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KEYWORDS Abstract MicroRNAs (miRNAs) are important regulators in gene expression. The dysregulation
MicroRNA; of miRNA expression is widely reported in the transformation from physiological to pathological
Cancer; states of cells. A large number of differentially expressed miRNAs (DEMs) have been identified in
Differential expression; various human cancers by using high-throughput technologies, such as microarray and miRNA-
Model organism; seq. Through mining of published studies with high-throughput experiment information, the data-
Database base of DEMs in human cancers ({bDEMC) was constructed with the aim of providing a systematic

resource for the storage and query of the DEMs. Here we report an update of the dbDEMC to
version 3.0, which contains two-fold more data entries than the second version and now includes
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also data from mice and rats. The dbDEMC 3.0 contains 3268 unique DEMs in 40 different cancer
types. The current datasets for differential expression analysis have expanded to 9 generalized cat-
egories. Moreover, the current release integrates functional annotations of DEMs obtained by using
experimentally validated targets. The annotations can be of great benefit to the intensive analysis of
the roles of DEMs in cancer. In summary, dbDEMC 3.0 provides a valuable resource for charac-
terizing molecular functions and regulatory mechanisms of DEMs in human cancers. The
dbDEMC 3.0 is freely accessible at https://www.biosino.org/dbDEMC.

Introduction

Since the first discovery of microRNAs (miRNAs) at the
beginning of this century, this class of small non-coding
RNAs has received extensive attention [1]. As an important
gene expression regulator acting at the post-transcriptional
level, studies have disclosed the critical role of miRNAs in
targeting mRNAs for the degradation or translational
repression [2]. A total of 2654 miRNAs have been identified
in the human genome according to the latest version of
miRBase database [3]. Vast researches on miRNAs have
dramatically expanded our understanding about gene regula-
tory network and their roles in physiological and patholog-
ical conditions, such as in broad spectra of biological
processes including cell cycle, cell proliferation, differentia-
tion, apoptosis, and cellular signaling [4,5]. Owing to the
biological significance of miRNAs, alterations of their
expression have been linked to the development of many
diseases including the cancer [6]. Differentially expressed
miRNAs (DEMs) are widely reported to hold great value
in the diagnosis or prognosis as well as treatment targeting
for cancer research [7]. The potential usage of circulating
miRNAs in serum, plasma, and other body fluids as non-
invasive cancer biomarkers has also been thoroughly investi-
gated [8].

Given the important functions of miRNAs in cancer
development, several on-line resources have been built for
warehousing information of cancer-related miRNAs, such
as the HMDD [9], miRCancer [10], and OncomiRDB [11].
With the development of high-throughput techniques such
as microarray and miRNA-seq, large amount of cancer
DEMs were identified from miRNA profiling data each
year. However, these valuable data are scattered in the vast
literature and it is of great necessity to catalogue them in a
favourable way, thus to provide integrative tools for the
effective utilization and systematic investigation. With this
aim, we developed the initial database of DEMs in human
cancers (dbDEMC) in 2010 [12] and further updated it in
2017 [13]. To our knowledge, dbDEMC is the only working
repository currently available for storing DEMs from de
novo analysis of high-throughput profiling data in human
cancers, which is characteristic with miRNANome data in
various types of cancer. It greatly facilitates the efforts to
excavate cancer-associated miRNAs and investigate their
roles in the pathological processes of cancer. While the data-
base could have been much more useful if there been more
high-quality data included.

In recent years, cancer quantitative miRNA profiling data
have been increasing at an unprecedented rate, and given the
success of dAbDEMC 2.0, this motivates an update of this data-
base. Here we introduce dbDEMC 3.0, a significantly

expanded version of this database. This update incorporates
a substantial amount of new data. Besides the human data,
we have also incorporated the miRNA expression profiling
data of mouse and rat. A total of 403 datasets of miRNA
high-throughput expression encompassing 40 cancer types,
with the results of 807 differential expression analyses, have
been included. The present update is nearly doubling the data
amount over the previous version. In addition to the expanded
data volume, the content of the database has also been
enriched. This new version incorporates the experimentally
validated DEM targets and also their enrichment analysis
results on Gene Ontology (GO) terms and Kyoto Encyclope-
dia of Genes and Genomes (KEGG) pathways for the first
time. In this way, we provide the functional annotations of
DEMs for various cancers. Also, the web interface of the data-
base has been refined for a better visualization of the afore-
mentioned data. Taken together, the dbDEMC 3.0 is a
comprehensive resource to systematically characterize the
function of DEMs in human cancers as well as other model
organisms.

Data collection and processing

Data collection

To compile the datasets, we used the keywords “‘cancer”,
“tumor”, “carcinoma”, and ‘“‘neoplasm”, in combination with
“microRNA” or “miRNA” to conduct an exhaustive search
for the microarray-based miRNA expression profiles in Gene
Expression Omnibus (GEO) [14] and ArrayExpress [15], and
further for miRNA-seq-based miRNA expression profiles in
Sequence Read Archive (SRA) [16]. While the miRNA profiles
of mouse and rat were rapidly accumulating, we also incorpo-
rated the miRNA data of the two model organisms in the cur-
rent update. In addition, we also appended the miRNA
profiling data from The Cancer Genome Atlas (TCGA) that
was newly released since the last update of dbDEMC 2.0.
All the involved data were published before June 2021. The
data records were manually reviewed and evaluated rigorously
to guarantee that only high-quality datasets were included. To
ensure analysis reliability, we required at least three biological
replicates of samples in each condition (for both case and con-
trol) as usual.

Data processing

For miRNA profiling datasets based on microarray, we used
the same protocol as that of dbDEMC 2.0 to identify the
DEMs [13]. Briefly, the expression values were logarithmically
transformed (base 2) and quantile normalized. Then the limma
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(Linear Models for Microarray Data) package was applied to
select miRNAs whose mean expression level was significantly
different between case and control samples with false discovery
rate (FDR) < 0.05.

For miRNA-seq-based profiling data obtained from SRA
database, we downloaded the SRA files of raw sequence reads
and converted them into FASTQ format using the fastq-dump
of SRA Toolkit. Here we only used the data produced by
Illumina systems (Genome Analyzer I, 11, IIx, HiSeq 1000,
HiSeq 2000, HiSeq 2500, HiSeq 4000, NextSeq, and MiSeq).
The involving miRNA-seq data were analyzed by using Quick-
MIRSeq toolkit [17]. This toolkit utilizes the Cutadapt to
remove sequence adapters and perform quality control [18].
We collected detailed information of DNA adapters of differ-
ent miRNA-seq libraries from public resources to guarantee
that the adapters can be properly trimmed from the raw reads
(Table S1) [19]. The clean reads were then aligned to the refer-
ence genome by using Bowtie [20], and miRDeep2 was used to
obtain count tables of aligned reads for miRNA quantification
[21]. The read count table was further normalized by using
limma-voom [22], and DEMs were then identified. For the
datasets obtained from TCGA, we directly used the read count
data provided by the their data portal for further analysis [23].

Experimental validation results of DEMs in low-
throughput methods, such as real-time polymerase chain reac-
tion (RT-PCR) and Northern blot, were manually collected
from the original papers. These types of information were
carefully formatted and integrated into our update.

Functional annotation

For each obtained DEM set, we collected the experimentally
validated targets by using multiMiR [24], which integrate

miRNA target data from TarBase [25] and miRTarBase [26].
Then we performed the enrichment analysis of the DEM tar-
gets on GO terms and KEGG pathways by using clusterPro-
filer package to facilitate the study of context-dependent
miRNA functional mechanisms [27]. Enriched GO terms and
KEGG pathways were selected where adjusted P value
< 0.05. The data collection and curation procedure for
dbDEMC 3.0 is shown in Figure 1.

Database construction

All the data in dbDEMC 3.0 were managed by using Mon-
goDB. The dynamic web interface was developed using Java
Server Pages (JSP) and JavaScript. Data visualization was
achieved through the tools of vue, jQuery, and Echarts, and
Elasticsearch was used for search engine. The database was
developed by Spring Boot framework. Apache Tomcat was
used for the http server. All the information in dbDEMC 3.0
is freely available to the public domain through https://www.
biosino.org./dbDEMC.

miRNA cluster annotation

A miRNA cluster is defined as a set of miRNAs which are
located within adjacent genomic regions in the same or oppo-
site orientation and not separated by other transcriptional
units. miRNAs within a cluster are thought to be regulated
by common factors and involved in same signaling pathways.
According to Kabekkodu SP et al. [28], among 1881 precursor
miRNAs of human origin annotated in miRBase, 468 can be
attributed to 153 clusters. Here we obtained these data about
miRNA clusters and annotated mature miRNAs by using
annotation file from miRBase. Finally, a total of 688
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Schematic illustration of the data collection and architecture of the dbDEMC 3.0

GEO, Gene Expression Omnibus; SRA, Sequence Read Archive; TCGA, The Cancer Genome Atlas; NCBI, National Center for
Biotechnology Information; HUGO, Human Genome Organisation; MGI, Mouse Genome Informatics; RGD, Rat Genome Database;
KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology.
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(22.8%) mature miRNAs from 143 clusters were annotated in
the human genome.

Analysis of homogeneous dysregulation pattern of miRNA clusters
in cancer

For the systematic study of co-dysregulation pattern of
miRNA clusters in human cancers, we considered all miRNAs
associated with specific cancer. miRNAs not belonging to any
cluster and clusters of which at least half the members are not
associated with any cancer were discarded. To avoid potential
bias introduced by different expression platforms, here we only
used the results obtained from TCGA and checked for exper-
imental design of Cancer vs. Normal for 19 kinds of epithelial
cancers. We finally obtained 106 unique clusters for these can-
cer types. A cluster was designated to be homogeneous if at
least half of its members show the same direction of expression
pattern (either up- or down-regulated). For each cluster, we
computed the homogeneous fraction as that of co-
dysregulation throughout all cancer types analyzed. A signifi-
cant P value for this fraction was calculated as follow: for each
cancer type, the expression of all its associated miRNAs was
distributed randomly within these miRNAs for 10,000 times,
keeping the distribution of up- and down-regulated miRNAs
constant for each step. The homogeneous fraction over all can-
cers was computed, which yields the P value as the number of
sampled homogeneous fractions exceeding the original homo-
geneous fractions divided by 10,000.

In order to check whether clustered miRNAs are more
enriched in cancer development compared to single miRNA,
we calculated an enrichment score of log-odds (LOD) score
for each cancer type:

X(' Xall
LOD =lo
£ ((X( + Y() / (Xal/ + Yal[))

where X, and Y, separately denote the numbers of clustered
miRNAs and non-clustered miRNAs for each cancer type; X,
denotes the number of the clustered miRNAs, and Y,; denotes
the number of the miRNAs not contained in any cluster. Here
we tool into account all known human miRNAs annotated in
the human genome, thus designating them as the 688 clustered
miRNAs and 900 non-clustered miRNAs. In this case, a pos-
itive LOD score indicates enrichment for clustered miRNAs
compared to non-clustered miRNAs in a specific cancer.

Implementation and results

Database content

In the current release of dbDEMC, the data of miRNA tran-
scriptome of total 46,388 samples from 403 studies of human,

mouse, or rat were collected from public resources (Table S2).
These profiles are derived from 149 subtypes or cell lines from
40 different cancers (Table S3). We then performed a system-
atic analysis on each dataset, and yielded a total of 807 exper-
iments for differential expression analysis. dbDEMC 3.0 now
hosts a total of 3268 DEMs, and among them, 2584 are specific
to human. A total of 160,799 miRNA variations related to
cancers have been deposited in our database. The detailed
information about the numbers of miRNAs, cancer types,
datasets, and experiments for different species is presented in
Table 1.

Figure 2A depicts the number of DEMs for each type of
human cancers. For example, the breast cancer presents a large
number of DEMs with 1833 up-regulated and 1988 down-
regulated. The number of DEMs from mouse and rat can be
found in Figure S1. Figure 2B demonstrates the number of
DEMs validated by low-throughput methods across major
cancers, and the brain cancer, colorectal cancer, and breast
cancer are top ranked cancer types. Figure 2C shows the per-
centages of experiments for top ranked cancers. The breast
cancer accounted 15% of the total experiments, and ranked
the first of the list, followed by colorectal cancer and lung can-
cer. Whereas for the 9 different comparison categories, cancer
samples vs. normal controls constitutes about half of the total
experiments, followed by the comparison of high-grade vs.
low-grade cancer samples (Figure 2D). Overall, the sizes of
analysis experiments and related literatures in dbDEMC 3.0
have a two-fold increment by comparing with the previous ver-
sion (Figure S2).

New features

In the dbDEMC 2.0, we assigned the different experimental
designs to 7 different categories: Cancer vs. Normal, High
grade vs. Low grade, Metastasis vs. Primary cancer, Sub-
typel vs. Subtype2, Poor outcome vs. Good outcome, Blood
sample of patients vs. Blood sample of normal controls, and
also Treatment vs. Non-treatment. In recent years, many
studies disclosed that exosomes and microvesicles act as cell
communication agents, where miRNAs are the most impor-
tant molecular in exosomes and microvesicles that play a
role in regulating cancer progression [29]. In addition, circu-
lating miRNAs have also been widely found in body fluids
and represent a gold mine of noninvasive biomarkers in can-
cer [30]. In this update version, we thus added these two cat-
egories of experimental design: Exosome sample from
patients vs. Exosome sample from control, and Body fluid
from patients vs. Body fluid from control (Figure 2D).
Moreover, for each DEM set, targets of miRNAs and
enrichment information of the target genes for the KEGG
pathways and GO terms were deposited in the dbDEMC
3.0, which makes it possible for inspecting functional mech-
anisms behind a set of miRNAs.

Table 1 Summary of the data content of the current release of dbDEMC
No. of miRNAs  No. of cancer types  No. of cancer subtypes  No. of datasets  No. of experiments  No. of samples
Homo sapiens 2584 40 149 373 763 45,974
Mus musculus 610 11 15 28 40 383
Rattus norvegicus 74 2 22 2 4 31
All 3268 40 149 403 807 46,388
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experimental design. DEM, differentially expressed miRNA.

Newly designed web interface

The web interface of dbDEMC 3.0 has been significantly
refined and improved, allowing better use of the deposited
data. The Search page permits users to perform a quick
search and extract summarized information of a DEM list
across cancer types. Users can also specify the cancer type,
experimental design, or platform to select the interested
experiments (Figure 3A—C). After filtering the experimental
results, users can select interested experiments. Detailed
information of DEM-related experiments, which includes
the description with the up-regulated and down-regulated
miRNAs, can be accessed. In the functional chart section,
heatmap of the differential expression, miRNA—-target regu-
latory network for top ranked DEMs, and the bubble chart

for miRNA target-enriched KEGG pathways and GO terms
are presented (Figure 3D). Using a single miRNA query,
summary information of the interested miRNA can be
retrieved, including the general description of the interested
miRNA and the differential expression summary heatmap
which depicts the number of experiments showing up- or
down-regulation. In addition, summary statistics tables for
both high-throughput data analysis and low-throughput
validation data are also displayed (Figure 3E).

Analyzing tools

miRBase is the central reference database for miRNA annota-
tion by assigning names and unique gene IDs for each
miRNA. During its development, some miRNA definition
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A. Search page. miRNAs can be searched via miRBase IDs or filtering experiments with interested conditions. B. Filtering result page of
experiments. C. Search result page with example miRNAs. D. Experiment page. The page summarizes the description of the experiments
and the associated DEM list. The functional chart, including differential expression heatmap, regularly network, and miRNA target-
enriched KEGG pathways and GO terms, is also depicted. E. miRNA page. This page mainly consists of four sections: miRNA summary,

expression profile, expression detail, and validation.

and annotation may have been changed. This leads to the
inconsistence of the miRNA IDs from different datasets,
which are derived from different miRBase versions and make
it difficult for comparing research results for integrative anal-
ysis. To solve this problem, we provide a “ID convertor” in
our database, by which users could convert miRBase old ver-
sion IDs to the latest version (v22.0) for the three species of
human, mouse, and rat. In addition, other analyzing tools
including BLAST and meta-profiling, which are used for

sequence similarity search of unknown miRNAs and identify
the confident cancer-related miRNAs in pan-cancer wide, are
also available in dbDEMC v3.0. For the meta-profiling study,
the vote-counting approach is used to calculate the consistent
score of differential expression for meta-analysis [31]. Com-
mon miRNAs identified in multiple cancer types with a similar
differential expression pattern suggest that they may have sim-
ilar regulatory mechanisms and play important roles in cancer
development.
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miRNA clusters are significantly overrepresented in cancers

A large proportion of miRNAs are localized as conserved
clusters in the genome and present a similar expression pattern
across tissues. It is critical to understand whether miRNA
clusters present a similar differential expression pattern across
cancers and correlate with the similar pathobiology. Here we
obtained human miRNA cluster annotation from public
resources, which includes 22.8% (688/2588) of mature
miRNAs appearing as 143 clusters of at least two members
within (Table S4). We systematically analyzed the homogene-
ity of expression patterns within miRNA clusters. We excluded
those clusters having less than half of all miRNAs annotated
from the results of TCGA, which leads to 106 remaining
clusters. The clusters are denoted as exhibiting a homogeneous
expression pattern if annotated miRNA members are either
up- or down-regulated (see Data processing). In total,
cancer-associated clusters revealed homogeneous expression
patterns for 74% of all annotated cancers, which confirms
the hypothesis of a co-regulation pattern of miRNA
clusters in cancer. For example, the cluster of miR-142-5p,
miR-142-3p, and miR-4736 presents a consistent differential
expression pattern in 91% (11/12) of the cancers analyzed
(Table S5). A null model by randomly linking miRNA expres-
sion patterns (permutation 10,000 times within each cancer)
indicated that 52 clusters (49%, P < 0.05) showed a signifi-
cantly higher homogeneity pattern in all 19 kinds of cancer
compared to that expected by chance (Table S5). These clus-
ters exhibit a homogeneous expression pattern in at least
78.5% of all these types of cancer.

To further investigate the association of miRNA clusters
with different kinds of cancer, we estimated the enrichment

of miRNA clusters in cancer-associated miRNAs by using a
LOD score. We found enrichment for all 19 kinds of cancer
(Figure 4). Within these 19 kinds of cancer, miRNAs located
in clusters are, on average, 1.56 times (LOD = 0.65) enriched
compared to random permutation. In summary, our analyses
show a significant enrichment of clustered miRNAs in cancers
compare to the single miRNA members, demonstrating that
different miRNAs within a cluster act synergistically in cancer
development.

Discussion

Over the last decade, a large number of miRNA transcriptome
profiles of various cancers have been generated. Many studies
have performed miRNA transcriptome analysis to explore the
underlying molecular mechanisms of miRNA genes in cancer
development [32,33]. This progress motivated a novel release
of dbDEMC to keep track of the latest published data. Along
with this, we curate these data and provide a platform to facil-
itate the study of miRNA—cancer associations. For dbDEMC
3.0, it not only contains more miRNA—cancer associations, we
also extend our database to the species of mouse and rat,
which will be of benefit to those studies characterizing the
miRNA functional machinery in cancer using the model
organisms. Beyond the rapid increase of data amount, our
database now offers many new features and powerful tools
for the downstream analysis of DEMs, such as the integrated
target identification and functional enrichment analysis for
miRNA-regulated biological processes.

One of the key questions of differential expression analysis
of miRNAs is which cancer types are regulated by a particular
miRNA (miRNA-centric view), or conversely, which miRNAs
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Figure 4 miRNA cluster enrichment for 19 kinds of cancer

For each cancer type, the LOD score is plotted. There is an enrichment of miRNA cluster members for all 19 kinds of cancer (100%, P <
1E—4). Within these 19 types of cancer, miRNAs located in clusters are, on average, 1.56 times (LOD = 0.65) enriched compared to

random permutation. LOD, log-odds.
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may be involved in a given type of cancer (cancer-centric view).
Our database supports both miRNA- and cancer-centric inves-
tigations, i.e., users are able to search miRNAs to determine
the spectrum of cancer types that are involved in, or to find
a candidate miRNA list which links to an individual type of
cancer. It is worth noting that previous studies have indicated
that false positive and negative records may exist in miRBase,
thus researchers need to be cautious about resources based on
references from miRBase [34,35]. In addition, our database
hosts miRNAs that present differential expression in cancers
by using high-throughput methods, thus most of miRNAs in
the human genome are included. Researchers could further
explore their roles in cancer development and identify those
“bona fide” cancer driver miRNAs. Overall, we expect that
dbDEMC 3.0 could serve as a valuable resource with compre-
hensive data amount and data analysis tools to facilitate the
study of DEMs in cancers. In the future, more data from other
public resources such as International Cancer Genome Con-
sortium (ICGC) [36] and Chinese Glioma Genome Atlas
(CGGA) [37], will be added. We will also continue to make
improvements to the web interface of our database for the flex-
ible analysis of miRNA functions. We believe that the develop-
ment of dAbDEMC database can help accelerate the integration
between miRNANome and cancer studies.

Data availability

dbDEMC v3.0 is freely accessible at https://www.biosino.org/
dbDEMC/.
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