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Abstract: With the increasing prevalence of drug-resistant variants, novel potent HIV-1 protease
inhibitors with broad-spectrum antiviral activity against multidrug-resistant causative viruses are
urgently needed. Herein, we designed and synthesized a new series of HIV-1 protease inhibitors
with phenols or polyphenols as the P2 ligands and a variety of sulfonamide analogs as the P2′

ligands. A number of these new inhibitors showed superb enzymatic inhibitory activity and antiviral
activity. In particular, inhibitors 15d and 15f exhibited potent enzymatic inhibitory activity in the
low picomolar range, and the latter showed excellent activity against the Darunavir-resistant HIV-1
variant. Furthermore, the molecular modeling studies provided insight into the ligand-binding site
interactions between inhibitors and the enzyme cavity, and they sparked inspiration for the further
optimization of potent inhibitors.

Keywords: HIV-1 protease inhibitors; phenol; polyphenol; enzymatic inhibitory activity; antiviral
activity; darunavir-resistant HIV-1 variant

1. Introduction

Acquired immune deficiency syndrome (AIDS) is a widespread disease caused by
human immunodeficiency virus (HIV), which has seriously threatened human health since
the first case was detected in 1981 [1]. Its main type, HIV-1, was internationally recognized
as a level one carcinogen in 2017 [2]. Fortunately, the development of anti-HIV drugs and
highly active antiretroviral therapy (HAART) for HIV/AIDS over the past decades has
reduced the mortality and morbidity rates dramatically [3–7]. HIV-1 protease inhibitors
(PIs) play a critical role in inhibiting viral maturation [8]. Ten HIV-1 PIs that substantively
improve the quality of life and provide more flexible treatment options have been applied
in clinical settings. In spite of such progress, the continuous emergence of drug-resistant
variants reduces therapeutical options. It is noteworthy that the newest second-generation
synthetic peptidomimetic PI Darunavir (DRV) is clinically relatively impotent against
highly DRV-resistant HIV-1 variants [9–13]. Thus, the development of new potent HIV-1
PIs with broad-spectrum antiviral activity against multidrug-resistant virus variants has
attracted much attention.

HIV protease is a homodimeric aspartyl protease with C2 symmetric in the free
form [14], containing 99 amino acids in both of its chains A and B. The active ligand-
binding site organizes different regions of the enzyme. The active site of the protein is
formed by the dimerization of the two monomers and is crowned by two identical flexible
glycine rich flaps. As a member of the aspartic protease family, the protease contains a
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catalytic triad (Asp-Thr-Gly) in both the chains keeping functional aspartate residues at
the dimer interface. Research has demonstrated that the binding characteristics between a
protease inhibitor and the active site of HIV-1 protease are key factors in the development
of resistance [15]. This need sparked the rational design (also referred to as structure-
based design) of novel HIV-1 PIs [16]. One important strategy used to design drugs in
order to combat drug resistance is to maximize the protease active site interactions and to
promote extensive hydrogen bonds between the protease active site backbone atoms and the
inhibitor [17–21]. Hence, we introduced phenols or polyphenols as the P2 ligands, which
might promote hydrogen bonds with the amino groups of residues in the corresponding
S2 subsite [22–25]. Moreover, phenols or polyphenols are important bioactive substances
with broad-spectrum activity against an extensive range of viruses [26]. For instance,
(−)-epigallocatechin-3-gallate (EGCG, Figure 1) can inhibit hepatitis C virus (HCV) entry
by acting on the viral particle, and it is active against HIV-1 by inhibiting the replication of
both reverse transcriptase and p24 [27,28]. Phelligridin D exhibits excellent activity against
influenza virus strains H1N1, H5N1, and H3N2, with IC50 values of 8.8, 10.9, and 10.3 µM,
respectively [29]. Furthermore, gallic acid (GA) and gallates show activity against herpes
simplex virus type 1 (HSV-1) and can inhibit HIV-1 to some degree [30]. Theaflavins (TFs)
from black tea have been confirmed to show activity against calicivirus, HSV-1, influenza
A, HCV, and HIV-1 [31–35]. In addition, 3,4-O-dicaffeoylquinic acid suppresses HBsAg
and HBeAg production and markedly decreases hepatitis B virus (HBV) covalently closed
circular DNA content [36]. Moreover, ellagic acid might be potent against HBV by blocking
HBeAg secretion [37].

Figure 1. Representative chemical structures of phenols or polyphenols with antiviral activity.

Considering the abovementioned observations, phenols or polyphenols might be
conducive to enhancing anti-HIV-1 activity via introduction into the P2 ligand of PIs. More
importantly, the strong hydrogen bonds formed by phenolic hydroxyl with the backbone
amide of residues in the protease might be responsible for antiviral drug resistance. Herein,
we designed and synthesized a series of HIV-1 PIs with phenols in the P2 ligands, isobutyl
in the P1’ ligand, and electron-donating groups in the P2′ ligands as shown in Figure 2.



Int. J. Mol. Sci. 2022, 23, 14178 3 of 15

Figure 2. Structures of newly designed HIV-1 protease inhibitors. The canonical nomenclature for
the inhibitor moiety position is indicated using DRV.

2. Results
2.1. Chemistry

Outlined in Scheme 1 is the synthesis process of the target inhibitors 15a–17i. Amino
alcohol 3 was synthesized from the commercially available materials 1 and 2 according to
the literature [38]. The treatment of 3 with p-substituted benzenesulfonyl chlorides (4–6) un-
der the catalysis of DIEA and DMAP provided sulfonamide derivatives (7–9) in good yields
(82–91%), and this treatment was followed by exposure to trifluoroacetic acid at 0–25 ◦C for
3 h to remove the Boc group, affording the corresponding amines in yields of 78–83% [39,40].
The catalytic hydrogenation of 11 over 10% Pd-C in methanol affected the reduction of the
nitro group to diamine 12 in a 94% yield [41]. The reaction of the amines with phenolic
acids 14a–i in anhydrous DMF in the presence of EDCI/HOBt/DMAP at 0–25 ◦C for 2–3 h
provided the corresponding target compounds 15a–17i in yields of 68–88%. Experimental
details for the synthesis process and the spectroscopic characterization of the compounds
can be found in the Supplementary Material.

Scheme 1. Synthesis process of compounds 15a–15i, 16a–16i, 17a–17f, and 17g–17i. Reagents and
conditions: (i) i-BuNH2, CH3CN, 80 ◦C, 6 h; (ii) aryl sulfonyl chloride, DIEA, DMAP, THF, 0 ◦C to
room temperature, 3–5 h; (iii) CH2Cl2-CF3COOH (1:1), 0 ◦C to room temperature, 3 h; (iv) H2 (gas),
50 psi, 10% Pd/C, CH3OH, room temperature, 2 h; (v) EDCI, HOBt, DMAP, anhydrous DMF, argon,
0 ◦C to room temperature, 3 h.
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2.2. HIV-1 Enzymatic Inhibitory Activity Assay

The fluorescence resonance energy transfer (FRET) method was used to evaluate the
inhibitory activity of the new class of HIV-1 PIs with DRV as a control [42]. The results are
shown in Table 1. Phenols or polyphenol derivatives as the P2 ligands were investigated
in combination with electron-donating substituted phenylsulfonamides as the P2′ ligands.
As can be seen in Table 1, inhibitor 15f with 3,5-dihydroxybenzoyl as the P2 ligand and
4-methoxyphenylsulfonamide as the P2′ ligand exhibited an over 200-fold enhancement of
enzymatic inhibitory activity, with an IC50 value of 2.4 pM, compared with DRV [43,44].
Furthermore, the inhibitors 15d, 17d, and 17f also showed very potent activity at low
picomolar values of 5.9–7.6 pM, which indicates the importance of a hydroxyl group in
the proper position. To explain this in detail, the 3,4-disubstitution or 3,5-disubstitution of
phenolic hydroxyl groups in the P2 ligand favored the inhibitory activity of compounds,
which could form hydrogen bonding interactions or other van der Waals interactions
between the compounds and the enzyme cavity, which can be deduced from the molecular
modeling studies below. In addition, almost all the derivatives displayed inhibitory activity
with IC50 values in a low nanomolar or picomolar range, except for 16g, which had an IC50
value of 68 nM (Figure 3).

Figure 3. Enzymatic inhibitory activity of inhibitors. All assays were conducted in triplicate, and the
data shown represent mean values (±SD) derived from the results of three independent experiments.

As it turned out, inhibitors with 4-methoxy or 4-methylthio phenylsulfonamide groups
as the P2′ ligands exhibited generally improved antiviral activity compared with those with
a 4-aminophenylsulfonamide P2′ ligand and those containing dihydroxy- or trihydroxy-
benzoyl as the P2 ligands, such as 15f and 17f vs. 16f, 15d and 17d vs. 16d, 15e and 17e
vs. 16e, and 15g vs. 16g. Contrary to the results presented above, a substantial reduction
in antiviral activity was observed among the inhibitors with 4-methoxy or 4-methylthio
phenylsulfonamide groups compared with those with 4-aminophenylsulfonamide as the
P2′ ligands and with monohydroxy, methoxyl, or chlorine substituent groups in the P2
ligands, for instance, 15a and 17a vs. 16a, 15b and 17b vs. 16b, 15c and 17c vs. 16c, 15h,
and 17h vs. 16h, and 15i and 17i vs. 16i.

Furthermore, the biological activity decreased significantly when the hydroxyl group
was replaced by chlorine or a methoxyl group in the disubstituted phenyl in the P2 ligand,
such as 15e vs. 15b and 15c. The main reason for this was that the 3-hydroxyl group of
phenolic acid lost the opportunity to form van der Waals interactions with the active site
backbone atoms of the protease, which was also verified in the molecular modeling of
inhibitor 15f in Figure 5 [45]. Additionally, the incorporation of symmetric substituents as
the P2 ligands improved the activity; compare, for example, 15f vs. 15d, 15h vs. 15i, 16f vs.
16d, 16h vs. 16i, 17f vs. 17d, and 17h vs. 17i.
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Table 1. HIV-1 protease inhibitory and antiviral activity, and cytotoxicity of inhibitors 15a−17i.

Comp. R1 R2 IC50 (nM) a CC50 (µM) b

15a OCH3 3.34 ± 0.28 >100

15b OCH3 7.82 ± 0.93 33.86

15c OCH3 4.68 ± 0.74 >100

15d OCH3 0.0059 ± 0.0007 38.22

15e OCH3 0.30 ± 0.08 78.76

15f OCH3 0.0024 ± 0.0004 >100

15g OCH3 1.13 ± 0.23 >100

15h OCH3 0.08 ± 0.03 84.66

15i OCH3 1.41 ± 0.43 >100

16a NH2 0.54 ± 0.11 >100

16b NH2 0.31 ± 0.08 >100

16c NH2 4.14 ± 1.38 >100

16d NH2 1.63 ± 0.33 >100

16e NH2 0.43 ± 0.08 >100

16f NH2 0.27 ± 0.03 >100

16g NH2 68.16 ± 21.35 57.64

16h NH2 0.04 ± 0.003 >100

16i NH2 0.60 ± 0.18 >100

17a SCH3 3.97 ± 0.41 >100

17b SCH3 2.79 ± 0.44 >100

17c SCH3 8.21 ± 1.20 >100

17d SCH3 0.0076 ± 0.0029 >100

17e SCH3 0.40 ± 0.08 >100

17f SCH3 0.0066 ± 0.0021 >100

17h SCH3 0.32 ± 0.03 >100

17i SCH3 4.71 ± 0.18 >100

DRV - - 0.51 ± 0.17 >100
a All assays were conducted in triplicate, and the data shown represent mean values (±SD) derived from the
results of three independent experiments. b All assays were conducted in triplicate.
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However, inhibitors with trihydroxyphenyl in the P2 ligand showed an obvious loss
of enzyme inhibitory activity compared with those with dihydroxyphenyl in the P2 ligand,
for example, 15g vs. 15d and 15f or 16g vs. 16d and 16f. More hydroxyl groups might
negatively affect the efficacy of forming additional hydrogen bonds in the S2 subsite due to
intramolecular hydrogen bonds, steric bulk, or increased hydrophilicity.

2.3. HIV-1 Infectivity Assay

In preliminary studies, we evaluated the effectivity of selected inhibitors in a single-
round infection assay using HIV-1 pseudotyped with vesicular stomatitis virus G protein
(VSVg), in which virus-producing cells were treated as described previously [39,46]. Sur-
prisingly, 15d, 15f, 16a, 16d, 17d, and 17f were equipotent with DRV. Moreover, the majority
of inhibitors showed significant antiviral activity, with inhibition above 90%, except for 15e,
16e, and 16g, as shown in Table 2 and Figure 4, which is in agreement with their excellent
activity against HIV-1 protease in vitro.

Table 2. Effects of inhibitors on late-stage HIV-1.

Compounds Inhibition (%) (10 µM) a Compounds Inhibition (%) (10 µM) a

15a 98 ± 2 16c 90 ± 6
15b 96 ± 3 16d 100
15c 92 ± 5 16e 75 ± 8
15d 100 16f 99 ± 2
15e 75 ± 6 16g 55 ± 6
15f 100 16h 99 ± 3
15g 99 ± 1 17d 100
15h 99 ± 2 17f 100
16a 100 DRV 100
16b 98 ± 2 DMSO 0

a All assays were conducted in quadruplicate.

Figure 4. Effects of inhibitors on late-stage HIV-1. All assays were conducted in triplicate, and the
data shown represent mean values (±SD) derived from the results of three independent experiments.

2.4. Molecular Modeling Studies

These inhibitors with phenols or polyphenols as the P2 ligands were specifically
designed to promote extensive hydrogen bond formation or van der Waals interactions
with the HIV-1 protease active site backbone atoms. Molecular modeling studies were
conducted using the Molecular Operating Environment (MOE) (version 2009.06, Chemical
Computing Group Inc., Montreal, QC, Canada) to verify the concepts and to provide insight
into their ligand-binding site interactions. Inhibitors 15d and 15f, two molecules exhibiting
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the most activity in vitro and in cells among all the tested compounds, were selected for
molecular modeling (Figure 5) [47]. The protease structure (PDB-ID: 4mc9) was taken from
the Protein Data Bank [48].

Figure 5. Molecular modeling of inhibitors 15d and 15f. (A) Ligplot interaction of 15d. (B) Ligplot
interaction of 15f. Ligand exposure is represented as purple spheres, hydrogen bonding is depicted
as blue or green arrows, and π–π interactions are depicted as green lines.
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The new ligand fit well into the S2 site of the protease and showed good van der Waals
interactions with some key amino acid residues. As can be seen, strong hydrogen bonds
formed between the hydroxyl in the P2 ligand of inhibitor 15d and amino acid residues
Val82 and Thr80 in the S2 subsite. Furthermore, one of the sulfonamide oxygens formed
hydrogen bonds with the backbone NH group of Ile50 located in the flaps [49]. In addition,
the methoxy group in the P2′ ligand showed polar interactions with the S2′ subsite of the
protease (Figure 5A).

The P2 polyphenol ligand in inhibitor 15f showed enhanced van der Waals interactions
in the S2 site compared with 15d (Figure 5B). One of the hydroxyls in the P2 ligand formed
strong hydrogen bonds with the amino acid residue Arg8′, and the other hydroxyl showed
polar interactions with the outer atoms of the S2 subsite. In particular, it showed a π–
π interaction between the benzene ring in the P2 ligand and Arg8′ in the S2 subsite.
Furthermore, the hydrogen atom in the amide group formed hydrogen bonds with the
chain atom of Gly48. In addition, one of the sulfonamide oxygens formed hydrogen bonds
with the backbone NH group of Ile50’, and the second oxygen atom showed favorable
van der Waals interactions in the flaps. The methoxy group in the P2′ ligand also formed
hydrophobic contacts with the amino acid residues in the S2′ subsite. The network of
extensive interactions with the HIV-1 protease backbone in inhibitor 15f is of crucial
importance for its ability to combat drug resistance.

2.5. Correlation of Phenol or Polyphenol Analogs

As shown in Figure 6, further validation was carried out by analyzing the structure–
activity relationship (SAR) of docked inhibitors 15f, 16a, 16b, 16f, 17d, 17e, and 17f. The
correlation observed between these two sets of IC50 data (expected vs. calculated, coefficient
of correlation = 0.87) supported the molecular modeling with a common mode of binding
as a valid platform for HIV-1 PI design.

Figure 6. Strong correlation of docked phenol or polyphenol analogs supports a common mode of
binding for HIV protease.

2.6. Binding Assay

To find inhibitors with better affinity and to validate the SAR, we next measured the
binding affinity of the inhibitors with HIV-1 protease using the SPR assay in vitro. Since
the inhibitors 15b, 15d, and 15f exhibit better activity than the other tested molecules, they
were selected for the SPR studies. First, the HIV-1 protease was immobilized on a CM5
chip. Then, compounds flowed across the surface. We found that inhibitors 15b, 15d, and
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15f bound to the protease efficiently, with equilibrium dissociation constant (KD) values
ranging from 5.08 to 13.9 µM in our binding system (Figure 7B). As shown in Figure 7A,
we compared the KDs of 15b, 15d, and 15f binding to the protease with that of DRV, and
we found that the inhibitors exhibited stronger binding affinity.

Figure 7. Kinetic and equilibrium binding analysis of selected inhibitors binding to the protease.
Purified HIV-1 protease was immobilized on a CM5 sensor chip using a Biacore T200 instrument.
The association and dissociation curves of these compounds are shown. Compounds were dissolved
with a series of increasing concentrations, and KD values were acquired from fitting to a 1:1 binding
model using Biacore T200 evaluation software 2.0. KD, equilibrium dissociation constant. All assays
were conducted in triplicate, and the data shown represent one of three independent experiments.

2.7. Antiviral Activity against the DRV-Resistant HIV-1 Variant

In view of the efforts to develop potent PIs with a high genetic barrier against multi-
PI-resistant HIV-1 variants, especially against the DRV-resistant HIV-1 variant, we tested
the inhibitors 15b, 15d, and 15f for activity against DRV-sensitive or -resistant pseudotyped
HIV-1 via a single-round infection assay. Four amino acid substitutions (V32I, L33F, I54M,
and I84V), which conferred high resistance to DRV, were introduced into pNL4-3-E-R-

(pHIV-1NL4-3), resulting in DRV-resistant HIV-1 proviral DNA pHIV-1DRV
R

S [11]. As shown
in Table 3 and Figure 8, the activity of DRV against the highly DRV-resistant HIV-1 variants
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was strongly reduced, with a 76-fold increase in the EC50 value. By contrast, inhibitors
15b, 15d, and 15f maintained potent activity against the DRV-resistant HIV-1 variant
compared with the wild-type virus, with EC50 values increasing 1.3- to 26-fold. However,
in comparison with the superb antiviral activity, the loss of the cellular potency of these
inhibitors might be attributed to increased hydrophobicity according to the calculated
partition coefficient (LogP) values being higher than those of the control DRV, which
indicates that membrane transport was a key factor for cellular activity [50,51].

Table 3. Antiviral activity of 15b, 15d, and 15f against multidrug-resistant HIV-1 variants.

Compounds cLogP a
Mean EC50 (nM, ± SD) b

Fold Resistance c
HIV-1NL4−3 HIVDRV

Rs

15b 6.695 1402 ± 23.00 1843 ± 39.60 1.31
15d 4.303 15.36 ± 2.17 402.4 ± 47.32 26.19
15f 4.372 28.89 ± 9.21 45.53 ± 12.11 1.57

DRV 2.887 1.80 ± 0.73 136.80 ± 1.12 76
a cLogP values were calculated using ChemDraw 14. b All assays were conducted in triplicate, and the data shown
represent mean values (±1 SD) derived from the results of three independent experiments. c Fold resistance is
defined as EC50 (mutant)/EC50 (WT).

Figure 8. Antiviral activity of 15b, 15d, and 15f against multidrug-resistant HIV-1 variants.
(A–D) Dose–response relationship of compounds DRV, 15b, 15d, and 15f against WT HIV-1 and
DRV-resistant mutant. (E) Fold resistance is defined as EC50 (mutant)/EC50 (WT). (F) 293T cells were
treated with these inhibitors as indicated. The CC50 values were measured with the cell counting kit-8.
All assays were conducted in triplicate, and the results shown are the average of three independent
experiments; error bars indicate SD.
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Furthermore, all three compounds (15b, 15d, and 15f) had relatively low toxicity to
293T cells, with CC50 > 20 µM (Table 1 and Figure 8F). The CC50 values of these compounds
were much higher than their EC50 values (Table 2). These results indicate that the inhibition
of HIV-1 and the pseudovirus variants was not due to the cytotoxicity of the tested inhibitors.
The design of prodrugs with enhanced intracellular antiretroviral activity will be our next
research focus.

3. Discussion

We designed a novel series of HIV-1 PIs with phenols or polyphenols in the P2
ligand to promote hydrogen bond formation with backbone atoms of the S2 subsite. A
number of these inhibitors exhibited very potent activity against multidrug-resistant HIV-
1 variants. Notably, inhibitors 15d and 15f containing dihydroxyl in the P2 ligand and
4-methoxyphenylsulfonamide as the P2′ ligand exhibited superb enzymatic inhibitory
activity in the low picomolar range. Furthermore, inhibitor 15f maintained excellent activity
against DRV-resistant HIV-1 variants, with only a 1.5-fold increase in EC50 compared with
that of the wild-type (WT) virus. It should be noted that the phenolic compounds tested in
this work may alter FRET values due to the substrate-dependent quenching effect, falsely
resulting in high potency. The reported FRET values herein were not calibrated with an
inherent quenching control (Table 1), even though the possible quenching effect of primary
hits was assessed later.

The molecular modeling studies revealed that the new P2 phenol/polyphenol ligand
filled the pocket of the S2 subsite and formed significant van der Waals interactions with
the residues. In particular, besides hydrogen bonds, the new approach of promoting π–π
interactions in inhibitor 15f with the backbone residues might be of importance for the
superb activity and potency against highly resistant HIV-1 strains. This kind of P2 scaffold
may serve as an excellent source of inspiration for the further optimization of potent HIV-1
PIs. Furthermore, prodrugs with enhanced cellular potency might be designed, which is
our current research focus.

4. Materials and Methods
4.1. Cells, Viruses, Plasmids, and Reagents

HEK293T cells (ATCC, Manassas, VA, USA) were cultured in DMEM (GBICO, Billings,
MT, USA) supplemented with 10% fetal bovine serum (FBS) (GBICO). SupT1 cells (ATCC)
were maintained in RPMI-1640 (GBICO) containing 10% FBS. VSV-G-pseudotyped HIV-1
pNL4-3Luc(R-E-) was described previously [52]. The substrate peptide (Arg-Glu (EDANS)-
Ser-Gln-Asn-Tyr-Pro -Ile-Val-Gln-Lys(DABCYL)-Arg) of HIV-1 protease was purchased
from AnaSpec (Fremont, CA, USA). CCK8 Assay Kit was purchased from Beyotime (Nan-
tong, China).

4.2. In Vitro Assay for HIV-1 Protease Inhibition

HIV-1 protease was cloned, heterologously expressed in Escherichia coli, and purified
as described previously [53]. The HIV-1 PI activities of compounds were measured using
FRET as described previously [42]. Compounds were dissolved in DMSO and diluted to
appropriate concentrations. Protease and compounds were mixed in reaction buffer (0.1 M
sodium acetate, 1 M sodium chloride, 1 mM ethylenediaminetetraacetic acid (EDTA), 1 mM
dithiothreitol (DTT), 2% DMSO, and 1 mg/mL bovine serum albumin (BSA), at pH 4.7) in a
96-well plate and incubated for 20–30 min at room temperature, and then the substrate was
added. Each reaction was recorded for about 10 min. Fluorescence readings were measured
using Enspire (Perkin Elmer, Waltham, MA, USA) at excitation wavelength (λex) at 340 nm
and emission wavelength (λem) at 490 nm.

4.3. Cytotoxicity Assay

The cytotoxicity of compounds was measured using the CCK8 Assay Kit [46]. HEK293T
cells were treated with compounds at various concentrations. DMSO-treated cells were
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used as the control. Twenty-four hours post-treatment, the samples were subjected to the
CCK8 Assay Kit following the manufacturer manual. The samples were analyzed at OD
450 using an EnVision multilabel reader (PerkinElmer, Waltham, MA, USA).

4.4. HIV-1 Infectivity Assay

HIV-1 infectivity assay was determined using a single-round HIV-1 infectivity as-
say [39,46]. HEK293T cells were co-transfected with either plasmid pNL4-3-E-R- (pHIV-
1NL4-3) or DRV-resistant pNL4-3-E-R- variants (pHIV-1DRV

R
S) and pHCMV-G (VSV-G) to

produce VSV-G-pseudotyped HIV-1. Compounds dissolved in DMSO and diluted to ap-
propriate concentrations were added to culture medium at 5 h post-transfection. After
incubation for 48 h at 37 ◦C, 10 µL supernatant was used to infect SupT1 cells. Forty-eight
hours later, SupT1 cells were lysed, and firefly luciferase activities were determined using a
firefly Luciferase Assay System (Promega, Madison, WI, USA).

4.5. Construction of DRV-Resistant pNL4-3-E-R- Cloning (pHIV-1DRV
R

S)

To generate HIV-1 clones carrying the intended mutations, a site-directed mutagenesis
kit (SBS Genetech) was used. V32I, L33F, I54M, and I84V mutations in the protease were
introduced into pNL4-3-E-R- according to the manufacturer’s instructions [11]. The primers
used for mutations were 32/33 (F: 5′-ACAGGAGCAGATGATACAATATTTGAAGAAATGA
ATTTGCCA-3′, R: 5′-TGGCAAATTCATTTCTTCAAATATTGTATCATCTGCTCCTGT-3′),
54 (F: 5′-GGGAATTGGAGGTTTTATGAAAGTAAGACAGTATGAT-3′, R: 5′-ATCATACTGT
CTTACTTTCATAAAACCTCCAATTCCC-3′), and 84 (F: 5′-GGACCTACACCTGTCAACGT
AATTGGAAGAAATCTGT-3′, R: 5′-ATCATACTGTCTTACTTTCATAAAACCTCCAATTCC
C-3′). The plasmids were sequenced by BBI Life Sciences Corporation. All desired muta-
tions, but no unintended mutations, were found.

4.6. Molecular Modeling

The docking was performed through the “DOCK” module in the MOE using the alpha
triangle placement method. Refinement of the docked poses was carried out using the
Forcefield refinement scheme and scored using both the affinity dG and the London dG
scoring system [43]. The HIV-1 protease crystal structure (PDB-ID: 4mc9) was obtained
from the Protein Data Bank [46].

4.7. Binding Assay by SPR

Compound solutions with a series of increasing concentrations (0–50 µM at 2-fold
dilution) were applied to all four channels at a flow rate of 30 µL/min. Purified HIV-1
protease was immobilized on a CM5 sensor chip using standard amine coupling with
running buffer HBS-EP+ (10.5 mM HEPES, 157.5 mM NaCl, 3.15 mM EDTA, 0.0525%
surfactant P-20, pH 7.4) using a Biacore T200 instrument. HIV-1 protease was immobilized
to flow channel 2, and the immobilization level of flow channel 2 was ~3800 RU. The
resulting data were fit to a 1:1 binding model using Biacore T200 evaluation software 2.0.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
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