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Abstract

Minimizing head motion during functional magnetic resonance imaging (fMRI) is important 

for maintaining the integrity of neuroimaging data. While there are a variety of techniques to 

control for head motion, oftentimes, individuals with excessive in-scanner motion are removed 

from analyses. Movement in the scanner tends to increase with age; however, the cognitive 

profile of these “high-movers” in older adults has yet to be explored. This study aimed to 
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assess the association between in-scanner head motion (i.e., number of “invalid scans” flagged 

as motion outliers) and cognitive functioning (e.g., executive functioning, processing speed, and 

verbal memory performance) in a sample of 282 healthy older adults. Spearman’s Rank-Order 

correlations showed that a higher number of invalid scans was significantly associated with poorer 

performance on tasks of inhibition and cognitive flexibility and with older age. Since performance 

in these domains tend to decline as a part of the non-pathological aging process, these findings 

raise concerns regarding the potential systematic exclusion due to motion of older adults with 

lower executive functioning in neuroimaging samples. Future research should continue to explore 

prospective motion correction techniques to better ensure the collection of quality neuroimaging 

data without excluding informative participants from the sample.
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1. Introduction

A key component of brain functional magnetic resonance image (fMRI) processing is 

identifying and removing scans laden with head motion (Wylie et al., 2014). Controlling 

for motion is a crucial step in retaining validity that data within a voxel corresponds to 

a particular brain region throughout the duration of the scan (Wylie et al., 2014). Head 

motion disrupts the MR signal and severely degrades the quality of the scan (Friston et al., 

1996). Head motion is particularly disruptive in fMRI, as these analyses rely on correlating 

fluctuations in blood oxygen level dependent (BOLD) signal over a time series. Head motion 

disrupts the BOLD signal associated in primary and neighboring voxels (Power et al., 2012). 

This can result in erroneous correlations (motion artifacts) when assessing resting-state 

fMRI data following a pattern of increased correlation between closely spaced voxels and 

decreased correlation between spatially distant voxels (Power et al., 2012). Similarly, on 

a network level, head motion has been associated with reduced functional coupling of 

distributed networks (e.g., default mode and frontoparietal control networks) and increased 

coupling for local networks (van Dijk et al., 2012; Satterthwaite et al., 2012). Head motion 

also affects the validity of task-based functional data, particularly when performing more 

challenging in-scanner tasks (Wylie et al., 2014).

Current fMRI data processing practices attempt to mitigate the effects of head motion in 

two major ways: prospectively and retrospectively. Briefly, prospective motion correction 

methods attempt to track motion in real-time and adjust the field of view and gradient 

directions accordingly (Maclaren et al., 2013). Retrospective motion correction occurs at the 

image processing stage, and includes techniques of spatial realignment, scrubbing outlier 

scans (e.g., framewise displacement >0.9 mm; Power et al., 2012, 2014; Siegel et al., 2014), 

regression of motion estimates (Friston et al., 1996), and temporal band-pass filtering. A 

third strategy to reduce head motion before data acquisition is through the use of foam pads 

and restraints, although the efficacy of this method is variable (Jolly et al., 2020; Krause 

et al., 2019; Maclaren et al., 2013). While head motion appears to be ubiquitous in human 

fMRI, several studies suggest that the level of head motion may reflect a neurobiological 
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trait more so than a technical artifact (Couvy-Duchesne et al., 2014; Seto et al., 2001; 

Zeng et al., 2014). For example, individuals with greater head motion showed reduced 

distant functional connectivity in the default mode network (Zeng et al., 2014), a network 

implicated in a variety of psychiatric and neurological diseases, such as Alzheimer’s disease 

(Fox and Greicius, 2010; Greicius, 2008). Further, the propensity for head motion remains 

stable within individuals across separate MRI sessions, suggesting amount of movement 

is a reliable trait characteristic (Zeng et al., 2014; Geerligs et al., 2017). These findings 

suggest that the severity of head motion may be associated with brain function integrity, and 

therefore, cognitive functioning.

Previous research has shown that cognitive status is associated with in-scanner head motion 

across the lifespan and in clinical populations. Geerligs et al. (2017) demonstrated that 

participants across the lifespan (ages 18–88) with high head motion scored lower on a test 

of fluid intelligence and had more variable reaction times on a choice reaction time test. 

A comprehensive, large-scale study in young adults demonstrated that different subgroups 

of movers could be identified using 36 motion summary measures and distinguished by 

anthropometric and cognitive measures (Bolton et al., 2020). For example, subjects who 

had significant motion across all spatial degrees of freedom, time bins, and sessions had 

larger weight, elevated blood pressure, greater sleep issues, reduced cognitive flexibility, 

inhibitory control, language abilities, processing speed, theory of mind, and working 

memory. These findings suggest that motion in fMRI can be associated with behaviorally 

relevant information. Importantly, the amount of in-scanner head motion increases with age 

(Madan, 2018; Pardoe et al., 2016) and can be used to discriminate between healthy older 

adults, those with amnestic mild cognitive impairment, and those with Alzheimer’s disease, 

suggesting that in-scanner head motion may be diagnostically important (Haller et al., 

2014). Therefore, exclusion for excessive motion may inadvertently introduce sampling bias, 

particularly within clinical and aging populations with brain function changes [e.g., stroke 

(Seto et al., 2001), multiple sclerosis (Wylie et al., 2014), non-pathological vs. pathological 

aging (Haller et al., 2014)].

However, no study to our knowledge has assessed the cognitive profile of healthy older 

adults with high in-scanner motion, particularly within domains of cognitive control. This 

has been explored in young adults, however, showing that more in-scanner motion was 

related to worse impulse control (Kong et al., 2014). In cognitively healthy aging, older 

adults experience further declines in cognitive control domains like working memory, 

inhibition, and flexibility related to changes in brain structure and function (Evangelista 

et al., 2021; Hausman et al., 2020; Kraft et al., 2020; Peters, 2006; Salthouse, 2010). 

Less cognitive control may influence an individual’s capability to implement a verbal 

instruction (e.g., “remain still throughout the duration of a scan”), to consistently monitor 

their head motion, and to suppress distractions from the novel scanning environment (e.g., 

loud noises). Characterizing the cognitive profile of high in-scanner movers in a healthy 

older adult population may reveal sampling-bias with current motion control practices, as 

these individuals are typically removed from further analyses.

This study aims to explore the association between in-scanner motion at rest with cognitive 

performance in a variety of executive (inhibition, set-shifting, working memory), processing 
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speed, and verbal memory measures in a sample of cognitively healthy older adults. These 

domains were selected to target cognitive functions that typically decline in healthy aging 

(Salthouse, 2010, 2019). Based on prior literature in young adults (Kong et al., 2014), we 

hypothesize that reduced inhibition will be associated with greater in-scanner head motion 

compared to other areas of executive functioning (i.e. set-shifting and working memory), 

processing speed, and verbal memory. Systematic exclusion of these participants could 

skew study interpretations, as older individuals with lower executive functioning tend to 

have reduced integrity of activities of daily living and altered brain function connectivity 

(Hausman et al., 2020; Cahn-Weiner et al., 2002; Roye et al., 2020).

2. Materials and methods

2.1. Participants

Data were collected at baseline from participants recruited for the Augmenting Cognitive 

Training in Older Adults (ACT, R01AG054077) study (Woods et al., 2018). Our sample 

included 282 healthy older adults ranging from 65 to 88 years old (mean age = 71.6 ± 

5.1; 177 females; mean education = 16.3 ± 2.4, education range = 12–21 years; Table 1) 

recruited at the University of Florida (n = 183) and at the University of Arizona (n = 99). 

Most of participants identified as White (87%), 6% as Black or African American, 2% 

as American Indian/Alaskan Native, 2% as more than one race, 1% as unknown or not 

reported, and <1% as Asian or Native Hawaiian or other Pacific Islander. 7% of the entire 

sample also identified as Hispanic or Latinx. Woods et al. (2018) detail the inclusion and 

exclusion criteria. Participants were between the ages of 65–89, had no history of major 

psychiatric illness, no history of brain or head injury resulting in loss of consciousness 

greater than 20 min, and no formal diagnosis or evidence of mild cognitive impairment, 

dementia, or neurological brain disease. The Uniform Data Set (UDS) of the National 

Alzheimer’s Coordinating Center (NACC) was used to screen for individuals with possible 

mild cognitive impairment (MCI) or dementia (Weintraub et al., 2009). Possible MCI was 

defined by 1.5 standard deviations below the mean of age-, sex- and education-adjusted 

norms in any of the following domains: general cognition, memory, visuospatial, executive 

functioning/working memory, or language. All participants were right-handed and had no 

contraindications for scanning (e.g., metal implants such as pacemakers, brain aneurysm 

clips, etc.). Individuals were not excluded if they had dental implants; however, all images 

were visually assessed for potential artifacts due to implants prior to analyses. Participants 

signed a consent form approved by the Institutional Review Boards at the University of 

Florida and at the University of Arizona.

2.2. Neuropsychological measures

Neuropsychological measures were administered to all participants as part of a larger 

cognitive battery (Table 2). Variables included in this study were chosen to reflect a 

cognitive profile accentuating executive functioning, but including measures of processing 

speed and verbal memory, as these abilities also decline with age (Salthouse, 2010).
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2.2.1. Executive functioning

Set-Shifting –: The Trail Making Test Part B (TMT-B) from the NACC battery (Weintraub 

et al., 2009; Reitan and Wolfson, 1993) is a speeded motor-based task that asks participants 

to sequence alternating numbers and letters as fast as they can. Outcome variable is the 

amount of time it takes for a participant to complete 13 sequences correctly.

Inhibition –: The Stroop Color-Word trial (Stroop, 1935) consists of color words printed 

in an incongruent colored ink. Participants are asked to name the color of ink that a word 

is printed in, ignoring the actual word printed, requiring the inhibition of an automated 

response. Outcome variable is number of correct trials read in 45 s.

Working Memory –: The Digit Span Backwards subtest of the Wechsler Adult Intelligence 

Scale - 4th edition (WAIS-IV) (Wechsler, 2008) is a task where participants are read aloud a 

sequence of numbers and asked to immediately repeat the sequence in backwards order; the 

span of numbers increases with each correct trial.

Additionally, the Letter Number Sequencing subtest of WAIS-IV was administered as 

another, more challenging, measure of working memory (Crowe, 2000; Wechsler, 2008). 

Participants are read aloud a sequence of single numbers and letters and asked to repeat 

back the numbers first from lowest to highest, then the letters in alphabetical order. Outcome 

variables of both measures is the total number of correct trials.

2.2.2. Processing speed—For the Symbol Digit Coding subtest of the WAIS-IV 

(Wechsler, 2008), participants are asked to transcribe symbols to a number as quickly and 

accurately as possible. Outcome variable is the total amount of correctly transcribed symbols 

in 120 s.

2.2.3. Verbal memory—During the Hopkins Verbal Learning Test – Revised (Shapiro 

et al., 1999), participants are read a list of 12 words over 3 learning trials. After a 20-min 

delay, they are asked to freely recall as many words as possible. Target outcome variable for 

this study is the number of words remembered at the delay recall trial, as this variable may 

be more sensitive and specific to mild and major cognitive impairment (Weissberger et al., 

2017; González-Palau et al., 2013).

2.3. Imaging acquisition

Motion parameters were extracted from a 6-min resting-state fMRI scan. Data were 

collected using a 3-T Siemens Magnetom Prisma scanner with a 64-channel head coil at 

the Center for Cognitive Aging and Memory at the University of Florida and using a 3-T 

Siemens Magnetom Skyra scanner with a 32-channel head coil at the University of Arizona. 

Both study sites followed the same scanning procedures and used identical sequences. 

Participant head motion was constrained by foam padding, and participants were provided 

with earplugs to reduce adverse effects of scanner noise. For acquiring resting-state data, 

participants were asked to rest while keeping their eyes open and focused on a fixation cross. 

Blood-oxygen-level dependent (BOLD) scan was acquired with an echo-planar functional 

protocol (number of volumes = 120, repetition time [TR] = 3000 ms, echo time [TE] = 30 
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ms; flip angle = 70°, 3.0 × 3.0 × 3.0 mm3 voxels; 44 slices, field of view (FOV) = 240 × 240 

mm). To assist the normalization of the resting-state functional images in the preprocessing 

stage, high-resolution T1-weighted 3D magnetization prepared rapid acquisition gradient 

echo (MPRAGE) images were collected (TR = 1800 ms; TE = 2.26 ms; 1.0 × 1.0.1 × 0 mm3 

voxels; 176 slices; FOV = 256 × 256 mm; FA = 8°; time = 3 min and 3 s).

2.4. Head motion

Imaging data were preprocessed using the default preprocessing pipeline in CONN Toolbox 

18b (using MATLAB R2016b) and SPM12 (Penny et al., 2007; Whitfield-Gabrieli and 

Nieto-Castanon, 2012). After slice-timing correction and before normalization, CONN 

Toolbox uses the Artifact Detection Toolbox (ART) to identify sources of artifacts in 

the timeseries through a combination of thresholds on the observed global BOLD signal 

and estimated subject motion in-scanner (Whitfield-Gabrieli and Neito-Castanon, 2012). 

Using the “intermediate” settings, acquisitions were flagged as outliers with global BOLD 

signal changes beyond 5 standard deviations and framewise displacement greater than 0.9 

mm (Fig. 1). According to CONN Toolbox’s functional connectivity methods handbook, 

“framewise displacement is computed at each timepoint by considering a 140 × 180 × 

115mm bounding box around the brain and estimating the largest displacement among 

six control points placed at the center of this bounding-box faces. Global BOLD signal 

change is computed at each timepoint as the change in average BOLD signal within 

SPM’s global-mean mask scaled to standard deviation units” (Nieto-Castanon, 2020). For 

statistical analyses, the total number of invalid scans (i.e., outliers identified by ART using 

the aforementioned thresholds) were extracted for each subject. Amount of in-scanner 

head motion was determined by the number of invalid scans, as total viable acquisition 

time and proportion of valid scans is currently a common recommended criterion for 

determining inclusion (Van Dijk et al., 2010). Additionally, the number of invalid scans 

reflects both motion displacement and global signal change derived from the ART Toolbox 

(Nieto-Castanon, 2020).

2.5. Statistical analyses

Cases that did not have neuropsychological assessment data were dropped from analyses via 

list-wise deletion. Additionally, to reflect a normative healthy aging sample, participants 

with performance beyond ±3 standard deviations from sample mean on any cognitive 

measure were excluded from respective analyses. One participant was missing data on 

Letter Number Sequencing, five on Digit Span Backwards, five on Stroop Color-Word, 

five on Symbol Digit Coding, and five on HVLT delay. Additionally, one individual was 

considered to be an outlier on HVLT delay, two individuals were considered outliers on 

Stroop Color-Word performance, and two were considered outliers on Trail Making Test 

Part B (TMT-B) performance. This resulted in sample sizes of Letter Number Sequencing 

n = 281, TMT-B n = 280, Digit Span Backwards n = 277, Symbol Digit Coding n = 

277, Stroop Color-Word n = 275, and HVLT Delay n = 276 for correlational analyses. All 

remaining participants were included in analyses regardless of degree of motion.

To control for potential site differences in the quality and acquisition of MRI data, 

effects of “scanner” were regressed from total invalid scans. Additionally, effects of 
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age and education were regressed from all neuropsychological measures before analyses, 

as preliminary correlation analyses suggested education and age to be associated with 

neuropsychological performance. Due to data non-normality and the presence of invalid scan 

outliers, six Spearman’s Rank-Order correlations – a non-parametric version of the Pearson 

product-moment correlation – were performed on the unstandardized residuals of each 

neuropsychological measure and total number of invalid scans. Exploratory correlational 

analyses were run to assess the relationship between total invalid scans and demographic 

variables: age, sex, and years of education. All statistical analyses were performed using 

SPSS version 25.

3. Results

3.1. Invalid scans and cognitive performance

Spearman’s Rank-Order correlational analyses revealed that the total number of invalid 

scans was associated with performance on tasks of set-shifting (TMT-B) and inhibition 

(Stroop Color-Word). Higher total number of invalid scans was related to greater amount 

of time to complete TMT-B (ρ = 0.20, p = 0.001; i.e., worse performance) and fewer total 

number of correct responses on Stroop-Color Word (ρ = −0.16, p = 0.009). Performance on 

measures of working memory - Letter Number Sequencing and Digit Span Backwards (ρ 
= −0.07, p = 0.28, ρ = −0.06, p = 0.34, respectively), on a measure of episodic memory - 

HVLT Delay (ρ = −0.08, p = 0.21), and on a measure of processing speed - Symbol Digit 

Coding (ρ = −0.06, p = 0.33) was not related to number of invalid scans (see Fig. 2). Further, 

higher number of invalid scans was associated with older age (ρ = 0.17, p = 0.003) but not 

sex (ρ = 0.04, p = 0.47) or years of education (ρ = −0.02, p = 0.80).

4. Discussion

It is common practice in functional MRI pre-processing to exclude participants if the 

proportion of motion flagged volumes to relatively motion free volumes results in less 

than 4-min of fMRI data (Van Dijk et al., 2010; Satterthwaite et al., 2013; Parkes et al., 

2018). However, other researchers have postulated that removal of these “high-movement” 

participants from analyses may introduce systematic sampling bias, particularly in clinical 

populations and aging populations with differing cognitive status (Seto et al., 2001; Wylie et 

al., 2014; Haller et al., 2014). This is the first study to assess the cognitive associates of in-

scanner movement during a resting-state fMRI scan in a large sample of cognitively healthy 

older adults. Cognitive tasks in this study focused on executive functioning (set-shifting, 

working memory, inhibition) and processing speed, as these areas typically decline with 

healthy aging (Salthouse, 2010) and are associated with in-scanner movement in a healthy 

young population (Kong et al., 2014). Additionally, a brief measure of verbal memory was 

assessed as performance on delayed verbal memory tasks may be indicative of pathological 

cognitive processes (de Jager et al., 2009; Weissberger et al., 2017).

Spearman Rank-Order correlations show that high-movers in this older adult sample also 

were lower performers on tasks of inhibition (Stroop Color-Word trial) and set-shifting 

(Trail Making Test part B), partially congruent to our predictions and previous literature 

in healthy young populations (Kong et al., 2014). There was no association between the 

Hausman et al. Page 7

Neuroimage Rep. Author manuscript; available in PMC 2023 June 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



number of invalid scans and two measures of working memory, processing speed, or delayed 

verbal memory. This suggests that better cognitive sequencing/set-shifting and inhibition 

skills may be in part responsible for reduced movement. While it is commonly understood 

that the Stroop Color-Word trial targets inhibitory control, Trail Making Test part B may 

also require inhibitory control and task-suppression in addition to a set-shifting component 

through inhibiting the automatic process of sequencing in the same set (Arbuthnott and 

Frank, 2010; Houghton and Tipper, 1994). Therefore, the number of invalid scans may 

be dependent on just the inhibitory control (i.e., active suppression of task-irrelevant 

information) aspect of Trail Making Test B.

The ability to suppress distractions may be critical for successful, minimal-motion scanning 

in an MRI environment. At the most basic level, participants are tasked to lay completely 

still in a restrictive, novel space while enduring loud sequencing noises. Participants must 

focus on the task (i.e., lying still) while suppressing these distractions and other factors 

like potential discomfort, pain, anxiety, and fatigue. These inhibitory processes decline 

with age (Persad et al., 2002; Sweeney et al., 2001) and may in part contribute to 

differences in managing the scanning environment between younger and older adults. For 

example, Gutchess and Park (2006) found that compared to younger adults, older adults 

had disproportionately poorer long-term memory performance in an fMRI environment 

when compared to a traditional laboratory setting. The authors speculate that attempting 

to suppress the scanning environment distractions results in a larger divided attention load, 

which may impact encoding.

In addition, an older adults’ ability to manage their day-to-day living environment also 

relies on intact executive functioning. Prior research suggests that performance on the 

Trail Making Test part B (Cahn-Weiner et al., 2002; Bell-McGinty et al., 2002) and on a 

modified version of the Stroop task (Jefferson et al., 2006) is associated with functional 

independence and completing instrumental activities of daily living (IADLs) in older adults. 

Changes in IADL performance can occur long before dementia or disease onset (Perneczky 

et al., 2006), and difficulties with IADLs is also a risk factor for higher conversion 

rates from mild cognitive impairment to dementia (Jekel et al., 2015). Thus, systematic 

exclusion of high-movers in the scanner may result in a biased sample towards those with 

better executive functioning, more functional independence, and perhaps a lower risk for 

developing dementia; although, longitudinal research in “high-movers” would need to be 

conducted to investigate this notion.

Additionally, alteration in functional brain connectivity could be a contributing factor in 

the relationship between head motion and cognitive functioning. Older adults who are 

performing poorly on inhibitory cognitive measures also have altered functional connectivity 

of hub regions within the default mode network and poorer connectivity of the cingulo-

opercular network (Zhao et al., 2020; Hausman et al., 2021). Therefore high-movers with 

poorer inhibitory functioning may also have disrupted functional connectivity of these 

resting state networks, although it is difficult to disentangle functional differences that are 

an artifact of movement versus true alterations in functional connectivity. However, Zeng et 

al. (2014) were able to demonstrate that reduced cortical connectivity between regions in 

the default mode network was a neurobiological trait of high-mover older adults and was 
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not itself an artifact of movement. Consequently, it is possible in our sample that functional 

connectivity could be a modulatory variable to consider in the association between high 

movement and reduced inhibitory functioning.

Another modulation factor to consider is brain arousal state, as reduced brain arousal is 

related to more head movements, slower response time, and functional connectivity artifacts 

during resting-state fMRI in young adults (Van Den Berg, 2006; Goodale et al., 2021; Gu 

et al., 2020). Also, arousal induced by alerting improved performance on an inhibitory task 

in young adults (Weinbach et al., 2015). Conversely, higher levels of brain arousal in older 

adults may actually impede the suppression of non-salient stimuli, and thus contribute to 

poorer inhibitory functioning (Gallant et al., 2020; Lee et al., 2018). The interaction of 

brain arousal, in-scanner movement, and inhibitory cognitive functioning in older adults 

has not been explored to our knowledge but could serve as a valuable future direction as 

arousal state may also underlie the relationship between in-scanner movement and inhibitory 

performance in older adults.

Subject motion in the scanner is inevitable, especially in older adult populations. Thus, 

we are left with a perplexing dilemma: how can we preserve the integrity of imaging data 

via motion correction without excluding participants that may bias our sample? Arguably, 

the preferable solution would be to proactively limit motion prior to and during scanning, 

reducing the emphasis on retrospective motion correction post-processing. Strategies such 

as tactile or visual feedback of head motion (Greene et al., 2018; Krause et al., 2019) 

and real-time motion monitoring (Dosenbach et al., 2017; Maclaren et al., 2013) have 

been shown to reduce the deleterious effects of head motion on fMRI data. For example, 

Dosenbach et al. (2017) developed the Framewise Integrated Real-time MRI Monitoring 

(FIRMM) software suite that provides head motion analytics in real-time (e.g., framewise 

displacement values and summary motion statistics) and identifies ideal scan times for each 

individual to obtain the desired amount of low-movement data. Importantly, this information 

can be used to facilitate interventions during scanning to encourage participants to remain 

still or terminate scans early which may reduce costs of time and money. However, this 

technique may still result in poorer quality or systematic exclusion of data for high-mover 

older adults, as it relies on implementation of cues or reminders to the participant to reduce 

movement. This is something an older adult with poor inhibitory functioning may not have 

the capacity to monitor.

An improved pre-processing pipeline could be another viable option. For example, 

Satterthwaite et al. (2013) demonstrated that modeling a high number of motion parameters 

(up to 36) in confound regression models better mitigated changes in signal due to motion in 

resting-state fMRI, particularly in high movement individuals. Although these models result 

in a significant drop in degrees of freedom (Lanka and Deshpande, 2019). Satterthwaite 

et al. (2013) also demonstrated that selectively filtering high frequency signal through band-

pass filtering reduced motion artifacts in functional connectivity. Despiking, or the removal 

of jumps in signal that possibly reflect sudden head movements, has also been explored as 

a method to reduce motion dependent connectivity without the need for scrubbing (Patel et 

al., 2014). Additionally, Jo et al. (2013) showed that distance-dependent bias in correlation 

in resting-state fMRI was exacerbated by including tissue averaged parameters, such as 

Hausman et al. Page 9

Neuroimage Rep. Author manuscript; available in PMC 2023 June 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



global signal regression. This suggests that not including global signal as a regressor for 

a high motion population may be beneficial in resting-state fMRI preprocessing. These 

somewhat individualized preprocessing approaches may mitigate the need to exclude high 

movement participants entirely from analyses. However, since there is no gold standard 

for retrospectively removing motion effects during preprocessing, using these various 

methods together may detrimentally interact in preprocessing and may require expertise 

in sophisticated image preprocessing and analysis (Maknojia et al., 2019).

Alternatively, prospective motion correction could be a valuable and effective tool for the 

older adult population. This technique typically involves the transmission of motion data 

from external tracking devices to update and adjust the gradient and radio frequency fields 

in a manner that “follows” the motion in real time (Maclaren et al., 2013). This essentially 

“allows” participant movement without sacrificing the quality of the data. Morphometry 

analyses in children and young adults showed higher intraclass correlation between 

prospective motion correction scans when compared to retrospectively corrected scans and 

suggest prospective motion correction is most effective in high movement populations (Ai et 

al., 2021). Preliminary data also show promise when applying prospective motion correction 

to fMRI data by increasing the signal to noise ratio compared to retrospective motion 

correction (Zaitsev et al., 2017). A significant advantage to this technique is its accessibility, 

as most current generation MR scanners come already equipped with prospective motion 

correction capabilities. Also, if using external tracking devices, it may be applied to most 

imaging sequences. Nevertheless, the application of this technique has not been validated 

in an older adult population. Findings from the current study serve as a call to action to 

validate the efficacy of prospective motion correction in older adult fMRI data, so it may 

be appropriately implemented without resulting in sampling bias, which is a critical step for 

research focused on functional brain changes in aging.

4.1. Limitations and future directions

Findings from this study are not without limitations. The current sample consists 

predominantly of highly-educated, White non-Hispanic individuals, which is not 

representative of the larger American population, limiting the generalizability of these 

results. Further, some of the assessments used in this study lack representative normative 

data for Black, Asian American and Pacific Islander, Indigenous, and Hispanic individuals. 

Replicating this study in a more diverse, representative sample with appropriate normative 

reference groups is crucial in broadening the applicability of these findings and exploring 

the interaction between race/ethnicity, in-scanner movement, and systematic exclusion.

This study only analyzed one parameter of motion: number of invalid scans. This measure 

is a metric of both framewise displacement and global signal change. While head motion 

has been demonstrated to explain the most variance in global signal variability (Power et 

al., 2017), we cannot rule out the influence of physiological variables such as respiration 

and heart rate on global signal change. Therefore, it would be important for future studies 

to explore the cognitive correlates of other types of motion correction techniques (i.e., 

angular and translational or those gathered from external tracking systems) to remove the 
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potential influence of physiological factors on these relationships and to better understand 

the strengths and weaknesses across motion correction techniques.

Another limitation includes the use of only the “intermediate” setting on the Artifact 

Detection Toolbox, which identifies outlier scans as having global signal change of +5 

standard deviations and framewise displacement of greater than 0.9 mm. While this setting 

is what is most commonly used and is recommended by Power et al. (2012), adjusting these 

settings to reflect more liberal (9SD/2 mm) or conservative (3SD/.5 mm) cut-offs in ART 

is possible. While conservative motion parameters are recommended for high movement 

populations, these thresholds come at the cost of eliminating data that may not actually 

improve the overall quality of the remaining scans and would perpetuate systemic exclusion 

of high movers (Fair et al., 2013, Lanka and Deshpande, 2019). Currently, there are no 

studies comparing the impact of varying threshold settings on the relationship between high 

movement and cognition in older adult populations. Exploring this association is important 

in generalizing our findings to differing methods of motion thresholds.

Lastly, individuals included in this study were cognitively “normal” and assessed at one 

point in time. Longitudinal studies could explore the “trait-like” stability of in-scanner 

motion over time and the cognitive trajectories of high-movers to see if these individuals 

are at a higher risk for transitioning to mild cognitive impairment or even dementia. 

Additionally, “cognitively healthy” individuals were recruited for this sample; therefore, 

the variability in cognitive performance may be restricted. Including individuals who meet 

criteria for mild cognitive impairment would be important in generalizing these findings, 

particularly in individuals with amnestic mild cognitive impairment, as this population holds 

the highest risk for converting to Alzheimer’s disease (Damian et al., 2013).

5. Conclusions

This is the first study to investigate a cognitive profile of in-scanner high-movers in a 

sample of healthy older adults during a resting-state fMRI sequence. In our sample, poorer 

performance on tasks in inhibition and cognitive flexibility related to a higher number of 

invalid scans. This is concerning, as performance in these domains tend to decline in typical 

aging (Salthouse, 2010) and are necessary for functional independence (Cahn-Weiner et al., 

2002; Bell-McGinty et al., 2002; Jefferson et al., 2006). Therefore, these findings suggest 

that there may be systematic exclusion bias when using the number of invalid scans in 

fMRI sequences as an exclusion factor in a sample of cognitively healthy aging adults. 

This highlights the importance of prospective movement reduction and real-time movement 

monitoring to ensure the integrity of functional MR data while not systemically excluding 

informative participants.
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Fig. 1. Artifact rejection toolbox intermediate settings.
Notes: Examples of the global BOLD signal change and subject motion parameters extracted 

from Artifact Rejection Toolbox for a A) low mover and B) high mover in our sample.
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Fig. 2. Spearman rank correlation scatterplots.
Notes: Scatterplots depicting the association between cognitive performance and number 

of invalid scans for A) Digit Span Backwards, B) Letter Number Sequencing, C) Hopkins 

Verbal Learning Test - Revised (HVLT-R) Delayed Recall, D) Trail Making Test Part B, 

E) Stroop Color-Word Trial, and F) Symbol Digit Coding. The X and Y axes represent the 

unstandardized residuals, partialling out the effects of age and education from the cognitive 

measure and scanner type from the number of invalid scans. The Trail Making Test Part B 

metric is the number of seconds taken to complete the task; therefore, greater values reflect 

worse performance.

Hausman et al. Page 18

Neuroimage Rep. Author manuscript; available in PMC 2023 June 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hausman et al. Page 19

Table 1

Sample demographics.

University of
Florida (n = 183)

University of
Arizona (n = 99)

Combined (n
= 282)

Age M (SD), range 71.53 (5.41), 65-88 71.64 (4.43), 65-84 71.6 (5.10) 65-88

Education M (SD), range 16.20 (2.62), 12-21 16.37 (2.06), 12-20 16.26 (2.44) 12-21

Sex (M:F) 74:109 31:68 105:177

Note. M = mean; SD = standard deviation, M = male, F = female.
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Table 2

Raw neuropsychological performance.

Assessment n M (SD) Range

Executive Functioning

Trail Making Test - B 280 81.40 (30.20) 28.91–189.72

Stroop Color-Word 275 34.90 (7.62) 12–55

Digit Span Backwards 277 8.96 (2.27) 4–16

Letter Number Sequencing 281 19.37 (2.73) 11–27

Processing Speed

Symbol Digit Coding 277 59.90 (11.52) 27–93

Verbal Memory

HVLT-R Delay 276 9.46 (2.06) 4–12

Note. M = mean; SD = standard deviation.
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