reconstruction of BDLP oligomerized around a tubular membrane tem-

plate. Accordingly, the detailed structural changes within the catalytic site could not be deduced.



in the GMPPNP-bound form, it is 708 rotated around the con-

served Pro294 to adopt an open conformation. It has been sug-

gested that the movement from the open to the closed

conformation acts as a power stroke during membrane remod-

eling (see below).

What is the molecular basis for this movement? When com-

paring the GDP- and GMPPCP-bound structures, in particular

switch I undergoes a dramatic rearrangement and helix a1 in

between the P-loop and switch I a slight rotation (Figure 3A).

The latter rotation was suggested to lead to a tightening of

hydrophobic residues in the GTPase domain core and a slight

bending of the central b-sheet.32 Consequently, two loop regions

in the GTPase domain at the opposite side of the nucleotide

rearrange. Together with residues of the central b-sheet, they

mediate contacts to the first BSE helix and the adjacent linker in

the closed, but not in the open conformation, and therefore

control the nucleotide-dependent movement of the BSE. In

addition, relaxation of the switch regions following GTP hydro-

lysis may allow the GTPase domain dimer to dissociate.

Similar to dynamin, an open and a closed conformation

was obtained for the GMPPNP- and GDP-bound structures of

an equivalent MxA-GG construct that dimerized in an analo-

gous way via the G-interface.90 Mutational studies confirmed

that MxA employs a related mechanism of dimerization and

GTP hydrolysis to dynamin which is required for its antiviral

action.91 For a GG construct of DNM1L, an open BSE confor-

mation was obtained for the GMPPCP and GDP-AlF2
4 -bound

dimeric forms,92 whereas a closed conformation was obtained

for the nucleotide-free monomeric form of the GG construct93

and also for the nucleotide-free full-length structure.52 Muta-

genesis data suggested a related mechanism compared to dyna-

min.93 Interestingly, an Arabidopsis thaliana dynamin-related

protein 1A GG construct showed an open BSE in the GDP-

AlF2
4 bound form and a closed BSE in the presence of GDP.94

Thus, whereas the crystallized GMPPNP/GMPPCP-bound

forms of dynamin superfamily proteins always display an open

and the GDP- and nucleotide-free forms always a closed BSE

conformation, both open and closed BSE conformations are

found for transition state mimics of GTP hydrolysis.

Also atlastin shows two fundamentally different conforma-

tions of the helical domain relative to the GTPase domains in

the GMPPNP and GDP-bound structure, but the mode of the

movement is completely different compared to dynamin (Fig-

ure 3B).54–56 In the open GDP-bound form, the two helical

domains protrude in opposite directions, with the GTPase

domain dimer in the center. In the closed GMPPNP-bound

conformation, the helical domains extend in parallel direc-

tions, cross over and therefore directly contact each other.

Interestingly, the closed conformation was also obtained for a

second GDP-bound crystal form, suggesting that the two con-

formations are of similar energy and can be stabilized by differ-

ent crystal contacts.

A comparison of the GMPPNP- and GDP-structures shows

that the two switch regions adopt completely different orienta-

tions (Figure 3B, bottom). This leads to a tightening of the

GTPase domain interface in the GMPPNP versus the GDP-

bound state which may promote the association of the two

opposing helical domains in the GMPPNP-bound state. Fur-

thermore, switch II directly contacts the linker between the

GTPase domain and helical domain in both states and may

convey the nucleotide-loading status directly to the helical

domain. The catalytic Arg77 switches from the nucleotide in

the GMPPNP-bound form toward the GTPase domain of the

opposing dimer, possibly controlling the assembly of atlastin.

Fluorescence resonance energy transfer measurements using a

soluble construct comprising the GTPase domain and the heli-

cal bundle revealed the movements of these domains in

response to nucleotide binding and hydrolysis.56 Based on

these experiments, a sequel of events leading to the tethering

and fusion of opposing membranes was inferred. Efficient

membrane fusion by atlastin also requires the C-terminal

amphipathic helix which appears to perturb the membrane by

inserting into the bilayer.95 Unlike in many dynamin superfam-

ily members, the helix does not seem to interact with other

domains of the protein.

Similar to atlastin, conformational changes occurring dur-

ing GTP hydrolysis of GBP1 are relayed within the

LG-domain. As a result, the C-terminal helical domain was

suggested to be released from the LG-domain during GTP

hydrolysis to engage in coil-coiled interactions (see Figure 1B).

Consequently, mutations of residues between the LG-domain

and the helical domain or a deletion of the last two a-helices in

the helical domain resulted in increased GTPase activity.96 Fur-

thermore, the release of the contacts between the LG-domain

and the C-terminal helices may lead to the formation of higher

order oligomers97 and allow the lipid-modified C-terminus to

interact with lipid membranes.98

For BDLP, the GTPase domains dimerize via the G-

interface in the GDP-bound form.26 The two helical domains

of each monomer are in a closed conformation, with a sharp

kink in between the domains via a hinge region (Figure 3C,

right). The tips of the two helical domains from opposing mol-

ecules contain the membrane binding “paddle” region and

assemble with each other in a closed conformation. In the

presence of GTP and liposomes, BDLP oligomerizes at the sur-

face of liposomes leading to membrane tubulation. An 11 Å

cryo EM reconstruction of this protein-lipid assembly revealed

a dramatic domain opening of the two helical domains, which

protrude in parallel orientations, with the paddle inserted into

the membrane bilayer.39 (Figure 3C, left) The GTPase domains
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dimerize via the G-interface, but the packing of this interface

appears to be tighter compared to the GDP-bound form. Due

to the moderate resolution of the cryo EM reconstruction, it

was not possible to deduce the detailed molecular mechanism

how GTP-binding in combination with the membrane interac-

tion can induce such dramatic domain rearrangements.

HARNESSING THE ENERGY OF GTP
HYDROLYSIS FOR A MECHANO-CHEMICAL
FUNCTION
How is the energy of GTP hydrolysis exploited in the dynamin

superfamily to perform mechano-chemical work on the mem-

brane? From a theoretical point of view, the energy of hydro-

lyzing one GTP molecule to GDP yields about 20 kBT.99 It has

been proposed that this energy can be transformed with an

efficiency of about 40% into mechanical force, and thus hydro-

lysis of only a few GTP molecules would provide sufficient

energy to exceed the energy barrier required for membrane fis-

sion by constriction (35–70 kBT).99 The energy barrier for fis-

sion further depends on the tension and rigidity of the

membrane, which in vivo is influenced by the organization of

certain lipid molecules and also other membrane interacting

proteins besides dynamin.99

For dynamin, it has been shown that the stalk mediates the

assembly of a right-handed nonconstricted helical filament

with a preferred inner diameter of �20 nm corresponding

roughly to the neck diameter of a clathrin-coated vesicle (Fig-

ure 4A).49 Once the filament has fully embraced its tubular

membrane template, GTP-bound GTPase domains are thought

to dimerize across adjacent filaments.41,101 Is has been sug-

gested that short dynamin collars comprised of only 13 dimers

(corresponding to the formation of three G-interfaces across

helical turns47) are sufficient to promote membrane fission in

vitro102 and in vivo.103,104 In contrast, long dynamin collars at

the neck of constricted pit have only been observed in cells if

GTP-hydrolysis was blocked by mutations, addition of inhibi-

tors or depletion of clathrin.10,29,105

On assembly, the power stroke derived from GTP hydrolysis

may pull adjacent filaments along each other, resulting in con-

striction of the underlying membrane template. Consecutive

rounds of GTP hydrolysis could sequentially increase membrane

curvature. As constriction by the dynamin coat proceeds, the

inner leaflets of the membrane are thought to fuse at a critical

tubule diameter, achieving a hemifission intermediate.106,107

Destabilization of the membrane seems to be the strongest at the

edge of an assembled and constricted dynamin helical filament,

where the change in membrane curvature is highest.99 Comple-

tion of membrane fission may be promoted by membrane inser-

tion of hydrophobic residues from the PH domain and the

dissociation of dynamin oligomers following GTP hydroly-

sis.102,107 Such a fission mechanism may also apply to the close

homologues DNM1L35,36,52 and MxA, although the membrane-

dependent function of the latter is unclear. Importantly, such

membrane constriction mechanism strictly requires a helical

arrangement of the dynamin filament, but it is not compatible

with the ring-like arrangements observed under some in vitro

conditions.108 Conversely, ring-like oligomers could mediate the

stabilization of certain membrane curvatures, as for example

proposed for EHD oligomers at the neck of caveolae.37

In atlastin, it has been suggested that GTPase domain dimeri-

zation tethers opposing ER tubules (Figure 4B).54,55 In this case,

GTP hydrolysis may be required to pull opposing membranes

toward each other by catalyzing the transition from the open to

the cross-over helical conformation. Fusion of the closely juxta-

posed membranes may then be further facilitated by disturbance

of the lipids by TM-regions and the amphipathic helix in the C-

terminal tail of atlastin.95,109 In addition, it has been suggested

that the GTPase function may be used to recycle atlastin dimers

in the cross-over conformation back to the open conformation

to allow new rounds of tethering across opposing mem-

branes.110 The exact role of GTPase hydrolysis and of the result-

ing conformational changes for membrane tethering and fusion

are still controversially discussed.56,59,110,111

The close atlastin homologue GBP and the IRGs may use

related mechanisms of mechano-chemical coupling, although

molecular details how their innate immune function is linked

to GTP-hydrolysis at the membrane are still sparse.20 GBPs

have recently been implicated in mediating autophagy and the

activation of inflammasomes. In the case of IRG proteins, it

has been shown that their GTP-dependent recruitment to the

parasitophorous vacuole (PV) of Toxoplasma gondii is followed

by rupture of the vacuole membrane.112 Also, an accumulation

of vesicles at the PV has been observed. Although these data

imply that IRGs may actively destroy the integrity of the PV

membrane, this hypothesis has not been formally proven.

Recent publications indicate that the GBPs follow the IRGs to

the PV and may cooperate with them in pathogen restriction

in mice.113–115 In humans, however, IRG proteins with an

immune function are missing and GBPs are not recruited to

the PV, despite their role in pathogen restriction.116

In bacteria, DynA is enriched at the septa of dividing cells

suggesting a role in membrane fusion of the invaginating sep-

tum. For DynA, a vesicle tethering and fusion activity has been

shown in vitro, which occurred independently of GTP-binding

and hydrolysis.27 As outlined above, BDLP shows GTP-

dependent assembly on membranes resulting in the formation

of a highly curved membrane tubule.26 It has been suggested

that these highly strained membrane tubules are fusogenic

(Figure 4C). Following GTP hydrolysis and the removal of the
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FIGURE 4 Schematic models for the mechano-chemical action of dynamin superfamily proteins on

membranes. The same domain colouring scheme as in Figures 1–3 is used (A) Constriction model of

dynamin.100 After PH-domain dependent recruitment to the membrane, a right-handed dynamin fila-

ment oligomerizes via the stalk around a tubular membrane template, like the neck of clathrin-coated

vesicles. Once the filament has embraced the tubular membrane template, GTPase domains of adjacent

helical turns dimerize. The GTPase-induced power stroke was suggested to pull adjacent filaments along

each other (arrow) leading to constriction and eventually cleavage of the membrane tubule. For better

clarity, the PH domains are not included in this graph. (B) Fusion model of atlastin. The GTPase domains

of atlastin dimerize across ER tubules in the open conformation. Nucleotide hydrolysis-induced confor-

mational changes catalyze the transition toward the cross-over conformation, thereby pulling the two

membranes toward each other, leading to membrane fusion. Note that the indicated transmembrane

domains (blue) were not present in the crystallized construct. (C) Fusion model of BDLP. In the GTP-

bound form, BDLP oligomerizes in its open conformation on a membrane surface, thereby inducing and

stabilizing membrane tubules of high curvature, probably by insertion of the paddle region. GTP hydroly-

sis converts BDLP back to the closed conformation which is released from the membrane, leaving behind

highly strained membrane tubule, that are prone to undergo membrane fusion (according to Ref. 39).



BDLP coat, membrane tubules generated by BDLP were there-

fore proposed to undergo membrane fusion.39 In this case,

GTP-binding is thought to allow the assembly of the BDLP

oligomer, and GTP hydrolysis the recycling of the oligomer

back to the closed form.

The proposed model is in contrast to that of mitofusin, for

which GTP-binding and hydrolysis occur at distinct points dur-

ing membrane fusion (reviewed in Ref. 116). Furthermore, a

mutational analysis showed that dimerization of Fzo1p from

yeast requires GTP-binding and involves two residues in the P-

loop, Asp195 and Asn197, the latter of which corresponds to the

Arg48 in GBP1 and Ser41 in dynamin1, respectively.118 The cis

dimers of GTP-bound Fzo1p then interact in trans to tether

mitochondrial outer membranes. It is not yet clear whether the

cis or the trans dimers involve the G-interface. For efficient mem-

brane fusion, Fzo1p has first to hydrolyze GTP to be then ubiq-

uitinylated by the F-Box protein Mdm30 and finally be

degraded. This process seems at least partially conserved in

mammals since a mutation in the P-loop of mitofusin2 was

identified in Charcot-Marie-Tooth disease patients119 and

recently, it has been found that ubiquitinylation also controls the

fusion activity of mitofusins.120 The mechanism of mitochon-

drial inner membrane fusion by the OPA1/Mgm1p proteins is

experimentally difficult to study and therefore less well under-

stood. Both, OPA1 and Mgm1 proteins are present in the mito-

chondrial intermembrane space as long and short forms which

are formed by mRNA splicing or proteolytic processing. These

isoforms can form homo and hetero-oligomers and it has been

proposed that the GTPase inactive long isoforms mediate tether-

ing of the inner and out mitochondrial membranes while

GTPase hydrolysis by the short isoforms drives the fusion

process.66,121

CONCLUSIONS
Since their initial discovery, dynamin superfamily proteins have

witnessed growing attention as mechano-chemical enzymes

mediating nucleotide-driven cellular membrane remodeling

events. While initial biochemical and cell-based experiments,

paired with reconstitution experiments and EM analyses, have

resulted in initial models of dynamin action, the recent explo-

sion of high resolution structural data have helped to under-

stand the underlying mechanisms in molecular detail. The

catalytic mechanisms of dynamin superfamily proteins have

now been described for a number of cases. While their catalytic

mechanism is related and phylogenetically conserved, details of

catalysis differ between the various members and may be

adapted to the specific cellular function. For dynamin, atlastin,

and BDLP, the coupling between catalysis and the conforma-

tional movement of the adjacent helical domain has been inten-

sively characterized. For other members of the dynamin

superfamily, this coupling is less well understood. Structures

representing all nucleotide states along the reaction pathway

combined with experiments to define the assembly state and

dynamics in solution will help to clarify the mechanism of

GTPase activation and the resulting conformational changes.

The larger challenge will be the coupling of this process to

membrane remodeling events. This is particularly the case for

the dynamin-related proteins involved in membrane fusion

events (mitofusins, OPA1/Mgm1p, atlastins, and bacterial

dynamins). Their membrane interaction is mediated by trans-

membrane or bilayer inserting helices. With the exception of

BDLP,39 we have currently no structural information about the

conformation of these proteins on a membrane. As discussed

for the SNARE proteins, the question has to be answered, if the

helical domains extends into the lipid bilayer and induces per-

turbations of the lipids that destabilize the membrane122 or if

close tethering of membranes is sufficient for effective fusion.123

Likewise, for the dynamin family members with antimicrobial

and antiviral activity (Mx, GBPs, IRGs), future studies will have

to address how the pathogen or the pathogen-containing com-

partments are identified and how the energy of GTP hydrolysis

is utilized to interfere with the life-cycle of the pathogen.
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