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Abstract: Single photon emission computed tomography (SPECT) has been employed to detect
Parkinson’s disease (PD). However, analysis of the SPECT PD images was mostly based on the region
of interest (ROI) approach. Due to limited size of the ROI, especially in the multi-stage classification
of PD, this study utilizes deep learning methods to establish a multiple stages classification model of
PD. In the retrospective study, the 99mTc-TRODAT-1 was used for brain SPECT imaging. A total of
202 cases were collected, and five slices were selected for analysis from each subject. The total number
of images was thus 1010. According to the Hoehn and Yahr Scale standards, all the cases were divided
into healthy, early, middle, late four stages, and HYS I~V six stages. Deep learning is compared with
five convolutional neural networks (CNNs). The input images included grayscale and pseudo color
of two types. The training and validation sets were 70% and 30%. The accuracy, recall, precision,
F-score, and Kappa values were used to evaluate the models’ performancer. The best accuracy of the
models based on grayscale and color images in four and six stages were 0.83 (AlexNet), 0.85 (VGG),
0.78 (DenseNet) and 0.78 (DenseNet).

Keywords: SPECT; Parkinson’s disease; deep learning; convolution neural network

1. Introduction

In recent years, single photon emission computed tomography (SPECT) has been used to estimate
tumor growth, genetic treatments, brain function detection and cardiovascular diseases [1,2]. It is a
mature imaging tool. In nuclear imaging, γ-rays are emitted from radiopharmaceuticals and received by
a gamma camera placed around the object. The signal was then passed through the internal components,
including scintillation crystals, photomultiplier tubes, positioning circuits, pulse height analyzers, etc.
Finally, a radionuclide species distribution is obtained by image reconstruction algorithms.
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However, the imaging process of nuclear medicine images is deeply disturbed by scattering events
(called Compton scattering), especially for single photon emission computed tomography, which can
cause quantitative image bias, low contrast and affect image quality [3,4], which prevents the fixed
image results from appearing correctly. For example, in Siemens’ Symbia® S SPECT imaging the
scattering ratio (under 172 keV energy) may reach 50% when using 111-In for trunk imaging (scatter
fraction = total counts (172 keV)/total counts (247 keV)) [5]. This means one of every two signals from
the camera is a self-scattering event, so the nuclear medicine image is blurred, but nuclear medicine
imaging is mainly used to detect radioactive tracer’s spatial distribution in the human body. Moreover,
it is particularly sensitive to detecting specific tissues or organs (such as the thyroid gland, brain, heart,
liver, kidney, etc.), which is also called physiological imaging modality.

Parkinson’s disease (PD) is mainly caused by insufficient secretion of neurotransmitters (dopamine,
acetylcholine) in the brain’s basal nucleus and neurodegeneration in the substantia nigra area. In past
research, the dopamine neurons from the substantia nigra area are degraded due to increasing age or
external factors [6]. This makes the presynaptic release of dopamine neurons insufficient and decreases
dopamine transporter (DAT) levels. This then causes inhibition signals to be transmitted to the globus
pallidus by the tail nucleus, and the putamen is reduced. Moreover, the inhibition signals to the ventral
anterior thalamus are increased, which leads to insufficient signals to the premotor cortex and causes
dyskinesia. Generally, almost 70% to 80% of the dopamine signals are lost by the time clinical signs
begin, so early diagnosis of Parkinson’s disease is essential [7]. For the early stages of Parkinson’s
disease or senior subjects, dopamine drugs (such as levodopa, dopamine agonists, anticholinergics)
could be used to distinguish patients’ symptoms and pathological properties by the reaction after
taking the drug. Furthermore, the use of non-invasive imaging diagnosis techniques (such as SPECT)
is also an essential reference.

In earlier nuclear medicine 123I-β-CIT was used to detect dopamine transporters. Because of the
drug’s uptake in the striatum, it had a significant correlation with the standard Unified Parkinson
Disease Rating Scale (UPDRS—the comprehensive Parkinson’s disease rating scale is divided into four
parts, namely patient psychology, daily living ability, motor function, and treatment complications)
adopted to determine the PD stage [8]. However, the pharmacokinetics of 123I-β-CIT were very slow.
It took up to 24 h to reach equilibrium after administering the drug, requiring more examination time.
After that, other drugs were developed (such as 99mTc-TRODAT-1, 123I-FP-CIT, 123I-altropane) [9–12].
Although the imaging time can be shortened, the probability of non-specific binding was increased.
Furthermore, the cost of the medicines became more expensive, so they could not be routinely applied
in the clinic until the advent of 99mTc- TRODAT-1, which has high sensitivity and specificity for DaTscan.
In this study, the PD stage was classified using the Hoehn and Yahr scale (HYS). According to the
literature the HYS is highly correlated with UPDRS scores [13]. The following table lists information
about the HYS scale (Table 1).

Table 1. The Hoehn and Yahr scale and symptoms.

Stage Hoehn and Yahr Scale

1 Unilateral involvement only usually with minimal or no functional disability.
2 Bilateral or midline involvement without impairment of balance.
3 Bilateral disease: mild to the moderate disability with impaired postural reflexes; physically independent.
4 Severely disabling disease; still able to walk or stand unassisted.
5 Confinement to bed or wheelchair unless aided.

99mTc-TRODAT-1 is a successful preclinical dopamine-labeled drug [14,15]. 99mTc-TRODAT-1
could be used in SPECT brain imaging to evaluate a variety of neurological disorders in the brain
(such as Parkinson’s disease, hemichorea-hemiballism, Tourette’s syndrome, multiple system atrophy,
Wilson’s disease, depression, etc.) [16–19]. In addition 99mTc-TRODAT-1 has good performance to
detect dopamine transporters in the striatum [20,21]. In the past, most scientists used the region of
interest (ROI) method to calculate and extract features for the analysis and classification of SPECT
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dopamine transporter scans and then utilized statistical classification methods or machine learning
methods to analyze the results [22–24]. This kind of method was limited by the selected ROI size
and the extraction value of the characteristic parameters. This affects the disease stage determination
result. The deep convolutional neural network (CNN) method was applied to the image classification
area [25,26] by feeding a whole image to the deep network. This can effectively solve the problems in
determining the ROI.

This study aimed to explore deep learning algorithm performance for Parkinson disease (PD)
classification by SPECT imaging using the 99mTc-TRODAT-1 tracer method. Among deep learning
algorithms, five different convolutional neural network architectures such as AlexNet, GoogLeNet,
Residual Neural Network, VGG, and DenseNet were utilized to classify and model Parkinson’s disease
stages. It is expected this will provide information to support clinical application and imaging diagnosis
in the future.

2. Materials and Methods

2.1. Study Population

This experiment was a retrospective study. It collected the 99mTc-TRODAT-1 imaging and
diagnostic reports archived in the Picture Archiving and Communication System (PACS) between
March 2006 and August 2013. A total of 202 cases were collected. Among these were six healthy
patients (three males and three females) and 196 patients with PD (80 males and 116 females). These
patients were between the ages of 25 and 91 (Table 2).

Table 2. Demographic information of the dataset.

Class Subjects Sex Age Slice Images

HC 6 3 F, 3 M 48 ± 14.7 30
HYS I 22 13 F, 9 M 68 ± 16.4 110
HYS II 27 15 F, 12 M 69 ± 10.3 135
HYS III 53 36 F, 17 M 71 ± 9.8 265
HYS IV 87 47 F, 40 M 69 ± 10 435
HYS V 7 5 F, 2 M 65 ± 11.5 35

According to the disease stage, the number of healthy control (HC) and PD’s HYS stage I to V
patients were 6, 22, 27, 53, 87, and 7, respectively. In the study, the category was distinguished into
healthy, early (HYS I, HYS II), mid (HYS III), and four late groups (HYS IV, HYS V). Then, five slice
images from each patient was chosen for the analysis data set. The total number of images was 1010
(healthy (n = 30), early (HYS I~II, n = 110, 135), mid (HYS III, n = 265), late (HYS IV~V, n = 435, 35).

In Figure 1, “A” shows a healthy image. The white spot area showed high activity of striatum on
both sides and had a curved bean shape. “B” corresponds to HYS I. The putamen in one-side of the
striatum was decreased. “C” corresponds to HYS II. The putamen in two-sides of the striatum was
decreased. “D” corresponded to HYS III. Two sides of the putamen show no activity. “E” corresponds
to HYS IV. The two sides of the putamen display no activity and decreased activity on two sides of the
caudate is seen. “F” corresponds to HYS V. There was no activity signal in the two sides of both the
putamen and caudate.

Cases in which patients received an overall 99mTc-TRODAT-1 dose of 25 to 30 millicuries (mCi) and
then underwent imaging within 2.5 to 4 h after administration were included in the study. However,
patients who experienced head tremors were excluded, along with patients who received drug
treatment during imaging since the drugs’ interference with the efficacy of 99mTc-TRODAT-1 would
make outcomes unreliable. The Medical Ethics Committee of E-DA Hospital approved this clinical
study (EMRP-100-054(RIII)). All patients signed an informed consent form prior to their participation.
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was a low-pass Butterworth filter with a cutoff frequency of 0.4 and an order of eight. A dual-head 
SPECT instrument (E. camTM Signature Series Fixed 180; Siemens Medical Solutions Inc., Malvern, 
PA, USA) equipped with the Siemens E. soft Workstation and a fan beam collimator was employed 
in this study. The field of view (FOV) of a single detection head was 53.3 × 38.7 cm2, and the diagonal 
FOV was 63.5 cm. A single detection head is equipped with 59 photomultiplier tubes in a hexagonal 
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2.3. The Deep Learning Method Concept 
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precision, F-score, and Kappa. NVIDIA GeForce GTX 1060 6 GB (Santa Clara, CA, USA) hardware 
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for training and 30% of the data was used for verification. The overall structure of the study’s analytic 
system is illustrated in Figure 2. In Step 1, the 99mTc-Trodat-1 SPECT images, which were already 
separated into six categories were input. In Step 2, these SPECT images were colored by the 
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color displayed for each image pixel. In Step 3, the image augmentation method was used to increase 
the number of images. In Step 4, we start to train the network using the five pre-trained models. 
Before the training process begins, each SPECT image needs to be resized to match every model’s 
input size. In Step 4, the multiple stages of the PD classify model were established. Finally, in Step 5, 
the testing set data was used for statistical analysis and performance validation. 

Figure 1. SPECT images correspond to HYS stage of PD ((A) = Healthy case, (B–F) = HYS I~V).
The Upper row is original grayscale images. The lower images have pseudocolor mapping.

2.2. The Imaging Conditions of 99mTc TRODAT-1 SPECT

A step-by-step (10 min, 32 steps) scan method was adopted to perform a DaTscan using
99mTc-TRODAT-1. The image matrix size was 128 × 128. A total of 64 images were captured at
a collection rate of 25 s per image. Filtered back projection (FBP) was adopted for image reconstruction.
The filter was a low-pass Butterworth filter with a cutoff frequency of 0.4 and an order of eight.
A dual-head SPECT instrument (E. camTM Signature Series Fixed 180; Siemens Medical Solutions Inc.,
Malvern, PA, USA) equipped with the Siemens E. soft Workstation and a fan beam collimator was
employed in this study. The field of view (FOV) of a single detection head was 53.3 × 38.7 cm2, and the
diagonal FOV was 63.5 cm. A single detection head is equipped with 59 photomultiplier tubes in
a hexagonal arrangement and uses 5/8 inch sodium iodide (NaI(Tl)) crystals with a crystal size of
59 × 44.5 cm2.

2.3. The Deep Learning Method Concept

Deep convolutional neural network technology has five primary layers which are named
convolution layer, pooling layer, rectified linear unit (ReLU) layer, fully connected layers, and softmax
layer. The above steps are performed to define the feature category that satisfies the input image.
This study designed and established a PD staging classification model through the pre-trained network
in the above manner. Moreover, it evaluated the model effectiveness with accuracy, recall, precision,
F-score, and Kappa. NVIDIA GeForce GTX 1060 6 GB (Santa Clara, CA, USA) hardware was used to
train the CNN in this study.

2.4. Popular Pre-trained Models in CNN

In this study, a total of 1010 DaTscan slice images was explored in the CNN analysis using five
different pre-trained models. These were the AlexNet, GoogLeNet, Residual Neural Network, VGG,
and DenseNet models. There were two types of image data sets: grayscale and pseudocolor images.
For each subject only the maximum active slice of the striatum and two other slices, which were the
previous and next one to the active slice were obtained in order to simulate how to diagnose and
determine the disease in the clinic. Therefore, five images collected from each patient were used in
the analysis dataset. The total number of images was 1010 (early (HYS I~II, n = 110, 135), mid (HYS
III, n = 265), late (HYS IV~V, n = 435, 35) and healthy (n = 30)). Furthermore, 70% of the data was
used for training and 30% of the data was used for verification. The overall structure of the study’s
analytic system is illustrated in Figure 2. In Step 1, the 99mTc-Trodat-1 SPECT images, which were
already separated into six categories were input. In Step 2, these SPECT images were colored by the
pseudocolor technique. The pseudocolor technique was associated with a color table that defines the
color displayed for each image pixel. In Step 3, the image augmentation method was used to increase
the number of images. In Step 4, we start to train the network using the five pre-trained models. Before
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the training process begins, each SPECT image needs to be resized to match every model’s input size.
In Step 4, the multiple stages of the PD classify model were established. Finally, in Step 5, the testing
set data was used for statistical analysis and performance validation.
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2.4.1. AlexNet

The architecture of the AlexNet network could be regarded as a large LeNet. The input image
size was increased from 28 × 28 to 224 × 224 (RGB). It was divided into a five-layer convolution
neural network in the front part and a traditional connection layer. There are a total of eight layers in
AlexNet. The input of this architecture was an image and the output was the prediction classification
and error rate. The AlexNet network improves the ReLU and pooling layers of the LeNet network by
using ReLU to replace the previously used sigmoid and tanh functiond. It can solve the problem of
gradient disappearance, make training more efficient and improving the accuracy. In the pooling layer,
the LeNet network uses the average pooling method but the features will be blurred, whereas the
AlexNet network uses the max-pooling method and chose a small step, which can avoid feature loss.

The AlexNet network uses two methods to reduce overfitting. First, a data augmentation
technique [27] is used to increase the amount of training data to avoid overfitting during training,
which is due to insufficient images in the training data set. The data augmentation technique includes
image flip and horizontal and vertical moves to obtain a different view of the same image to provide
more images for training. Second, the dropout method [28] is used to add a dropout in the fully
connected layer. Each neuron with the same probability does not participate in the transfer of the next
layer. This method makes the network force the current neurons for training that effectively reduce the
overfitting. The dropout rate of the AlexNet was 0.5, which means each neuron had a 50% chance of
not participating in the transmission of the next layer.

This study utilized a pre-trained AlexNet model. The input image size was 227 × 227, using five
convolution, three max-pooling, seven ReLU and two fully connected layers, followed by a softmax
output layer (about the convolution parameter and pooling layer as shown in Table 3). A total of 25
layers were discussed for gray and color images in four and six categories simultaneously. Figure 3
shows visually the convolution between first and final image.
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Table 3. The parameter of convolution and pooling layer in AlexNet.

Item Conv1 Pool1 Conv2 Pool2 Conv3 Conv4 Conv5 Pool5

Filter size 11 × 11 3 × 3 5 × 5 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3
Stride 4 2 1 2 1 1 1 2

Padding 0 0 2 0 1 1 1 0Molecules 2020, 25, x FOR PEER REVIEW 6 of 17 
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2.4.2. GoogLeNet

GoogLeNet first appeared in ILSVRC14 competition and was the champion with a top-5 error
of 6.67% [29]. GoogLeNet has a bold structure, with 22 layers in depth. Nevertheless, the parameter
number was much smaller than in AlexNet. GoogLeNet has five million parameters and AlexNet has
60 million parameters, or twelve times more that GoogLeNet. Therefore, GoogLeNet is a better choice
when memory or computing resources are limited.

Generally, the best way to improve network performance ss to increase the network’s depth and
width. Depth refers to the number of network layers and width refers to the number of neurons.
However, this method had three problems: (1) If the training data set is not enough and has too
many training parameters, there will be overfitting. (2) If we design more layers to be included in the
network, more parameters will be needed and the computation will be more complicated. (3) If the
network becomes deeper, it will produce a gradient disappearance problem. To solve these problems,
the solution is to reduce the parameters while increasing the depth and width of the network.

Google proposed the original inception module structure. The structure uses three convolution
layers (1 × 1, 3 × 3, 5 × 5) and one pooling layer (using max pooling) for stacking to increase the
network’s width. A ReLU function was required after each convolution layer to increase the non-linear
characteristics. However, in the original inception version, the calculation for a 5 × 5 convolution kernel
was too large, which caused the feature map dimensions to be too big. To avoid this situation, a 1 × 1
convolution kernel is added before the 3 × 3, 5 × 5 convolutions and after max pooling was produced.
This could successfully reduce the feature map dimensions, increase the non-linear characteristics
of the network and improve the expressive ability of the network. For example, if the output size
of the previous layer was 28 × 28 × 192, after passing through 5 × 5 convolution with 32 channels
the output size will become 28 × 28 × 32. Moreover, the parameters of the convolution layer were
192 × 5 × 5 × 32. After passing through the first 64 channels by 1 × 1 convolution and then 32 channels
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5 × 5 convolution the output size was still 28 × 28 × 32, but the convolution parameters are reduced to
(192 × 1 × 1 × 64) + (64 × 5 × 5 × 32). This is a significant reduction of the number of parameters.

This study utilized a pre-trained GoogLeNet model. The input image size was 224 × 224, using 58
convolutions (in the inception module it had 55 convolutions), 14 max-pooling layers (the inception
module had nine pooling layers), and one layer fully connected by a softmax output layer. A total of
144 layers was used for gray and color images in four and six categories simultaneously. Visually the
difference between the first and final convolution is shown in Figure 4.
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2.4.3. ResNet

In the ILSVRC15 competition, the residual neural network (ResNet) technique won the
championship with a top-5 error of 3.57% by using depth layers 152 [30]. Its characteristic was
that the neural network did not necessarily need to be executed layer by layer. It could skip to the next
layer through jumping. For a CNN, it is very important to identify the depth, but a deeper network
will result in more complexity. The common reason is that the backpropagation is hard to update
when the network is too deep. At the same time, this will cause the training speed to increase. Besides,
it is found that the deep network causes degradation problems. This study utilized a pre-trained
ResNet50 model. The input image size was 224 × 224 ResNet50 and ResNet101. (1) ResNet50: using
53 convolution, one max-pooling, and one fully connected layer, followed by a softmax output layer.
A total of 117 layers was used for gray and color images in four and six categories simultaneously.
The difference between the first and final convolution is visualized in Figures 5 and 6.
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2.4.4. VGG

VGG is the abbreviation for the Visual Geometry Group of Oxford University in the
United Kingdom. Its main contribution is the use of more hidden layers and more training
images, which can improve the accuracy to 90%. The VGG network can be divided into VGG16
and VGG19, which have 16 layers (13 convolution layers and three full connection layers) and 19
layers (16 convolution layers and three full connection layers), respectively [31]. The architecture is
described below.

Compared with AlexNet, VGG16 uses several consecutive 3 × 3 convolutions to replace the larger
convolutions (11 × 11, 7 × 7, 5 × 5) of the former. Given a local size picture as input multiple small
convolutions are used because multiple non-linear layers can increase the network’s depth, which not
only ensures the complexity of learning but spends fewer resources. In VGG, three 3 × 3 convolutions
were used to substitute for a 7 × 7 convolution, and two 3 × 3 convolutions were used to substitute
for a 5 × 5 convolution. The purpose was to ensure that the depth and effect of the network were
improved under the same conditions. For example, three 3 × 3 convolutions with a step equal to 1 can
be regarded as an input image with a 7 × 7 size in layer operation. The total number of parameters was
27 × C2 (C is the number of input and output channels). Suppose we use a 7 × 7 convolution kernel,
then the total number of parameters is 49 × C2. The former not only reduces the parameters but also
better maintains the image properties.

The main advantage of VGG is that its structure is straightforward. The entire network uses the
same size of convolution (3 × 3) and maximum pooling size (2 × 2). The combination of several small
convolution layers (3 × 3) was better than one large convolution layer (5 × 5, 7 × 7). It was verified that
the continuously deep network structure could improve the performance. The disadvantage of VGG is
that it consumes more computing resources and uses more memory. Most of the parameters are in the
fully connected layer, and VGG has three fully connected layers.

This study utilized the VGG19 pre-trained model. The input image size was 224 × 224, using 16
convolution, five max-pooling, and three fully connected layers, followed by a softmax output layer.
A total of 47 layers was used for the gray and color images in four and six categories simultaneously.
In visualize the result the difference between the first and final convolution is shown in Figure 7.
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2.4.5. DenseNet

DenseNet is similar to ResNet. The difference between DenseNet and ResNet is that ResNet
calculates summations, but DenseNet calculates by stitching. The input of each layer network includes
the previous output. For example, the Lth layer’s input is equal to k0+k(L-1), where k is the number of
channels. DenseNet improves the transmission efficiency of information and gradients in the network.
Each layer can directly get the gradient from the loss function and get the input signal directly. In this
way, the network can be trained deeper. This structure also has the effect of regularization. Relatively,
other networks are committed to improving network performance based on the depth and width [32].
The characteristic of DenseNet is that the features trained in each layer are provided repeatedly
for use in subsequent layers. This greatly improves the feature utilization rate. The advantages of
DenseNet are: (1) It alleviates the vanishing-gradient problem. (2) It strengthens the spread and reuse
of features. (3) It significantly reduces the number of parameters. This study utilized the DenseNet201
pre-trained model. The input image size was 224 × 224, 200 convolutions, one max-pooling, and one
fully connected layer, followed by a softmax output layer. A total of 709 layers was used for the gray
and color images in four and six categories simultaneously. The difference between a first and final
convolution is visualized in Figure 8.

This study discusses five commonly used pre-trained models for Parkinson’s disease multistage
classification. Table 4 lists the parameters of these six models, including the input image size, depth,
layer number, model memory size, and training time based on a batch size of 10 when the epoch was 1.

Table 4. Pre-trained models comparison. Experimental parameters: Batch size = 10; Epoch = 1

Name Input Size Layers File Size Training Time(s)

AlexNet 227 × 227 25 227 MB 25.4
GoogLeNet 224 × 224 144 27 MB 62.7
ResNet50 224 × 224 114 96 MB 138.4
ResNet101 224 × 224 347 167 MB 326.1

VGG19 224 × 224 47 535 MB 162.1
DenseNet201 224 × 224 709 77 MB 880.7
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3. Experimental Results

This study was utilized five pre-trained models—AlexNet, GoogLeNet, Residual Neural Network,
VGG, and DenseNet—to classify Parkinson’s disease stages. A total of 202 DaTscan cases were
collected in this study. They are separated into two groups. One is healthy, early, mid, and late PD
(four categories). The other is healthy and HYS I~V (six categories). There were two kinds of images in
the deep CNN training data sets: grayscale and pseudocolor images in order to simulate the clinical
diagnosis and determine the disease stage. Only the striatum’s maximum active slice and the active
slice’s previous and next two images were obtained for each subject. Therefore, the analysis data set
contains five images collected from each patient. The total number of images was 1010 (early (HYS
I~II, n = 110, 135), mid (HYS III, n = 265), late (HYS IV~V, n = 435, 35), healthy (n = 30), and then 70%
of the data in the data set used for training and 30% of the data used for verification. Due to the fact
the number of images in each category was unbalanced an imported image augmentation method
(such as cropping, rotating, resizing, translating, and flipping) was applied (Figure 9).
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This study uses recall, precision, F-score, accuracy, and Kappa to evaluate the performance of the
classification models. Recall means the percentage of positive predictions in the total of positive cases.
Precision means how many true positive cases are in the total number of positive predictions. When
the recall is low, it may not be possible to judge the category, but it will not be misjudged if the model
provides a result. When the precision is low, it means the category cannot be determined correctly.
For both evaluation indexed bigger is better. If a result has high precision and low recall, it means
the model might be too cautious and almost useless for prediction. If a result has high recall and
low precision it means the model might produce more misjudgment results. F-score is the harmonic
means between recall and precision. One can utilize this index to roughly evaluate model performance.
Accuracy is the total classification performance of the model. Kappa is used to evaluate the agreement
of the classification results compared with real cases.

Table 5 shows each pre-trained models’ deep CNN results divided between grayscale and color
images in four categories: healthy, early, mid, and late PD. As can be seen from the data AlexNet had
the best performance on the grayscale images with accuracy, recall, precision, F-score, and Kappa
values of 0.825, 0.753, 0.874, 0.809, and 0.725, respectively, while DenseNet201 had the best performance
on the color images with accuracy, recall, precision, F-score, and Kappa values of 0.855, 0.821, 0.903,
0.860, 0.724, respectively.

Table 5. The pre-trained model performance in four categories on the difference image format.

Category = 4 (Healthy, Early, Mid, and Late PD)

Net Image
Format Batchsize MaxEpochs Accuracy Recall Precision F-Score Kappa

AlexNet
Gray 80 40 0.825 0.753 0.874 0.809 0.725
Color 162 81 0.622 0.504 0.701 0.587 0.397

GoogLeNet Gray 14 7 0.687 0.673 0.728 0.700 0.518
Color 34 17 0.586 0.492 0.672 0.568 0.368

VGG19
Gray 20 10 0.819 0.758 0.870 0.810 0.720
Color 24 12 0.807 0.808 0.838 0.823 0.707

ResNet50
Gray 8 4 0.739 0.729 0.710 0.719 0.607
Color 8 4 0.827 0.837 0.749 0.791 0.743

ResNet101
Gray 6 3 0.767 0.691 0.668 0.679 0.656
Color 12 6 0.831 0.824 0.857 0.840 0.744

DenseNet
Gray 18 9 0.807 0.722 0.843 0.778 0.704
Color 16 8 0.855 0.821 0.903 0.860 0.724

Table 6 shows the deep CNN results of each pre-trained models between grayscale and color
images in four categories: healthy and Parkinson disease stages I to V. AlexNet had the best performance
on the grayscale image with accuracy, recall, precision, F-score, and Kappa values of 0.774, 0.742, 0.853,
0.794, and 0.679, respectively, whereas DenseNet201 had the best performance on the color images with
accuracy, recall, precision, F-score, and Kappa values of 0.778, 0.696, 0.814, 0.750, 0.680, respectively.

In terms of accuracy, the six pre-trained models were divided into four and six stages for PD.
The classification performance using grayscale images was best with AlexNet (four stages) and VGG19
(six stages). In addition, the classification performance using pseudocolor images was best with
DenseNet for both the four and six stages (Figure 10).
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Table 6. The pre-trained models performance in six categories on the difference image format.

Category = 6 (Healthy and Parkinson Disease Stages I to V.)

Net Image
Format Batchsize MaxEpochs Accuracy Recall Precision F-Score Kappa

AlexNet
Gray 96 48 0.774 0.742 0.853 0.794 0.679
Color 120 60 0.521 0.349 0.491 0.408 0.282

GoogLeNet Gray 34 17 0.617 0.532 0.695 0.603 0.439
Color 28 14 0.556 0.378 0.478 0.422 0.362

VGG19
Gray 24 12 0.778 0.612 0.665 0.637 0.683
Color 22 11 0.754 0.746 0.747 0.747 0.669

ResNet50
Gray 20 10 0.681 0.56 0.768 0.647 0.537
Color 18 9 0.754 0.661 0.758 0.706 0.651

ResNet101
Gray 16 8 0.722 0.602 0.645 0.623 0.603
Color 18 9 0.770 0.699 0.777 0.736 0.673

DenseNet201
Gray 16 8 0.762 0.670 0.739 0.703 0.661
Color 8 4 0.778 0.696 0.814 0.750 0.680
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Figure 10. The accuracy of the six pre-trained models on four and six stages of PD1.

4. Discussion

Nuclear medical imaging is a kind of functional imaging. The images mainly show the intensity of
the radiopharmaceutical activity of the organ. In this study’s deep learning design, using a pre-trained
model could reduce the time spent on the CNN model development, but the use of the pre-trained
model needs to conform to the model architecture. Furthermore, transfer learning needs to be carried
out before training. Two points in the model must be revised: (1) The image size of the source data
needs to be adjusted and (2) The number of output categories needs to be corrected. Besides, it can
obtain a better model during training by changing parameters such as batch size, epoch and learning
rate. Batch size refers to how many data pieces were used to calculate each iteration, and epoch
represents the training sample run repeatedly.



Molecules 2020, 25, 4792 13 of 17

4.1. Comparison between Published Literature Methods and the Presented Method

PD patients are commonly into two normal and abnormal groups (Table 7). There are fewer
articles that discuss multi-class classification. Therefore, this study tried to use two kinds of techniques
to explore multi-class classification. Finally, we successfully found a CNN model to classify the healthy
and HYS I~V stages of PD diseases and obtained high accuracy. However, with the CNN model it
was more difficult to explain the characteristics adopted by the model and the correlation between the
characteristics and PD disease stages.

4.2. The Related Literature on Multiple Stages Classification in Medical Images

Regarding the classification of multi-stage diseases in medical images, Farooq et al. published in
2017 an article titled, “A deep CNN-based multi-class classification of Alzheimer’s disease using MRI” [33].
The authors divided Alzheimer’s disease into four groups: Alzheimer’s, mild cognitive impairment,
late mild cognitive impairment and healthy persons. Then by jusing a pre-trained model, they
successfully achieved a high classification accuracy rate of 98.8%.

In 2019, Talo et al. published the article “Convolutional neural networks for multi-class brain disease
detection using MRI images” [34], which classified five class of MRI images of the brain, namely normal
and cerebrovascular, neoplastic, degenerative and inflammatory diseases categories. It also used a
pre-trained model and obtained 95.23% classification accuracy. In 2020, Ramzan et al. published
“A Deep Learning Approach for Automated Diagnosis and Multi-Class Classification of Alzheimer’s Disease
Stages Using Resting-State fMRI and Residual Neural Networks” [35]. It divided the disease into six
categories: cognitively normal, significant memory concern, early mild cognitive impairment, mild
cognitive impairment, late mild cognitive impairment, and Alzheimer’s disease. Moreover, using
the pre-trained model plus transfer learning they obtained the accuracy of 97.92%. At the same time,
the conclusiond mentioned that the pre-trained model could be used for multi-stage classification,
which is consistent with this study’s conclusion.

4.3. The Presented Deep Learning Method

The images collected for this paper was a DICOM image file after DaTscan. There are two
approaches in the literature on deep learning. One is to select a slice image of the striatum for
modeling. The other one is to use the entire group of brain images for modeling. This study combines
the advantages of both the above methods to design and select a striatum slice and choose the
other two slices before and after the striatum. Then we assemble these five slices as an image data
set. This can increase the amount of data in the image set and eliminate the noise of the external
striatum. This method also corresponds to how clinicians perform interpretation and disease diagnosis.
Many studies have pointed out that more training data could provide higher accuracy and stability [36].
However, more data takes more time to train the model and hardware equipment support is required.
If the hardware performance is low the training time will be longer. It will be impossible for model
training and modeling (due to problems like insufficient memory) in some cases (as shown in Table 8).
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Table 7. Comparison with related works of PD classification.

Author (year) [reference] Category Sample
Size Method/# Feature Classifier Accuracy

R. Prashanth et al. (2016) [37] Normal 208 Machine learning/34 SVM 0.97PD 427

Abdelbasset Brahim et al. (2017) [38] Normal 111 Voxels as Features approach and Principal Component Analysis SVM 0.88PD 158

Ehsan Adeli et al. (2017) [39] Normal 169
Kernel-based Feature SVM 0.95PD 369

Mosarrat Rumman et al. (2018) [40] Normal 100
ROI detection and area calculation ANN 0.94PD 100

Presented Method: Deep CNN

4 stage
Healthy = 6
early = 245
mid = 265
late = 470

Popular Pre-trained models in CNN

Alex Net
(grayscale) 0.83

DenseNet
(color) 0.85

6 stage

Healthy =6
HYS1= 110
HYS2 = 135
HYS3 = 265
HYS4 = 435
HYS5 = 35

Popular Pre-trained models in CNN

VGG19
(grayscale) 0.78

DenseNet
(color) 0.78

Table 8. Two sample sizes for PD stage classification demonstrated in VGG19 (hardware environment: NVIDIA GeForce GTX 1060 6GB).

Images Batch Size Epoch Training Time (s) Accuracy

327 10 10 602.87 0.55
327 20 10 2942.46 0.56
327 30 10 3905.14 0.54
327 40 10 GPU out of memory

672 10 10 236.36 0.78
672 20 10 4537.95 0.77
672 30 10 8318.34 0.63
672 40 10 GPU out of memory
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5. Conclusions

The assessment of pathophysiological changes using SPECT imaging could be essential for the
diagnosis of Parkinson’s disease. The purpose of this study was to classify the multiple stages of PD
by using pre-trained deep CNN models. In deep learning, the five CNN models Alex Net, GoogLeNet,
Residual Neural Network, VGG, and DenseNet were used for modeling and to determine the accuracy
of distinguishing four and six categories in PD staging. When performing deep learning, there were a
total of 829 PD images. 70% of the data was used as the training set and 30% of the data was used for
verification. The original grayscale image and the pseudo color technique to produce color images
were compared with the classification results. The following is a summary of the conclusions obtained
in this study.

• When using deep convolutional neural network technology to classify 99mTc-Trodat-1 PD images
for the original grayscale images processed through five pre-trained models (AlexNet, GoogLeNet,
VGG19, ResNet, DenseNet201) the highest accuracy was 0.83 for AlexNet. In six categories
(healthy, HYS I~V), the best accuracy was 0.78 obtained by VGG19 in four categories (healthy,
early, mid, late);

• For color images, DenseNet201 yielded the highest accuracy of 0.85 in four categories. In six
categories, the highest accuracy was 0.78 also obtained using DenseNet201;

• Overall, the pre-trained models could produce accurate results when using grayscale images.
In this case, the pseudocolor images might be non-essential;

• CNN could obtain high classification accuracy in multiple categories of SPECT PD scans;
• However, the establishment of the CNN classification model was very time-consuming, and the

results had low interpretability in clinic.
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