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Multiscale brings great benefits for people to observe objects or problems from different perspectives. Multiscale clustering has
been widely studied in various disciplines. However, most of the research studies are only for the numerical dataset, which is a lack
of research on the clustering of nominal dataset, especially the data are nonindependent and identically distributed (Non-IID).
Aiming at the current research situation, this paper proposes a multiscale clustering framework based on Non-IID nominal data.
Firstly, the benchmark-scale dataset is clustered based on coupled metric similarity measure. Secondly, it is proposed to transform
the clustering results from benchmark scale to target scale that the two algorithms are named upscaling based on single chain and
downscaling based on Lanczos kernel, respectively. Finally, experiments are performed using five public datasets and one real
dataset of the Hebei province of China. The results showed that the method can provide us not only competitive performance but

also reduce computational cost.

1. Introduction

Clustering is one of the vital data mining and machine
learning techniques, which aims to group similar objects into
the same cluster and separate dissimilar objects into different
clusters [1]. It is so prominent and recently attracted sig-
nificant attention of researchers and practitioners from dif-
ferent domains of science and engineering [2]. Thousands of
papers had been published [3-6]. However, these investiga-
tions only concentrated on clustering at a single perspective.

The scale can be equivalent to the following concept:
generic concept, level of abstraction, or perspective of ob-
servation; the same problem or system can be perceived at
different scales based on particular needs [2]. That is called
multiscale phenomena and has been widely applied to the
academic fields, such as geoscience [3, 4] and mathematics
[5]. Based on the clustering for distribution of scapularis
nymphs at different spatial scales of lyme disease occurrence
areas in southern Quebec, Canada, reference [6] helps

people understand the change of risk and take corre-
sponding measures. In [7], an average linkage hierarchical
clustering algorithm was proposed through the regionali-
zation algorithm to identify uniform rainfall areas in non-
stationary precipitation time series based on multiscale self-
lifting sampling. The authors in [8] proposed a multiscale
Gaussian kernel-induced fuzzy C-means algorithm to seg-
ment lesions and determine the edges of lesions.

From the current research situation, multiscale clus-
tering has been widely studied in various disciplines.
However, from the analysis of the attribute type of data, most
of the research studies are only for the numerical dataset, the
quantitative analysis, and prediction of the data, but there is
very little qualitative analysis about nominal dataset. Most of
the datasets use characters to represent attribute values and
do not have the properties of numbers. Even if they are
represented by numbers (integers), they should be symbols
and cannot be analyzed quantitatively. To study the nominal
dataset, not only the complex data characteristics need to be
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obtained but also the proposed method needs to have some
flexibility.

The main contributions of this paper are as follows: (1) a
multiscale clustering approach for Non-IID nominal data is
proposed by introducing unsupervised coupling metric
similarity; (2) combined with the scale-transformation
theory and the idea of condensed hierarchical clustering, a
scale calculation method based on a single chain is proposed
to transform the clustering results from benchmark scale to
target scale; and (3) combining the scale-transformation
theory with Lanczos interpolation idea and based on the split
hierarchical clustering idea, the Lanczos kernel-based
downscaling algorithm was proposed to carry out multiscale
clustering for the Non-IDD nominal datasets.

The rest of this paper is organized as follows. Section 2
discusses the related work. Some definitions are reviewed
briefly in Section 3. The framework of multiscale clustering is
designed in Section 4. Section 5 details the comparison
experiments. The conclusion and some future research di-
rections are given in Section 6.

2. Related Work

Clustering has attracted more and more attention from
researchers and can be applied to many fields, such as time
series analysis [9, 10], brain-computer interface [11-15],
epilepsy [16, 17], and sleep staging [18, 19]. Clustering
usually requires that the number of “classes” to be set in
advance, and then the dataset is divided into each “class”
according to the specific partitioning algorithm. The
partitioning method assigns a dataset into k clusters such
that each cluster must contain at least one element. The
k-means algorithm proposed by MacQueen in 1967 is the
most classical representation of the partitioning method
[20], and that is one of the best-known and simplest
clustering algorithms [21]. Frey and Dueck in 2007
proposed the “affinity propagation (AP)” algorithm [22].
Different from previous clustering algorithms, this al-
gorithm does not need to determine the clustering center
in advance but uses a N-order square matrix to store the
relationship between data and performs iterative clus-
tering on this square matrix with obvious results. In 2013,
Kawano et al. proposed a greedy clustering algorithm
based on k members and applied it to collaborative fil-
tering tasks [23]. In 2015, Agarwal et al. proposed the
improved k-means algorithm k-means ++, which is as
decentralized as possible in the selection of centroid, and
the clustering effect is significantly improved [24].
Spectral clustering [25] originates from graph theory.
Data are regarded as vertices in the graph, and the rela-
tionship between data is regarded as edges in the graph.
The graph is divided into several subgraphs by “graph
cutting” technology, and the subgraphs correspond to
clusters in the clustering. The common feature of these
algorithms is that they can only handle numerical data.
For the clustering problem of nominal data, Huang was
inspired by the k-means algorithm and proposed the
k-modes algorithm [26] for the first time in 1998. This
algorithm adopted a new way of measuring object

Computational Intelligence and Neuroscience

similarity to partition data objects. In 2018, Nguyen et al.
improved the k-modes algorithm [27] and used the pri-
vacy protection mechanism to solve the problem of
transparent data input.

In 2014, Saffarzadeh et al. used the multiscale linear
algorithm to analyze retinal images to determine whether
eye lesions occurred [28]. In 2015, Lim et al. applied the
multiscale spectrum clustering algorithm in the field of
geosciences to improve the reliability of earthquake pre-
diction [29]. In 2016, Parisot et al. applied multispectral
clustering to the medical field to improve the efficiency and
accuracy of magnetic resonance imaging [30]. In 2018,
Ripoche et al. investigated the distribution of lyme disease at
three different spatial scales in southern Quebec, Canada,
and the density of pupae in different woodlands and in
different plots and sections of the same woodlands, to
provide guidance on the understanding and prevention of
lyme disease [6]. Vu et al. developed a new multithreaded
tool, fMLC, and addressed the problem of clustering large-
scale DNA sequences [31]. A multilevel clustering for star/
galaxy separation was designed in 2016, consisting of three
phases: coarsening clustering, representative data clustering,
and merging [32]. In 2019, Zunic et al. proposed a multilevel
clustering algorithm that is used on the Internal Banking
Payment System in a bank of Bosnia and Herzegovina and
explained how the parameters affect the results and exe-
cution time in the algorithm [33]. These all algorithms aim to
a specific application and solve the corresponding problems.
On the premise that the clustering results of small-scale data
sets have been obtained, Chen et al. [34] proposed a method
named SUCC to solve the clustering for large-scale data. We
will propose a multiscale clustering approach for Non-I1ID
nominal data.

In clustering, we need to evaluate the dissimilarity
among objects by using distance measure [35]. Minkowski
distance is the most commonly used measure for numerical
data. The most popular distance measure is Euclidean dis-
tance, another well-known measure is the Manhattan dis-
tance, and they are all special cases of Minkowski distance.
The dissimilarity between two binary attributes is computing
a dissimilarity matrix from the given binary data. The above
measurement methods are mainly for numerical data, and
quantitative processing and analysis are carried out. How-
ever, there are also nonnumerical attribute values of data,
also known as nominal data. At present, there are few studies
on qualitative analysis of nominal data, especially the data
are Non-IID. Couple metric similarity (CMS) [36] is good
for measuring the distance of Non-IID nominal data.

3. Preliminaries

To facilitate the discussion in the remainder of this paper,
CMS is reviewed briefly in this section. CMS measures the
similarity of two objects by capturing both the intra- and
inter-attribute coupling relations of objects, where the
former characterizes the coupling similarity between the
frequency distribution and the value of attribute and the
latter aggregates attribute dependencies between different
attribute values relationship by considering the intersection
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of the condition attribute values co-occurrence probability
of the different characteristics [36].

Definition 1 (intra-attribute similarity). The intra-attribute
similarity between two objects A and B on attribute j is Sy,
(4j, B;) and is defined as follows:

1, A] :B]:

S; (A,,B;) =
Iﬂ( j J) logp- logq
log(p- q) +log p - log q

, others,

1

where p = |N(Aj)| +1, 9= |N(Bj)| +1, A; represents the
value of object A on attribute j, B; represents the value of
object B on attribute j, N (A;) represents is the set of objects
whose values of attribute are A;, and |e| represents the
number of the set.

Definition 2 (inter-attribute similarity). The inter-attribute
similarity between two values of attribute A; and B; on at-
tribute j with other attributes is Sy (A;, B;) and is defined as
follows:

d
> riiSui(A5By), (2)

k=1k+j

Sie(A;B;) =

where d represents the number of attributes in dataset, r; is
the weight of each attribute k to attribute j, and Sy ; (A, B;)
represents the inter-attribute similarity candidates with at-
tribute k and is defined as follows:

1, A] = B],
Sui(ApBi) =1 3)
, others,
2M -Q
where
v Il max<|N(W;"Aj)', |N(W§<>Bj)'>,
i=1 |N(Aj)' 'N(Bf)‘
o Wl min<|N(W}<,Aj)" |N(W}<,Bj)'>’
P N4 [N(B))
W, = V:](Af) n VkN(Bj), where V,I:](Aj) is the set of values of

attribute k for all objects in N (A;) and W, consists of those
attribute values of attribute k which co-occur with both 4;
and Bj, W is the ith element of W.

Definition 3 (coupled metric similarity). The coupled metric

similarity (CMS) between two objects A and Bis S(A, B) and
is defined as follows:

d
S(A,B) =) B;S;(A;,B)), (5)
j=1

where f3; represents the weight of the coupled metric at-
tribute value similarity of the an attribute jand S; (A, B)) is
defined as follows:

1
a(1/8,,(A;, B;)) + (1 = a)(1/S,,(A;, B;))
(6)

where « is the weighted harmonic mean of inter-attribute
similarity and intra-attribute similarity. Different « reflects
the different proportions of the intra-attribute similarity and
inter-attribute similarity in forming the overall object
similarity.

Throughout in this paper, we use CMS to measure the
similarity of two objects.

S;(4;B;) =

4. Proposed Framework

The multiscale clustering framework proposed in this paper is
shown in Figure 1. Instead of directly clustering on all scale
datasets, this method first selects the best scale dataset that is
named benchmark-scale dataset, then calls the classical mining
algorithm on the benchmark-scale dataset to get the clustering
results, and finally decides to push the clustering results up or
down according to the relationship between the target scale and
the benchmark scale. From this framework, it can be seen that
the core of multiscale clustering is the benchmark-scale dataset
clustering and the push up and push down of the clustering
results of the benchmark-scale dataset. We design three al-
gorithms to implement the framework.

Firstly, according to the probability density discretiza-
tion method [37], the properties of the representational scale
are divided into multiple scales by the probability density.
Secondly, the optimal scale is determined according to the
attenuation of the information entropy of each scale [38] and
clustering on benchmark-scale dataset by using the spectral
method. Details of Algorithm 1 are as follows. We calculate
the distance between every pair sample in the benchmark-
scale dataset by using CMS and construct the similarity
matrix, where 1 <, f<ij. (line 5). The Laplacian matrix be
calculated in line 5-10. The value and vector are computed in
line 11, where N is the number of cluster and set in advance.
The core and label of cluster are spliced to form Rcenter (line
14).

After the clustering benchmark-scale dataset is com-
pleted, the cluster center of big-scale dataset can be deduced
from the cluster center of the benchmark-scale dataset. In
this paper, inspired by the idea of condensed hierarchical
clustering, an upscaling algorithm based on CMS (UACMS)
is proposed (line 2-4). Its basic ideas are as follows: each
cluster center of the benchmark scale was taken as a cluster,
and the CMS was distance measured, and the two nearest
clusters were merged into one until the termination con-
dition was reached (line 5-9). The specific process is as
Algorithm 2.

The downscaling algorithm based on Lanczos (DSAL)
obtains the cluster center of the small-scale dataset from the
cluster center of the benchmark-scale dataset, and the
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FIGURE 1: Overview of multiscale clustering.

process is exactly opposite to UACMS in Algorithm 3. That
is, its principle is to adopt top-down thinking. Firstly, all the
benchmark-scale cluster centers are regarded as a cluster,
and Lanczos kernel function is used to calculate the weight of
each cluster to generate new cluster centers (line 1). Then,
more and smaller clusters are obtained according to the
coupling similarity between them until the termination
condition is met (line 2-5).

5. Performance Evaluations

In this section, we compare our method with classical
methods: k-modes and the spectral clustering that are based
on 5 measures (CMS, HM [39], OF, IOF, and Eskin [40]) on
6 datasets. The clustering evaluation index includes Nor-
malized Mutual Information (NMI) [41], F-score [42],
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which belongs to external index score, and Mean Squared
Error (MSE) [43, 44], which belongs to internal indicators,
this section will use these three indicators to evaluate the
accuracy of the proposed algorithm, and it also demonstrates
the runtime advantage of the proposed algorithm.

5.1. Data and Experimental Settings. In order to verify the
validity and feasibility of the framework and algorithm
proposed in this paper, Kaggle and UCI public datasets (Zoo,
Soybeanlarge, Dermatology, BreastCancer, and Titanic) and
real datasets (renkou for short) were used for experimental
verification, as shown in Table 1. To facilitate description, the
datasets Soybeanlarge, Dermatology, and BreastCancer are
represented by Sol, Der, and BrC, respectively, in this sec-
tion. Our program has been implemented with Python and
performed on a computer with a Inter(R) Core (TM) i7-3770
4-Core 3.4 GHz CPU, 8 GB RAM, and the windows 10 x 64
Home operating system.

5.2. Upscaling. The NMI values of the algorithm UACMS in
this paper and the six comparison algorithms on each dataset
are shown in Figure 2. It can be seen from the figure that the
OF’s NMI value is basically the smallest in each dataset, and
the NMI value of the algorithm UACMS is the highest,
except for BrC and Titanic. The main reason is that the
relationship between the element attributes of the two
datasets is complex. It is not easy to reflect this complex
relationship by adjusting the parameters that restrict the
weight of the relationship intra-attributes and the rela-
tionship inter-attributes of objects, which is also a challenge
faced with the algorithm. Of course, UACMS performs well
on Der, renkou, and other datasets. In general, the NMI
value of the algorithm UACMS is increased by 13% on
average compared with other algorithms.

To facilitate comparison, the MSE value of seven dif-
ferent algorithms in the dataset Brc was reduced to 40% of
the original value, as shown in Figure 3. It can be seen from
the figure that the algorithm proposed in this section has a
dominant MSE value on the four datasets. In general,
compared with other algorithms, the MSE value of the al-
gorithm proposed is reduced by 0.83 on average, which
shows certain advantages of UACMS. It is worth noting that
Figure 3 shows that the MSE value of the method OF on Sol
and renkou datasets is small, and the mean value of MSE on
the 6 datasets is second only to UACMS. Since the MSE value
reflects the tightness of objects in the cluster, the cluster
generated by the method OF is relatively tight.

Figure 4 shows the F-score values of UACMS and the six
comparison algorithms. Although CMS had the highest F-
score in the dataset BrC, Eskin had the highest F-score in the
dataset Sol, and UACMS had the best performance in the
other four datasets and had the highest F-score mean of all
datasets, which was about 13% higher than the mean of all
comparison algorithms. Conversely, k-modes perform
poorly on all datasets. This explains the reason for the
k-modes’ dependence on random initialization centers and
lack of consideration for the interrelationships between
attributes of objects.
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Input: raw dataset

3: foreach MDi[j]: o
:  compute matri_W= S(dﬁd;s) according to (4)
AdjD = getAdjD(matri_W)
LnM = AdjD-matri_W
DnM = AdjD ™/
LM =DnM XLnM X DnM
9:  value, vector = getEigenvector (LM, N)
10:  clusters = KMeans(N)
11:  st=clusters.fit(vector)
12:  Cl=stlabels_
13:  Cc=st. cluster_centers_
14:  Rcenter|[i]j=Cc||Cl
15: endfor
16: return Rcenter|[]

XN DD

Output: clustering result of benchmark-scale dataset
1: Data preprocessing and constructing multiscale dataset MD
2: Choose benchmark-scale dataset MDi[j] from MDi={{d},d},... ,d}l},{dZ,dﬁ, . ,dizz},. s Adyady,. L dt

ALGORITHM 1: Benchmark-scale clustering algorithm (BSCA).

Output: the clustering result of target dataset
2: for i in range(m)://m is the number of partition

4: computing similarity(A, B) according to (4)
5: dof

6: choose minimum from simlist

7:  merge two clusters

8:  Update the cs

9: }while (condition is true)

10: return cs//the clustering result of target dataset

Input: list (Reenter [1]11, ..., Reenter [1]1k,..., Rcenter[m]mk)//the clustering result of benchmark-scale dataset
1: simlist=NULL, cs =list(Rcenter [1]11, ..., Rcenter [1]1k,.. ., Rcenter[m]mk)

3: for j in range(ik)://ik is the number of cluster belonged ith partition

ALGORITHM 2: Upscaling algorithm based on CMS (UACMS).

Output: the clustering result of target dataset

for j in range(i+1,n):

Input: list(Rcenter [1], Reenter [1],..., Rcenter[n])//the clustering result of benchmark-scale dataset

: design kernel function L(x) = sinc(x) sinc(x/a)
: for i in range(n)://n is the number of cluster belonged benchmark scale

convert (Rcenter[j]) by using M and L(x).

1

2

3

4: Mij = getSimilarCMS(Rcenter([i], Rcenter([j]);

5

6: return Rcenter[]//the clustering result of target dataset

ALGORITHM 3: Downscaling algorithm based on Lanczos (DSAL).

Table 2 shows the runtime of the algorithm UACMS and
the 6 comparison algorithms on 6 datasets. The algorithm
UACMS has significant advantages on all datasets, and the
average running time is improved by 11.32 minutes. Other
six algorithms need more runtime along with the increase in
the amount of dataset, but the runtime algorithm UACMS is
not affected basically by the amount of dataset; this is

because UACMS does not deal the original data, but the
cluster centers of benchmark-scale dataset and the size of
benchmark-scale dataset’s cluster centers are far less than
raw dataset. As CMS measures the similarity between ob-
jects, it needs to consider both the internal similarity of
object attributes and the similarity between object attributes,
which requires a relatively large amount of calculation, so
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TABLE 1: Properties of the datasets used for experimental analysis.
Dataset A n C Missing value
Z00 16 101 7 No
Sol 35 306 18 Yes
Der 33 366 6 Yes
BrC 9 699 2 No
Titanic 5 1309 2 No
Renkou 4 5152 5 No
1 .
0.9 -
0.8 -
0.7 -
0.6 -
0.5 -
0.4 -
0.3 -
0.2 -
0.1 -
0
Z00 Sol Der BrC Titanic renkou Mean
m CMS IOF
= HM m Eskin
OF = k-modes
m UACMS
FIGURE 2: NMI of UACMS vs. compared algorithms.
16 -
14 -
12 -
10 -
8 .
6 .
4 .
2 .
0
Z0o Sol Der BrC Titanic renkou Mean
m CMS IOF
= HM m Eskin
OF ® k-modes
m UACMS

FIGURE 3: MSE of UACMS vs. compared algorithms.

the algorithm needs much more time, as shown in Table 2.
The other five comparison algorithms are mature and effi-
cient, especially k-modes, with short running time, but they
have a common characteristic: with the increase in data
volume, the execution time will increase accordingly. In
particular, CMS and Eskin methods in the experiment are
derived from the literature and were not optimized, so the
operation efficiency was low.

In conclusion, through experiments, this section verifies
that the proposed algorithm (UACMS) is superior to the
other six algorithms in the clustering result indexes (NMI,
MSE, and F-score) on most datasets. In addition, the biggest

advantage of UACMS is that the runtime of UACMS is
significantly shorter than that of the comparing algorithms,
and it does not change much along with increasing data
volume. This is because the UACMS deals with the
knowledge on the benchmark-scale dataset rather than the
original data. As a result, UACMS is available and efficient.

5.3. Downscaling. Figure 5 shows the NMI values of DSAL
and 6 comparison algorithms on 6 datasets. Except for the
dataset BrC, DSAL has the highest NMI value on the other
five datasets, and the mean NMI value of DSAL on all
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1.2 -
1 .
0.8 -
0.6 -
0.4 -
0.2 -
0
Z00 Sol Der BrC Titanic renkou Mean
m CMS IOF
= HM = Eskin
OF m k-modes
m UACMS
FIGURE 4: F-score of UACMS vs. compared algorithms.
TaBLE 2: Runtime of UACMS vs. compared algorithms (millisecond).
Dataset CMS HM OF IOF Eskin k-modes UACMS
Zoo 44029 208 838 905 811 0266 57
Sol 2267711 1674 16931 18403 16551 3055 231
Der 3192750 2101 58454 29160 27747 1647 78
BrC 1784752 2642 44205 43379 52121 650 30
Titanic 1226818 2535 92365 88922 100047 0898 35
Renkou 10297337 136095 1305017 1318840 2270405 4389 50
Mean 3135566 24209 252968 249935 411280 1818 80

datasets is about 19% higher than that of the six comparison
algorithms. In contrast, the k-modes algorithm performs
poorly in the experiment because, on the one hand, this
method is built on the assumption that the attributes of the
objects are independent, while the attributes of the objects in
the experimental dataset are dependent; on the other hand,
the k-modes algorithm randomly selects the cluster center
during the execution, which leads to the randomness of
clustering results. As the DSAL algorithm takes into account
the interaction between different attributes, the clustering
results have obvious advantages.

To facilitate comparison, the MSE values of six different
algorithms in the dataset Brc are reduced to 40% of the
original value, and the final MSE values of all algorithms are
shown in Figure 6. It can be seen from Figure 6 that the MSE
value of the algorithm DSAL is slightly unsatisfactory on the
two datasets BrC and Titanic and is dominant on the three
datasets except for renkou. However, the MSE value of the
two algorithms HM and OF is slightly lower on the dataset
renkou. The reason may be that there are fewer different
attribute values in one attribute, which affects the perfor-
mance of the relevant algorithm. Overall, the MSE value of
DSAL in 3 of the 6 datasets was smaller than that of the
comparison algorithm, with an average decrease of about
0.03. It shows that the compactness of cluster formed by the
DSAL algorithm has a slight advantage over other com-
parison algorithms.

The F-score values of DSAL and the comparison algo-
rithms are shown in Figure 7. It can be seen from Figure 7
that the DSAL has the highest F-score values in all the other

five datasets except BrC, especially in dataset renkou, and the
F-score value of this algorithm is about 46% higher than that
of other methods. The average F-score of the algorithm OF is
the least. The reason for the poor performance of the DSAL
algorithm on the dataset BrC may be that the relationship
between the attributes of the data objects is complex, and the
designed function cannot fully reflect the relationship.
However, overall DSAL’s F-score improved by about 16%
over the comparison algorithms. F-score takes both accuracy
and recall rate into consideration. The larger the F-score, the
better the clustering effect. Therefore, this algorithm has
significant advantages in the real dataset renkou.

The runtime of the DSAL and the 6 comparison algo-
rithms is shown in Table 3. Obviously, the CMS algorithm
has the longest runtime on all datasets and needs further
optimization. The algorithm DSAL is based on CMS, but the
runtime is much shorter than the other six comparison
algorithms, and the runtime is basically one order of
magnitude shorter. This is mainly because the DSAL is
related to the number of cluster centers of the benchmark-
scale dataset, not amount of original data. Therefore, its
running time is affected by the clustering results of bench-
scale dataset, while the other six algorithms directly process
the original data (after preprocessing), and their running
time naturally increases gradually with the increase in data
volume on the whole. On the dataset Titanic, the DSAL
algorithm has less obvious advantage than k-modes, only
using 0.27 seconds less, because it takes more time to solve
the weight of cluster center using the kernel function
Lanczos on this data. In particular, CMS and Eskin methods
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Sol Der BrC Titanic renkou

= IOF
= Eskin
® k-modes

FIGURE 6: MSE of DSAL vs. compared algorithms.

Sol Der BrC Titanic renkou

= IOF
® Eskin
= k-modes

FI1GURE 7: F-score of DSAL vs. compared algorithms.

Mean

Mean

Mean



Computational Intelligence and Neuroscience 9
TaBLE 3: Runtime of DSAL vs. compared algorithms (millisecond).
Dataset CMS HM OF IOF Eskin k-modes DSAL
Zoo 43736 342 2071 982 809 294 15
Sol 2466067 8092 17349 18343 16583 3331 53
Der 3303631 3187 58247 59937 28071 1998 21
BrC 1760745 4057 43965 46712 53551 774 78
Titanic 1034446 11473 89457 97620 98447 966 703
Renkou 10028442 277075 1316525 1380572 2398618 5051 121
Mean 3106178 50704 254602 267361 432680 2069 165

in the experiment were derived from the literature without
any optimization, so the running time was relatively long.
Since the running time is affected by computer hardware
configuration and code optimization level, in addition, the
running time in the comparison experiment is calculated
under the specific environment, which is for reference only.

This section verifies that the proposed algorithm (DSAL)
has obvious advantages in the external indicators (NMI and
F-score) of clustering results on most datasets. Compared
with the other algorithms, the DSAL’s internal evaluation
index MSE has a slight advantage. In addition, the biggest
advantage of DSAL is that its runtime is significantly shorter
than other algorithms, and it does not change much along
with increasing data volume. This is because DSAL deals
with the knowledge on the benchmark-scale dataset rather
than the original data. Therefore, DSAL is available and
efficient.

6. Conclusions

In this paper, a multiscale clustering algorithm based on
coupling metric similarity is proposed, multiscale data
mining is carried out for the multiscale nominal datasets
with non independent and identical distribution, and a scale
conversion method based on the benchmark-scale clustering
results is proposed: the scale estimation method based on
single chain UACMS and the scale estimation method based
on Lanczos kernel. The experimental results show that
proposed framework is efficient and effective on the datasets
whose attributes are obvious multiscale properties.

In future work, we mainly focus on two aspects: (1) we are
applying multiscale theory to frequent itemset mining and (2)
the practical application of our study is worthy of attention, and
we will consider applying multiscale clustering to collision
detection and rule detection based on previous research studies.
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