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Background: Glioblastoma (GBM) is the most common malignant primary brain tumor,
which associated with extremely poor prognosis.

Methods: Data from datasets GSE16011, GSE7696, GSE50161, GSE90598 and The
Cancer Genome Atlas (TCGA) were analyzed to identify differentially expressed genes
(DEGs) between patients and controls. DEGs common to all five datasets were analyzed
for functional enrichment and for association with overall survival using Cox regression.
Candidate genes were further screened using least absolute shrinkage and selection
operator (LASSO) and random forest algorithms, and the effects of candidate genes on
prognosis were explored using a Gaussian mixed model, a risk model, and concordance
cluster analysis. We also characterized the GBM landscape of immune cell infiltration,
methylation, and somatic mutations.

Results: We identified 3,139 common DEGs, which were associated mainly with
PI3K-Akt signaling, focal adhesion, and Hippo signaling. Cox regression identified 106
common DEGs that were significantly associated with overall survival. LASSO and
random forest algorithms identified six candidate genes (AEBP1, ANXA2R, MAP1LC3A,
TMEM60, PRRG3 and RPS4X) that predicted overall survival and GBM recurrence.
AEBP1 showed the best prognostic performance. We found that GBM tissues were
heavily infiltrated by T helper cells and macrophages, which correlated with higher
AEBP1 expression. Stratifying patients based on the six candidate genes led to two
groups with significantly different overall survival. Somatic mutations in AEBP1 and
modified methylation of MAP1LC3A were associated with GBM.

Conclusion: We have identified candidate genes, particularly AEBP1, strongly
associated with GBM prognosis, which may help in efforts to understand and treat
the disease.
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INTRODUCTION

Glioblastoma (GBM) is an aggressive cancer and the most
common malignant brain tumor in adults (Wei et al., 2022).
GBM involves severe morbidity and it progresses rapidly, leading
to extremely poor prognosis (Hassn Mesrati et al., 2020).
Treatments include radical surgical resection, chemotherapy
and radiation therapy, but they are relatively ineffective, such
that GBM patients have the shortest survival among cancer
patients (Louis et al., 2016). Indeed, GBM inevitably recurs after
surgery and it becomes resistant to therapy, leading to a 5-year
survival rate below 5% (Omuro and DeAngelis, 2013; Majc et al.,
2021) and a mean survival time of 15 months from diagnosis
(Lv et al., 2020).

Rapid and inexpensive gene sequencing has revolutionized
our understanding of GBM (Jovcevska, 2020) by identifying,
for example, the transcriptional inhibitor adipocyte enhancer
binding protein 1 (AEBP1) (Kim et al., 2001) as a potential driver
of GBM (Majdalawieh et al., 2020) and various other cancers
associated with poor prognosis. Genome-wide association studies
have validated 11 single-nucleotide polymorphisms as risk factors
for the disease (Wen et al., 2020). At the same time, advances
in immunotherapy against other cancers has stimulated research
into the GBM immune microenvironment, which turns out to be
highly immunosuppressive and a major obstacle to drug-induced
killing of tumor cells (Pombo Antunes et al., 2020).

Together, these studies have highlighted the need for
comprehensive analysis of genes, gene methylation, and
tumor infiltration by immune cells for understanding GBM
onset, progression, and treatment (Lukas et al., 2019; Hu
et al., 2020; Qin et al., 2020). Therefore the present study
examined these questions across five datasets from public
databases.

MATERIALS AND METHODS

Data Collection
The gene expression profiles of 145 GBM patients and 5
controls was obtained from The Cancer Genome Atlas (TCGA1).
Gene expression profiles were also acquired from the datasets
GSE16011, GSE7696, GSE50161 and GSE90598 in the Gene
Expression Omnibus (GEO2). The GSE16011 dataset contains
profiling of 276 GBM patients and 8 controls with survival
information. The GSE7696 dataset includes profiles from 80
GBM patients and 4 non-tumoral brain samples with recurrence
information. The GSE50161 dataset was generated from surgical
tumor samples from 34 patients and 13 normal brain samples.
The GSE90598 dataset included gene expression profiles from
16 GBM patients and 7 healthy brain tissues. The GSE36278
dataset included methylation profiles of brain tissue samples
from 136 GBM patients and 6 controls. Oncomine database
and TIMER database were used to identify the expression
of genes.

1https://portal.gdc.cancer.gov/
2https://www.ncbi.nlm.nih.gov/geo/

Identification of Differentially Expressed
Genes
The DEseq2 package in R (Love et al., 2014) was used to
identify DEGs between GBM patients and controls in TCGA,
while the corresponding analysis in the datasets GSE16011,
GSE7696, GSE50161 and GSE90598 was performed using the
limma package in R (Ritchie et al., 2015). DEGs whose
expression differences were associated with P < 0.05 were
considered significant and analyzed further. DEGs that were
up- or downregulated across all five datasets were defined as
common DEGs.

Functional Analysis of DEGs
The potential functions of common DEGs were explored by
examining their enrichment in Gene Ontology (GO) biological
processes and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways using the clusterProfiler package in R
(Yu et al., 2012). P < 0.05 was set as the threshold of
statistical significance.

Functions or pathways enriched in DEGs were assessed for
activation or repression using gene set variation analysis (GSVA)
with the GSVA package in R (Hanzelmann et al., 2013). Gene
set enrichment analysis (GSEA) was also performed using the
clusterProfiler package (Subramanian et al., 2005), and results
were displayed using the fgsea package in R.

Association of DEGs With Overall
Survival
DEGs identified in TCGA and the GSE16011 dataset were
assessed for their association with overall survival of GBM
patients using Kaplan–Meier curves. In addition, Cox regression
was used to identify which genes previously linked to survival
of GBM patients as well as common DEGs to obtain prognosis-
related DEGs. The online tool Metascape3 was used to analyze the
potential biological functions of prognosis-related DEGs.

Identification of Candidate Genes for a
Prognostic Model
Using the glmnet package in R (Friedman et al., 2010), we
performed binomial least absolute shrinkage and selection
operator (LASSO) regression to identify common DEGs related
to prognosis. This process can compress some coefficients to zero,
and then only factors with non-zero coefficients are retained.
We sequentially incorporated these factors into the Cox model,
stopping inclusion when the area under the receiver operating
characteristic curve (AUC) value peaked, at which point the
model was considered optimal. AUC was calculated using the
pROC package in R (Robin et al., 2011). Survival curves for both
groups were plotted using the Kaplan–Meier method.

Survival data were dimensionally reduced using a random
forest survival algorithm (Wang et al., 2020), ranked based
on factor importance and then filtered for gene signatures.
Forest plots were generated by univariate Cox regression analysis
using the forestplot package in R. Genes with hazard ratio

3https://metascape.org/gp/index.html
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(HR) > 1 were considered risk factors, HR < 1 were protective
factors. The Gene signatures overlapping between the LASSO
analysis and random survival forest plots were defined as
candidate genes.

Construction of the Risk Score-Based
Prognostic Model
Candidate genes were classified using a Gaussian mixed model
(GMM) based on their ability to predict recurrence in the
GSE7696 dataset, following a previously described procedure
(Hong et al., 2020). Briefly, genes were clustered into mixture
models of genes with similar expression patterns. The optimal
cluster was selected based on the AUC calculated for each model.
Then candidate genes were selected to construct a risk score
prognosis model, and GBM patients were divided into low- and
high-risk groups based on the median risk score. A prognostic
nomogram, constructed using Cox regression, was generated to
predict overall survival at three and 5 years based on TCGA
dataset. The predictive ability of the risk score prognostic model
was assessed in terms of time-dependent AUC, calculated with
the timeROC package in R (Blanche et al., 2013).

DNA Methylation and Somatic Mutations
The cAMP package in R was used to identify differences
in methylation between GBM patients and controls in the
GSE36278 dataset. Somatic mutations in GBM patients in the
TCGA dataset were analyzed using the maftools package in R.

Immune Cell Infiltration
CIBERSORT4 and single—sample GSEA (ssGSEA) in the GSVA
package in R were used to assess the levels of immune cell
infiltration, and differences in infiltration between GBM patients
and controls were calculated using the limma package in R.
CIBERSORT were also used in immune cell infiltration for
glioblastoma (Kesarwani et al., 2019). We also evaluated potential
correlations between candidate genes and immune cell types
using Pearson correlation analysis, with significance defined as
P < 0.05.

Consensus Clustering, Clinical
Characteristics and Drug Sensitivity of
GBM Subtypes
The ConsensusClusterPlus package in R (Wilkerson and
Hayes, 2010) was used to cluster GBM patients from the
GSE16011 database, based on expression of candidate genes.
Kaplan–Meier survival curves were compared between the
resulting clusters. Potential correlations between patients’ cluster
assignments and their clinical information were explored using
Pearson correlation.

Drug sensitivity of genes in the clusters of GBM patients, in
terms of IC50 values, was predicted using the Genomics of Drug
Sensitivity in Cancer (GDSC) database5 using the pRophetic
package in R. Significance was defined as P < 0.05. TIDE

4https://cibersort.stanford.edu/
5www.cancerRxgene.org

algorithm (Jiang et al., 2018) was used to predict the responsive
to immunotherapy of GBM subtypes.

RESULTS

Identification of GBM-Related Genes
The flowchart of this study is shown in Supplementary Figure 1.
We identified DEGs between GBM and controls in the five
datasets as follows: TCGA, 12040 DEGs; GSE16011, 9979 DEGs;
GSE7696, 7730 DEGs; GSE50161, 9974 DEGs; and GSE90598,
9598 DEGs (Figures 1A,B). Common DEGs, which were
dysregulated in the same direction across all five datasets,
amounted to 1,641 upregulated DEGs (Figure 1C) and 1,498
downregulated DEGs (Figure 1D).

Biological Functions of Common DEGs
Several GO biological processes were enriched in common
DEGs. The following processes were found to be activated in
patients relative to controls: inflammatory response to wounding,
response to type I interferon, and signal transduction by p53 class
mediator (Figure 2A). Conversely, the following processes were
inhibited in patients: calcium ion-regulated exocytosis, regulation
of synaptic activity, and signal release from the synapse.

Several KEGG pathways were enriched in common
DEGs. The following were activated in patients relative to
controls: PI3K-AKT signaling, focal adhesion, and Hippo
signaling. Conversely, the following pathways were inhibited
in patients: cAMP signaling, RAS signaling, and retrograde
endocannabinoid signaling (Figure 2B). GSEA showed
activation of asthma and allograft rejection pathways in
patients, while it showed inhibition of pathways involving
neurodegeneration-multiple diseases and neuroactive
ligand-receptor interactions (Figure 2C).

Prognosis-Related Candidate Genes in
GBM
Given the extremely poor 5-year overall survival of GBM patients
in the GSE16011 dataset (Supplementary Figure 2A), we set out
to identify genes associated with survival. Using Kaplan–Meier
analysis and Cox regression analysis, we identified 106 common
DEGs significantly associated with prognosis. These DEGs
were enriched in wound healing, neutrophil degranulation, and
extracellular matrix organization (Supplementary Figure 2B).
The LASSO model based on 106 genes led to 19 gene signature
that predicted GBM with the highest AUC of 0.906 (Figure 3A).
A risk score was calculated for each patient using the 19 gene
signatures, and the median score was used to stratify patients into
low- and high-risk groups, which differed significantly in overall
survival. We used univariate Cox regression and forest plots to
visualize the distribution of gene signatures (Figure 3B), and we
constructed a random forest survival model to select features with
the 106 genes. The genes were ranked by relative importance
based on the relationship between error rate and number of
taxonomic trees, and the most important 15 genes were defined
as the optimal signature (Figure 3C). Again, univariate Cox
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FIGURE 1 | Differentially expressed genes (DEGs) between GBM patients and controls. (A) Manhattan plot of DEGs in the datasets TCGA, GSE16011, GSE7696,
GSE50161 and GSE90598. (B) Statistical bar graph of DEGs in each group. (C) DEGs upregulated in GBM across all five datasets. (D) DEGs downregulated in
GBM across all five datasets.

regression and forest plots were used to visualize the distribution
of the gene signature (Figure 3D). Six genes overlapped between
the 19-gene signature and the final 15-gene signature, and were
therefore defined as candidate genes. Forest plots showed that
AEBP1, ANXA2R, MAP1LC3A, TMEM60, and PRRG3 were risk
factors for GBM, while RPS4X was a protective factor.

Evaluation of Candidate Genes
All six candidate genes had AUCs greater than 0.75 in all five
datasets (Figure 4A), and GMM grouped the six candidate
genes into three clusters based on their ability to predict
GBM recurrence (Figure 4B). Cluster 2 (AEBP1, ANXA2R,
MAP1LC3A, PRRG3, and RPS4X) showed the highest AUC for
predicting recurrence. Patients were stratified into low- and high-
risk groups based on median risk score for the candidate genes,
and patients in the low-risk group showed higher recurrence-
free survival (Figure 4C). Expression of AEBP1, ANXA2R,
MAP1LC3A, TMEM60, and PRRG3 was high in the high-risk
group, whereas RPS4X expression was low.

To develop a potentially more clinically useful tool for
predicting overall survival in GBM patients, we built a nomogram

using multivariate Cox regression (Figure 4D). Calibration plots
showed that the nomogram performed well compared with an
ideal model (Figure 4E), and the nomogram confirmed the above
results about which candidate genes served as risk factors or
protective factors.

Using the “timeROC” algorithm, we used the candidate
genes to predict overall survival of GBM patients at one, three
and five years. AEBP1 led to the highest AUCs (> 0.76)
in all three cases (Figure 4F), while each of the other five
candidate genes gave AUCs greater than 0.59 in all three cases
(Supplementary Figure 3).

Immune Infiltration in GBM
CIBERSORT showed that M2 macrophages and monocytes
were relatively abundant among immune cells in GBM patients
in the GSE16011 dataset (Supplementary Figure 4A), while
ssGSEA showed infiltration by Th2 cells, T helper cells,
neutrophils, and macrophages to be significantly higher in
patients than in controls in all five datasets (Supplementary
Figure 4B). Conversely, infiltration by NK CD56bright
cells was significantly lower in patients than in controls
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FIGURE 2 | Functional enrichment of common DEGs in GBM. (A) Biological processes activated (red) or inhibited (blue) by common DEGs in GBM patients relative
to controls. (B) KEGG pathways activated (red) or inhibited (blue) by common DEGs in GBM patients relative to controls. (C) Activated or inhibited processes in GBM
patients relative to controls, based on gene set enrichment analysis.
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FIGURE 3 | Identification of prognosis-related candidate genes in GBM. (A) The 19 gene signatures with the largest AUC values for diagnosing GBM. Signatures
were identified using the least absolute shrinkage and selection operator (LASSO) algorithm, receiver operating characteristic curves, and Kaplan–Meier analysis of
low- and high-risk groups. AUC, area under the receiver operating characteristic curve; FPR, false positive rate; TPR, true positive rate. (B) Forest plots of Cox
regression analysis of gene signatures in the LASSO model. (C) Importance ranking of 15 gene signatures based on random forest survival modeling. (D) Forest
plots of Cox regression analysis of gene signatures in the random forest survival model.

in the five datasets. Infiltrated immune cells fell into three
clusters (Supplementary Figure 4C). The candidate genes,
especially AEBP1, correlated significantly with T helper cells and
macrophages (Supplementary Figure 4D).

Validation of AEBP1 as a Candidate
Marker for GBM
Analysis of the Oncomine database showed AEBP1 to be
upregulated in several types of tumors (Figure 5A), and similar
results were found in the TIMER database (Supplementary
Figure 5). In addition, according to the expression of
AEBP1 and GSVA of functions or pathways, we performed
correlation analysis. AEBP1 expression correlated positively with
activated biological processes (Figure 5B) and negatively with
inhibited processes (Figure 5C). Similarly, AEBP1 expression
correlated positively with activated KEGG signaling pathways
(Figure 5D) and negatively with inhibited KEGG signaling
pathways (Figure 5E).

Construction of GBM Subtypes
Consistency clustering based on the six candidate genes split
GBM samples into class 1 (C1) and class 2 (C2) (Figure 6A).

Patients in C1 showed significantly better overall survival
(Figure 6B), and the two classes differed significantly in cancer
stage, age, and survival time (Figure 6C). The TIDE algorithm
predicted that patients in C2 would be significantly more
responsive to immunotherapy (P < 0.001). Indeed, we predicted
C2 to be significantly more likely to respond to anti-PD-1 and
anti-CTLA4 treatment when we compared expression profiles of
C1 and C2 with those of melanoma patients who responded to
immunotherapy (Figure 6D; Roh et al., 2017).

To further explore treatment differences between the two
classes of GBM patients, we trained a model with data from
GDSC cells to predict IC50 for various chemotherapy drugs
against patients in C1 or C2. We predicted that 45 drugs
would affect the two patient classes differently, particularly the
drugs Vorinostat, OSI.906, BIRB.0796, AICAR, ABT.263, and
ABT.263 (Figure 6E).

Mutational and Methylation Landscape
of GBM
GBM patients from TCGA showed hypermutated in the genes
STAG2, ZBTB5, and NRXN3 (Supplementary Figure 6A),
as well as AEBP1 (Supplementary Figure 6B). We screened
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FIGURE 4 | Prediction of GBM patient survival based on candidate genes. (A) Areas under the receiver operating characteristic curve (AUCs), fold change in
differential expression, and P value associated with candidate genes based on the datasets GSE16011, GSE7696, GSE50161, GSE90598, and TCGA.
(B) Correlation of AUCs with the logistic regression model was identified using a Gaussian mixed model. (C) Distribution of candidate gene-based risk scores,
recurrence-free survival (RFS) and gene expression levels in the GSE16011 dataset. (D) A predictive nomogram was constructed based on candidate genes and the
GSE16011 dataset. (E) Agreement between nomogram-predicted and observed overall survival (OS) at one and 2 years. (F) Receiver operating characteristic curve
for AEBP1 to predict OS at one, three, and 5 years.

FIGURE 5 | AEBP1 may be a candidate marker for GBM. (A) AEBP1 expression in the Oncomine database. Red is high expression and blue is low expression.
Numbers represent the number of analyses when the fold change of expression was 2. (B) Correlation between AEBP1 and biological processes activated in GBM.
(C) Correlation between AEBP1 and biological processes inhibited in GBM. (D) Correlation between AEBP1 and KEGG pathways activated in GBM. (E) Correlation
between AEBP1 and KEGG pathways inhibited in GBM.
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FIGURE 6 | Identification of new subtypes of GBM. (A) Consistency clustering based on six candidate genes and GBM patients, generating clusters C1 and C2.
(B) Kaplan–Meier overall survival (OS) curves for the two clusters. (C) Differences in clinical characteristics between the two clusters. (D) Differences in predicted
response to immunotherapy between the two clusters. (E) Predicted drug IC50 values that differed the most between the two clusters.

the GSE36278 dataset for differentially methylated probes
(DMPs) between GBM patients and controls (Supplementary
Figure 6C), and we identified 61,448 DMPs involving 12,406
genes. When we focused on methylation modifications that
affected gene expression in the opposite direction, we
identified hypomethylated MAP1LC3A as altered in GBM
(Supplementary Figure 6D).

DISCUSSION

Recent studies have focused on identifying genes that promote
or inhibit GBM (Hu et al., 2021; Lin et al., 2021), and we have

extended that literature by identifying candidate DEGs associated
with prognosis, based on publicly available data. Predicting
the response to immunotherapy in patients with different
clusters based on candidate genes provides a potential approach
for screening immunotherapy patients in the future. The six
candidate genes showed a significantly improved prognostic
value for GBM patients. In particular, we identified AEBP1
as an oncogene in GBM and as a potential therapeutic and
prognostic biomarker.

The DEGs in GBM that we identified appear to be involved
in many biological processes and pathways related to nerve
function, immune responses, and inflammation. This reflects that
tumors act as “wounds that never heal,” hijacking proliferative
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pathways in wound healing in order to suppress immune
responses and induce angiogenesis, all of which favors tumor
spread (Dvorak, 1986; Hua and Bergers, 2019). The GO biological
processes and KEGG pathways that we found to be activated
in GBM concur with previous studies. GBM tumors infiltrate
into dense synaptic networks, where they cause axon severing or
edema, leading to neuronal degeneration (Lim et al., 2018). GBM
progression seems to depend on the PI3K/Akt pathway, which
promotes cell proliferation, angiogenesis, migration, invasion
and metabolic reprogramming (Su et al., 2021), making it
a potential therapeutic target (Lee et al., 2021). Stable focal
adhesions, in which integrins connect the cytoskeleton to the
extracellular matrix, are essential to maintain the invasive
phenotype of GBM cells (Sun et al., 2016; Chen et al., 2018;
de Semir et al., 2020). Hippo signaling is strongly associated
with poor prognosis in GBM patients (Masliantsev et al.,
2021). We found that GBM tissue is extensively infiltrated with
neutrophils. Neutrophil infiltration is closely associated with
tumor necrosis and predicts poor survival in GBM patients
(Yee et al., 2020).

We identified six candidate genes by LASSO and random
forest survival modeling that predicted overall survival with
AUCs. Gene signatures may also be useful in other cancers,
such as the 21-gene panel to evaluate breast cancer recurrence
(Oncotype DX) (Wang et al., 2018) and the 18-gene signature
to assess recurrence risk in stage II colon cancer patients
(ColoPrint) (Kopetz et al., 2015). In addition, we also identified
two clusters based on six candidate genes. There are differences
between the two clusters in response to immunotherapy. Wang
et al. (2021) predicted the clinical response of GBM patients
to immunotherapy by TIDE algorithm using gene expression
profiles of GBM samples. We also investigated the differences
in sensitivity to drugs between patients with different clusters
using the GDSC database. Studies exploring drug sensitivity
in GBM patients with the GDSC database are also analyzed
by Wang et al. (2022).

Five of the six candidate genes that the present work
links to GBM have previously been associated with GBM or
other cancers. AEBP1 expression has been associated with
the poor prognosis of GBM patients (Kalya et al., 2021).
Expression of ANXA2R has been shown to correlate inversely
with prognosis of glioma patients (Stepniak et al., 2021). High
MAP1LC3A expression has been linked to poor prognosis
of GBM patients (Wang et al., 2019), perhaps because its
upregulation impairs autophagy (Zhang et al., 2016). High
expression of PRRG3 is associated with increased risk of prostate
cancer (Zhang et al., 2020). Similarly, we are unaware of
previous reports linking TMEM60 to GBM or other cancers.
Our results identified RPS4X as a protective factor against
GBM, which is interesting given that it has been reported
to drive the development and metastasis of hepatocellular
carcinoma (Zhou et al., 2020). The present study may help
focus future research on genes most likely to play key roles in
GBM, which may deepen our understanding of the disease and
its treatment.

Nevertheless, our findings should be treated with caution
in light of important limitations. The first is that our analyses

were entirely bioinformatic, so experimental validation is needed.
Second, we were unable to correlate gene expression with certain
clinicodemographic characteristics of patients, or explore the
possibility of clinicodemographic confounding in our analyses.
This is because the necessary patient data were often missing
from the public databases. In particular, we were unable
to stratify patients by severity of GBM, which should be
explored in future work.

CONCLUSION

We identified six candidate genes that may be prognostic and
therapeutic targets for GBM, and we used those genes to build
models to predict overall survival and recurrence. These genes
and their predictive abilities may help clinicians individualize
treatment for GBM patients.
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