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Immune checkpoint inhibitors (ICIs), especially anti-programmed death 1 (PD-1)/
programmed death ligand 1 (PD-L1) antibodies, have made dramatic progress in the
treatment of lung cancer, especially for patients with cancers not driven by oncogenes.
However, responses are limited to a subset of patients, and which subset of patients will
optimally benefit from ICI remains unknown. With the advantage of being minimally
invasive and dynamic, noninvasive biomarkers are promising candidates to predict
response, monitor resistance, and track the evolution of lung cancer during ICI
treatment. In this review, we focus on the application of circulating tumor DNA (ctDNA)
in plasma in immunotherapy. We examine the potential of pre- and on-treatment features
of ctDNA as biomarkers, and following multiparameter analysis, we determine the
potential clinical value of integrating predictive liquid biomarkers of ICIs to optimize
patient management. We further discuss the role of ctDNA in monitoring treatment
resistance, as well as challenges in clinical translation.

Keywords: liquid biopsy, immune checkpoint inhibition, immunotherapy, lung cancer, noninvasive biomarker,
circulating tumor DNA
INTRODUCTION

Immune checkpoint inhibitors (ICI), especially anti-PD-1/PD-L1 antibodies, have been widely used
as an effective therapy for many types of cancer, with impressive long-lasting responses in patients
with non-small cell lung cancer (NSCLC) (1–3). However, only a minority of patients derive durable
clinical benefit from ICIs (4). In addition, by increasing the activity of the host’s immune system to
kill tumors, ICIs also cause toxicity known as immune-related adverse events (irAEs), which can
result in the discontinuation of ICIs and, in some cases, these reactions can be life-threatening (5–7).
Furthermore, the unique nature and timing of the responses to ICIs represent a challenging scenario
for the currently available radiologic methods. Therefore, the prediction of response and toxicity to
ICI before or early during the treatment course could help identify potential durable responders
while sparing non-responders or those at risk of experiencing higher toxicity from ICIs.

The current gold standard of molecular profiling still relies on tissue samples. Although several
tumor characteristics including tumor PD-L1 expression, tumor mutational burden (TMB), and
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microsatellite instability (MSI) status have been heavily studied,
robust tumor-based predictive markers of treatment response
remain elusive (4, 8–12). In addition, repeated tumor biopsies in
the treatment course are usually not feasible and are limited by
the quality of the specimen and intratumoral heterogeneity
(ITH), presenting an unmet clinical need. This requires the
identification of noninvasive biomarkers that can help to direct
treatment decisions, gauge subsequent responses, and alert to the
emergence of treatment resistance to PD-1/PD-L1 blockade-
based ICIs.

The term “noninvasive biomarker” refers to a component
from a variety of biospecimens, most notably available in the
blood, as well as other clinical specimens such as urine, saliva,
stool, and cerebrospinal fluid (13–17). In the search for putative
noninvasive biomarkers, blood remains the most collected and
studied sample. Peripheral blood can identify biomarkers
including circulating immune cells, cytokines, soluble proteins
[e.g., soluble cytotoxic T lymphocyte-associated protein 4
(CTLA-4) and soluble PD-1/PD-L1], circulating tumor cells,
and tumor cell-derived material (DNA, RNA, and exosomes)
(18–21). This review focuses on a widely studied application of
circulating tumor DNA (ctDNA), together with multiparameter
models integrating predictive liquid biomarkers of ICI treatment
outcome. We summarize the implementation of ctDNA in the
context of ICI treatment in patients with NSCLC. We further
discuss the potential of ctDNA to predict outcomes and to
dynamically monitor treatment response with a particular
emphasis on challenges in clinical translation.
EMERGING APPLICATIONS OF CTDNA
FOR IMMUNE CHECKPOINT INHIBITORS

Numerous candidate noninvasive biomarkers have emerged in
the past few years. The leading example of a plasma predictive
biomarker is ctDNA, which refers to tumor-derived DNA
fragments in cancer patients. ctDNA harbors characteristic
somatic genomic alterations, the patterns of nucleosome
occupation that suggest the tissue of origin, and DNA
methylation profiles (22–25). Therefore, ctDNA can be used to
identify tumor-specific genetic alterations including somatic
point mutations, loss of heterozygosity, structural variants, and
epigenetic alterations, including DNA methylation differences,
with future potential for predictive biomarker development.
NSCLC is a cancer for which plasma ctDNA testing has the
most compelling and comprehensive evidence.

Using Pretreatment Features for Early
Prediction of Response and Toxicity
Prediction of response and toxicity with ICI before treatment
could spare nonresponders or those at risk of higher toxicity
from unnecessary misery and cost. In this section, we discuss
ctDNA metrics before treatment for risk stratification and
identification of response and toxicity.

Several studies have established the predictive power of
pretreatment plasma ctDNA level, and a high pretreatment
Frontiers in Oncology | www.frontiersin.org 2
ctDNA level was an independent predictor of unfavorable
outcome across multiple types of cancer (26–28). Associations
with baseline ctDNA levels were observed in a prospective phase
II clinical trial (NCT02644369), including a cohort of patients
with advanced NSCLC treated with pembrolizumab (29). Lower
baseline ctDNA levels than the median were associated with
better overall survival [hazard ratio adjusted for cohort (aHR)
0.49, 95% confidence interval (CI) 0.29–0.83] and progression-
free survival (PFS; aHR 0.54, 95% CI 0.34–0.85). We envision
that pretreatment characteristics could stratify higher risk
cancers with higher ctDNA shed, which may identify patients
requiring more aggressive treatment strategies, as can be seen
in trials in which patients with high plasma ctDNA levels are
directed toward more intensive therapy than their counterparts
with low plasma ctDNA levels (Table 1). Similar predictive
values have also been reported in blood-based assays to
measure blood-based tumor mutational burden (bTMB)
levels in large randomized clinical trials, POPLAR, OAK, and
MYSTIC (30, 31). An improved benefit for ICI treatment was
observed in NSCLC patients with higher bTMB cutoff values,
with a bTMB >16 mut/Mb demonstrating a median overall
survival of 13.5 months for atezolizumab vs. 6.8 months
with docetaxel in the OAK study. Interestingly, the authors
determined that the maximum somatic allele frequency
(MSAF) of ctDNA, which reflects the ctDNA amount in the
blood, could interfere with TMB results. Wang et al. (32)
further adjusted bTMB for MSAF, and they demonstrated
that MSAF of ctDNA could provide an additional predictive
value for bTMB.

Several studies have explored the associations between
peripheral blood markers and the onset of irAEs in patients
with advanced NSCLC receiving ICIs, with T-cell receptor
diversity, CD8+ T-cell clonal expansion, peripheral immune
cells, cytokines, preexisting antibodies (33–37), and the
circulating microbiome (38–40), which all represent attractive
biomarkers. Previous studies have demonstrated that TMB (41)
and genes related to T-cell activation (42) could be potential
biomarkers to predict irAEs. However, ctDNA, which allows
analysis of genetic features, has not been explored as a predictive
marker for irAE. Three reasons should be considered. First, these
potential irAE predictors were conducted in a limited number
of cases and need to be validated; second, these results were
conducted with tissue samples instead of plasma samples; third,
technical challenges remain on analyzing genomic traits using
plasma-based approaches. Further studies are warranted to
enable comprehensively predicting irAE.

Long-Term Longitudinal Monitoring of
Treatment Response and Resistance
In this section, we discuss the utility of early on-treatment
(usually within 8 weeks after treatment initiation) and
extended monitoring, as well as the potential of plasma ctDNA
to be used as a possible adjunct to radiographic assessment,
among studies that utilize noninvasive biomarkers for long-term
longitudinal monitoring response to checkpoint blockade and
prediction of the risk of eventual progression.
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Early On-Treatment Kinetics
The early response pattern (usually within 8 weeks after
treatment initiation) during ICI treatment was recently shown
to identify patients with NSCLC responding to therapy,
regardless of the stage of the disease. In patients with advanced
NSCLC, several groups have recently demonstrated that an
early reduction in ctDNA allele frequency, also known as
molecular response, was independently associated with longer
survival (PFS and overall survival) and a higher response rate
[objective response rate (ORR): complete or partial response]
in patients with NSCLC treated with durvalumab (43) and
pembrolizumab ± chemotherapy (overall survival: aHR 0.36,
95% CI 0.18–0.7; PFS: aHR 0.33, 95% CI 0.19–0.58) (29, 44),
as well as other ICIs (45, 46). In contrast, an early increase in
ctDNA level was associated with increased tumor volume and
prolonged duration of treatment in these studies, with landmark
time points ranging from within the first 8 weeks to up to
12 weeks on-treatment.

A particular conundrum in clinical practice is the
discrimination between patients with early radiological stable
disease who would truly benefit from treatment from those who
would not. Recent studies have reported that ctDNA responses
within 8 weeks after starting treatment could help determine the
likelihood of durable clinical benefit (defined as complete
response, partial response, or stable disease for 6 months) from
ICIs (43, 45, 47). In an advanced NSCLC study, ctDNA
responses after a single cycle of ICI therapy distinguished most
patients with long-term benefits. Interestingly, early ctDNA
dynamics outperformed all individual pretreatment factors
(P < 0.05, accuracy = 73%) in classification of durable benefit (48).

Intriguingly, in the aforementioned study, when ctDNA was
reduced to undetectable (also known as ctDNA clearance),
superior clinical outcomes were observed; all patients with
Frontiers in Oncology | www.frontiersin.org 3
ctDNA clearance during treatment experienced prolonged
duration of objective response and were alive with a median of
25 months of follow-up (29).

Furthermore, recent data on resectable NSCLC support
ctDNA as a response biomarker in neoadjuvant ICI treatment
(49). In the CheckMate-816 study, a phase III study exploring the
efficacy of neoadjuvant nivolumab in stage IB–IIIA NSCLC,
ctDNA clearance on day 1 cycle 3 post-ICI treatment was
associated with a pathological complete response (50). In
addition, in patients with unresectable locoregionally advanced
NSCLC, ctDNA analysis has also shown promise to indicate
whether further treatment is needed and could identify
responders. Moding et al. (51) applied CAPP-Seq ctDNA
analysis and found that in patients with detectable ctDNA after
chemoradiation therapy, those who received consolidation
immune checkpoint inhibition had significantly better
outcomes than those who did not, and patients with decreasing
ctDNA early during treatment derived superior outcomes than
those with increased ctDNA levels. Future interventional studies
will be required to enable clinical decisions using ctDNA to guide
ICI treatment after curative intent treatment, including surgery
and chemoradiation therapy.

Dynamic Changes Throughout the Course of
the Treatment
Consistent with early on-treatment ctDNA kinetics, distinct
ctDNA dynamic profiles during surveillance were also
correlated with benefit. Longitudinal monitoring of ctDNA
throughout the course of treatment in a study of advanced
NSCLC also demonstrated that an increase in ctDNA level
from baseline was associated with disease progression and poor
survival (29). Furthermore, in the aforementioned study,
clearance of ctDNA could occur at any time point from cycle 3
TABLE 1 | Interventional plasma-adapted trials of immune checkpoint inhibitors in NSCLC.

Clinicaltrials.gov
identifier

Sponsor Phase Subject Experimental Change threshold Time point Primary
endpoint

NCT04166487 Dana-Farber
Cancer
Institute

2 Stage IV,
untreated

Pembrolizumab for 2 cycles,
following pembro (with plasma
response) or pembro +
chemo (without plasma
response)

Patients with high shed [≥0.5% max
AF] at C1D1: ≥50% reduction in
plasma ctDNA max AF; patients with
low shed [<0.5% max AF] at C1D1:
persistent low shed

C2D1 6-month
progression-free
survival rate

NCT04093167 Canadian
Cancer
Trials Group

2 Stage IV Pembrolizumab NA NA Concordance
rate between
molecular
response and
radiologic
response

NCT04367311 Nasser
Hanna

2 Stage I (T ≥4 cm),
IIA, IIB (and select
IIIA); detectable
ctDNA after
surgery

Adjuvant atezolizumab +
chemotherapy for 4 cycles
following up to 13 cycles of
atezolizumab

ctDNA clearance [CAPP-seq, using
the Monte Carlo-based ctDNA
detection index cutoff point of < 0.05]

Landmarks
(after 4, 8,
12, 17
cycles)

Percentage of
patients with
undetectable
ctDNA

NCT04642469 AstraZeneca 3 Stage II–III, MRD+
following curative
intent therapy

Durvalumab (control: placebo) Minimal residual disease (using
personalized ctDNA assays)

During a
96-week
surveillance
period

Disease-free
survival
March 2022
 | Volume 12
Abbreviations: pembro, pembrolizumab; AF, allele frequency; C1D1: cycle1 day 1; NA: not available; ctDNA, circulating tumor DNA; CAPP-seq, cancer personalized profiling by deep
sequencing; MRD, minimal residual disease.
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to cycle 12, suggesting that extended surveillance could add to
the clinical utility of ctDNA-based monitoring.

Combining Imaging Findings With ctDNA Monitoring
in Response Assessment
The unique nature and timing of the responses to ICIs represent
challenging scenarios for current radiologic methods. Plasma
ctDNA levels have been correlated with tumor burden and thus
may promptly and accurately assess clinical responses and disease
progression in response to ICI treatment (47, 52). Recently,
emerging evidence has supported longitudinal changes in ctDNA
levels that are consistent with and precede changes observed on
radiographic imaging of tumor size. Goldberg et al. (45) observed a
strong agreement between ctDNA response and radiographic
response in patients with advanced NSCLC receiving ICI
treatment (Cohen’s kappa, 0.753), and this relative decrease in the
fraction of mutant alleles from baseline translates to superior
survival outcomes. They also found that among patients who
achieved responses to ICIs, it takes a shorter time to assess initial
response by ctDNA than by imaging (median time to initial
response, 24.5 vs. 72.5 days).

ctDNA dynamics may also serve as a potential marker to
identify pseudoprogression. Pseudoprogression represents
another challenging scenario for current radiologic methods, as
it remains difficult to recognize accurately or promptly, and
patients may discontinue treatment that can eventually be
effective and extend survival (53–55). One of the first studies
to highlight the utility of ctDNA in the identification of
pseudoprogression was reported by Lee et al. (56) following the
analysis of a cohort of 125 patients with stage IV melanoma who
received pembrolizumab or nivolumab either alone or in
combination with ipilimumab. The ctDNA profile could
discriminate pseudoprogression from true progression with a
sensitivity of 90% and a specificity of 100%. The use of ctDNA to
identify this unique response pattern has also been explored for
NSCLC. In a previously published case report, Guibert et al. (57)
found a rapid and dramatic decrease in ctDNA levels in two
patients exhibiting pseudoprogression, whereas there was an
increase in a true-progressive patient.

Early Warning of Disease Progression
Despite the initial response, and even long-lasting response to ICI
treatment, a substantial fraction of patients eventually progress. An
emerging field using a noninvasive biomarker is in its longitudinal
deployment as an early warning of acquired resistance after immune
checkpoint blockade, which can direct early intervention in those at
highest risk for eventual progression. The kinetic patterns of ctDNA
could provide added clinical utility beyond imaging in two aspects.
First, in long-term responders, ctDNA analysis could be used to
predict the risk of eventual disease progression on ICI treatment. In
a recent study on a cohort of patients with NSCLC achieving long-
term benefit from PD-1/PD-L1 blockade, patients with positive
detection of ctDNA at late surveillance time points were more likely
to develop disease progression. Almost all patients with
undetectable ctDNA at the surveillance blood draw remained
disease-free, while all of the patients with detectable ctDNA
eventually progressed (58). Second, in patients without
Frontiers in Oncology | www.frontiersin.org 4
radiological progression, ctDNA has the potential to inform
acquired resistance before imaging findings. In the TRACERx
study, Abbosh et al. (59) followed NSCLC patients after surgery
and detected ctDNA with a median interval of 70 days prior to the
identification of clinical relapse by computed tomography imaging.
Furthermore, in a phase II trial evaluating the efficacy of ICIs in
solid tumors of patients presenting radiological progression at a
certain time point, those with decreased ctDNA levels showed
longer survival than those with increased ctDNA. In addition, the
combination of ctDNA dynamics and Response Evaluation Criteria
in Solid Tumors (RECIST) improved the accuracy of Cox models
for overall survival over that of RECIST alone (C statistic 0.62 vs.
0.67, likelihood ratio test P = 0.02) (38), suggesting that ctDNA
dynamics could serve as a reliable molecular biomarker to help
determine whether therapeutic interventions should continue after
radiological progression to improve patient outcomes. Longitudinal
blood samples may also anticipate in resistance mechanism
exploring and subsequent functional testing, as suggested by
paired models generated from SCLC patients representing the
disease before and after the development of resistance to therapy
(60–62).

Collectively, these promising results indicate that longitudinal
tracking with blood samples has great potential in monitoring
treatment response and resistance more nimbly than imaging in
patients treated with ICIs, thus allowing more timely systemic
treatment changes for individual patients.
Early Development in Integrating ctDNA
With Other Parameters for Predicting
Response to Immune Checkpoint
Inhibitor Treatment
In the CheckMate-816 study, more than 50% of patients with
ctDNA clearance did not reach a pathological complete response
after immunotherapy (50), suggesting the limit of prediction based
on a single tumor characteristic. Nabet et al. (48) and Zhang et al.
(52) have recently demonstrated that multivariate models based on
pretreatment ctDNA and peripheral immune features, together
with early on-treatment ctDNA dynamics, robustly predict
durable responders with higher accuracy than any individual
feature alone. This finding represents an important concept that
incorporating pretreatment features in addition to time-dependent
on-treatment changes can support biological plausibility, which
enables a personalized approach to longitudinally refine risk
stratification. Similarly, a recent report of a phase II trial
evaluated immune checkpoint blockade, in which the association
with PFS, overall survival, clinical response, and clinical benefit
became stronger when integrating both baseline ctDNA
concentration and ctDNA kinetics during treatment (29).
Moreover, incorporating nonliquid components like tumor
features could provide additional predictive value. NSCLC has
been shown to harbor significant ITH, especially after the onset of
resistance to therapy (63). Recently, Fang et al. (64) reported ITH
as a predictive biomarker in anti-PD-1/PD-L1 therapy for NSCLC.
We believe that integrating dynamic multiparametric biomarkers
provides a significant advantage over traditional static single-
metric modeling in predicting the response orchestrated by both
March 2022 | Volume 12 | Article 836891
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the tumor and the immune milieu and represents promising
developments in the hunt for noninvasive biomarkers in
response to ICI immunotherapies in NSCLC patients. Further
refinement of the components of the model remains an open
challenge, requiring prior knowledge derived from previously
published datasets and cross-study validation.
Tracking the Co-Evolution of Cancer and
Antitumor Immunity Following Exposure to
Immune Checkpoint Inhibitor
Perturbations
The co-evolution of tumor and the immune microenvironment
during ICI treatment is receiving growing interest. ctDNA-based
monitoring has been reported to help provide a longitudinal
evaluation of tumor genetic clonal characteristics (59) and
inform changes of neoantigens and neoantigen-producing
mutations throughout the course of ICI treatment (65, 66);
thus, this can be leveraged to track the co-evolution of tumor
and immune microenvironment. First, the neoantigens of
tumors may reshape the host immune repertoire, which
reflects the antitumor immune response (67). Next, through
either the elimination of tumor subclones or the expansion of
resistant clones, the selective pressures created by ICIs may have
an impact on the clonotypic expansion of neoantigen-specific T
cells (47, 68–70). Moreover, tumor genetic evolution may be in
turn influenced by antitumor immunity by imposing a selection
pressure through affecting neoantigens and antigen presentation
Frontiers in Oncology | www.frontiersin.org 5
(65). With a deeper understanding of the co-evolution, ctDNA-
based monitoring can help provide insight into the prediction of
response and reveal the mechanism of resistance to ICI.
ON THE HORIZON, CHALLENGES
TO BE OVERCOME

Given the variety of noninvasive biomarkers and their diverse
natures and predictive values, translating their use into clinical
reality remains an unmet need. Although ctDNA levels and
dynamics were believed to be the most predictive of
immunotherapy response and are being intensively studied, a
harmonized threshold for risk stratification at baseline is lacking,
let alone diverse detecting approaches with different consistent
depths of coverage, fragmentation sizes, and limits of detection
(71). Furthermore, to define molecular responses, variable
ctDNA change thresholds [variable levels of reduction (29, 52)
or reductions >50% (48) and time points (ranging from within
the first 8 weeks (47, 48) to up to 12 weeks on-treatment (29)]
have been used in different studies, while a consensus definition
remains elusive (72), leaving questions about the most effective
“sweet spot”. In monitoring acquired resistance, numerous open
challenges also remain, including determining which variants
should be tracked and which filtering out as variants arising from
clonal hematopoiesis. A variety of other components of the
immune response are under active investigation. However,
technical obstacles still remain.
FIGURE 1 | Potential applications of circulating tumor DNA in the context of immunotherapy and future perspectives. ctDNA, circulating tumor DNA; SD, stable disease.
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Although a dynamic multiparameter model might outperform
the predictive ability of any single feature, incorporating different
components relies on the harmonization of diverse assays and
multiple selective biomarkers will be crucial. Incorporating non-
liquid components like radiomic imaging analysis and tumor
features (73), coupled with multidimensional approaches
involving blood-based proteomic testing (74) and mechanistic
learning (75, 76), is also required. Additionally, consistent cross-
study validation and standardization of each model are required
before any implementation in routine clinical use to improve
personalized medicine approaches, which could be addressed
through ongoing prospective collaborative molecular response-
adaptive clinical trials (Table 1).
CONCLUSIONS

ctDNA heralds a revolution in the broader application of
biomarker-directed ICI treatment. Early identification of
therapeutic benefits and toxicity, as well as longitudinal
noninvasive monitoring of therapeutic response and resistance
in patients with ICI treatment, is an emerging approach to
maximize the personalized benefit of ICIs. Although the
current application of ctDNA in clinical practice remains
limited, applications toward early identification of responders
and response assessment are in the near future, and applications
toward resistance monitoring and evolution tracking will be the
next frontier (Figure 1).
Frontiers in Oncology | www.frontiersin.org 6
Given the emerging developments in ctDNA, the notion that
liquid biopsies could support the management of patients
receiving immunotherapy is exciting, especially when
pseudoprogression or higher risk of disease progression is
identified, and a timely treatment decision can be made
accordingly. Innovative clinical trials incorporating dynamic
noninvasive biomarkers into ICI treatment monitoring will
enable personalized ICI treatment care for patients with NSCLC.
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