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Abstract: The phytochemical constituents of Calligonum tetrapterum Jaub. & Spach (Family Polygo-
naceae) were studied for the first time. The study resulted in the isolation of the rare flavonol glycoside,
kaempferol 3-O-(6′′-O-acetyl)-glucoside,(K3G-A). The potential inhibitive activity of K3G-A toward
SARS-CoV-2 was investigated utilizing several in silico approaches. First, molecular fingerprints and
structural similarity experiments were carried out for K3G-A against nine co-crystallized ligands
of nine proteins of SARS-CoV-2 to reveal if there is a structural similarity with any of them. The
conducted studies showed the high similarity of K3G-A and remdesivir, the co-crystallized ligand of
SARS-CoV-2 RNA-dependent RNA polymerase (PDB ID: 7BV2), RdRp. To validate these findings,
a DFT study was conducted and confirmed the proposed similarity on the electronic and orbital
levels. The binding of K3G-A against RdRp was confirmed through molecular docking studies
exhibiting a binding energy of −27.43 kcal/mol, which was higher than that of remdesivir. Moreover,
the RdRp-K3G-A complex was subjected to several MD studies at 100 ns that authenticated the
accurate mode of binding and the correct dynamic behavior. Finally, in silico ADMET and toxicity
evaluation of K3G-A was conducted and denoted the safety and the drug-likeness of K3G-A. In
addition to K3G-A, two other metabolites were isolated and identified to be kaempferol (K) and
β-sitosterol (β-S).

Keywords: Calligonum tetrapterum; SARS-CoV-2 RNA-dependent RNA polymerase; structural
similarity; DFT; molecular docking; ADMET; MD simulations
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1. Introduction

Since the first historical records, natural products have provided humans with their
principal needs in terms of food, treatment, or even cosmetics [1,2]. The phytochemical
and biological properties of various plants in Kazakhstan, such as Pulicaria vulgaris [3,4],
Ferula spp. [5,6], and Cousinia alata [7,8], have been previously studied. In addition, the
essential oils of various plants have been investigated [9,10]. In continuation of this work,
this study outlines the composition of Calligonum tetrapterum Jaub. & Spach. (Family
Polygonaceae). Calligonum tetrapterum grows from Middle Asia to the Arabian Peninsula.
In Kazakhstan, this species is found in Turgai, Aral region, Northern and Southern Balkhash,
and Kyzyl-Kum desert [11].

Calligonum tetrapterum Jaub. & Spach (Family Polygonaceae) is a shrub up to 1–2 m tall,
with dark-grey bark, without leaves. There are five perianth lobes, which are positioned
downwards on the fruits. The fruit is a dry nut, with film edges; ovoid, 14–17 mm long,
and 12–15 mm wide [12]. It is worth mentioning that this is the first phytochemical study
of Calligonum tetrapterum.

The computational (in silico) chemistry approach is an effective tool in virtual biolog-
ical screening and has been widely employed in the processes of drug design and drug
discovery. This technique has been utilized to assess the biological activities of natural
products, synthesized compounds, and semi-synthesized molecules. Advanced software
has enabled scientists to utilize the principles of the structure–activity relationship as a tool
to accurately predict the bioactivity of new and rare molecules depending on their chemical
and physical properties. Several recent applications of computational chemistry have
contributed to a better understanding of the nature of SARS-CoV-2 [13–16] and suggested
various compounds as potential inhibitors [17–19].

Computer-based chemistry strategies have been employed to disclose the poten-
tial inhibitive effects of several secondary metabolites against SARS-CoV-2. The exam-
ined metabolites were isolated from Asteriscus hierochunticus [20], Monanchora sp. [21],
Artemisia sublessingiana [22], Artemisia commutata [23], Artemisia glauca [24], Chondrilla
brevirostris [25], and Artemisia spp. [26], in addition to 69 isoflavonoids [27]. The con-
sumption of food and dietary supplements that are rich in phenolic content was found to
be effective in the prevention of SARS-CoV-2 infection [28]. Moreover, flavonoids have
exhibited promising activities against SARS-CoV-2 Mpro [29], viral replication [30], and
infection severity [31], in addition to various other targets in SARS-CoV-2 [32].

Plants that belong to the genus Calligonum have exhibited cytotoxic [33], anti-
inflammatory [34], antifungal [35], and antioxidant [36] activities.

This study isolated the rare flavonoid acetylated glucoside, K3G-A, from the aerial
parts of Calligonum tetrapterum. Because K3G-A is a rare metabolite, its potential effect as
a treatment for COVID-19 was examined. In addition, ADMET and toxicity descriptors
of K3G-A were investigated to examine the drug likeness. Finally, several MD simu-
lation studies were conducted and confirmed the predicted binding of K3G-A against
RdRp. In addition to K3G-A, for the first time, two compounds were identified from
Calligonum tetrapterum to be kaempferol (K) and β-sitosterol (β-S).

2. Results and Discussion
2.1. Isolation and Characterization

The aerial parts of Calligonum tetrapterum were collected from Sarkand, Almaty region,
Kazakhstan during the fruiting phase. The specimen was identified by Ishmuratova
M.Yu. An herbarium sample was located in the herbarium fund of Zhezkazgan botanical
garden (N2007.09.12.03.01). Fine raw material of C. tetrapterum (1.1 kg) was extracted
three times with 70% ethanol by keeping it for 3 days at room temperature. The filtrates
were evaporated on a rotary evaporator, and the resulting extract was subjected to several
chromatographic isolation techniques. Firstly, chromatographic separation on silica gel
was carried out using heptane-ethyl acetate by raising polarity to yield 62 fractions of
350 mL. Using TLC, similar fractions were collected together. During the elution with a
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concentration of heptane-ethyl acetate (1:100) solvent system, a white solid was isolated
and monitored as a single spot on the TLC. The isolated compound was further purified by
Sephadex LH-20 to yield 70 mg of a white amorphous solid with a melting point (m.p.) of
271–275 ◦C. In accordance with the spectral data, the structure of the kaempferol acetylated
glycoside was proposed (Figure 1). Spectral data are presented in Table 1.
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of the OH at C-5 appeared clearly as a sharp singlet signal at δ12.56 because of the incor-
poration in intramolecular hydrogen bonding with the carbonyl of C-4. The presence of 
the glucose unit and acetate moiety was also clear according to their characteristic signals. 
The unity of the isolated compound was confirmed through the essential HMBC correla-
tion (Figure 2) between the C-3 in the kaempferol and the anomeric proton of the glucose 
sugar, in addition to the vital HMBC correlation between the oxygenated methylene of 
glucose and the carbonyl of the acetate moiety. Finally, the spectral data were compared 
to the published data [37] and the isolated compound was identified to be kaempferol 3-
O-(6″-O-acetyl)-glucoside. 

Figure 1. The isolated compounds.

Table 1. 1H and 13C spectral data of K3G-A (DMSO).

Position δ1H (J = Hz) δ13C Position δ1H (J = Hz) δ13C

2 - 156.4 1′′ 5.34 d (7.3) 101.2
3 - 133.12 2′′ 3.20 74.1
4 - 177.4 3′′ 3.24 76.2
5 - 161.2 4′′ 3.13 t 69.8
6 6.21 d (1.8) 98.7 5′′ 3.30 73.9
7 - 164.3 6′′ a 4.09 d

62.88 6.45 d (1.8) 93.7 6′′ b 3.94 dd
9 - 156.6 7′′ - 169.8

10 - 103.9 8′′ 1.73 s 20.2
1′ - 120.8 5-OH 12.56 s -

2′, 6′ 8.00 d (8.08) 130.9
3′, 5′ 6.87 d (8.08) 115.1

4′ - 160.0
5′ 6.87 d (8.08) 115.1
6′ 8.00 d (8.08) 130.9

The structure of K3G-A was identified by 1H, 13C NMR (Table 1), and 2D NMR
stereoscopy (Figure 2) The 1H and 13C spectral data (Table 1) indicated the presence of
the kaempferol flavonoid through the identification of 15 carbon signals containing the
characteristic di para-substituted benzene ring (AA′-BB′ pattern) for (C-2′, C-6′, C-3′, C-5′),
the conjugated upfield ester carbonyl of C-2. The 1H confirmed the characteristic di para-
substituted benzene ring and declared the meta conjugated protons of C-6 and C-8. The
1H of the OH at C-5 appeared clearly as a sharp singlet signal at δ12.56 because of the
incorporation in intramolecular hydrogen bonding with the carbonyl of C-4. The presence
of the glucose unit and acetate moiety was also clear according to their characteristic signals.
The unity of the isolated compound was confirmed through the essential HMBC correlation
(Figure 2) between the C-3 in the kaempferol and the anomeric proton of the glucose
sugar, in addition to the vital HMBC correlation between the oxygenated methylene of
glucose and the carbonyl of the acetate moiety. Finally, the spectral data were compared
to the published data [37] and the isolated compound was identified to be kaempferol
3-O-(6′′-O-acetyl)-glucoside.
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Figure 2. Main HMBC relations of K3G-A.

Compound K was isolated with a solvent mixture of heptane-ethyl acetate (1:7). Its
structure was determined by 1H and 13C NMR spectroscopy. Compound K was obtained
as yellow crystals with an m.p. of 277–278 ◦C. Its molecular formula, C15H10O6, was
confirmed by mass spectroscopy, which indicated the peak ion [M+H]− m/z 287.

According to the 1H and 13C NMR data obtained, compound K was identified as
kaempferol, which was previously isolated from some species of the Artemisia family and
other plant species [38].

During the elution with a heptane-ethyl acetate (7:3) system, a compound was isolated,
which, according to mass spectral data, was identified by 1H NMR as beta-sitosterol [39]
(Figure 1). It is worth mentioning that compounds were reported for the first time from
Calligonum tetrapterum.

2.2. Molecular Similarity

The co-crystallized ligand is a chemical compound that shows a great affinity to
bind with a specific protein and crystallize [40]. According to the structure–activity re-
lationship principles, if there is a compound that has a similar chemical structure to the
ligand, it is expected to bind with that protein and inhibit its function [41]. Against this
background, the chemical structure of K3G-A was compared with the structures of nine co-
crystallized ligands of nine proteins of SARS-CoV-2 (Figure 3). The presented work aimed
to examine the existence of a structural similarity that may be linked to a high degree of
binding affinity.

Discovery Studio software was applied to examine the subsequent molecular and
structural features in K3G-A and the considered ligands. First, assessments were made of
the partition coefficient, ALog p, which is the ratio of the concentration of the considered
compound in the aqueous phase to its concentration in the organic phase [42], exact
molecular weight (M. WT) [43], hydrogen bond acceptors (HB-A) [44], Hbond donors
(HB-D) [45], rotatable bonds (R-B) [46], count of rings (R) and aromatic rings (A-R) [47],
and molecular fractional polar surface area (MFPSA) [48]. The results indicated the high
similarity level between K3G-A and remdesivir, F86, the co-crystallized ligand of RdRp
(PDB ID: 7BV2). As shown in Figure 4, K3G-A (green sphere) appears close to remdesivir
(red sphere), indicating the high similarity in the examined properties.
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Table 2 demonstrates the values of the examined structural features in both K3G-A
and remdesivir, showing a good minimum distance of 0.8.

Table 2. Structural properties of K3G-A and remdesivir, F86.

Compound M. WT HB-A HB-D R-B R A-R MFPSA Minimum
Distance

Remdesivir 371.243 11 5 4 3 2 0.612 0.811009

K3G-A 490.414 12 6 6 4 2 0.429 -

2.3. DFT Studies

The DFT parameters were studied for K3G-A and remdesivir using Discovery Studio
to investigate the similarity degree between the two molecules in terms of the levels of
molecular orbitals and molecular electrostatic potential maps (MEPs) [49,50]. The similarity
in the orbital and EPM levels indicates the resemblance in the activity of interaction against
the same target.

2.3.1. Molecular Orbital Analysis

K3G-A presented a total energy value of −1777.8125, which is higher than that of
remdesivir (−1595.3914 kcal/mol). This indicates a higher reactivity of K3G-A against the
prospective biological target (SARS-CoV-RNA-dependent RNA polymerase) (Figure 5).
K3G-A demonstrated a dipole moment value of 2.0613, which is also higher than that of
remdesivir (0.8313). It is likely that, as shown in Table 3, the gap energy of the K3G-A
(0.0707 kcal/mol) was higher than that of remdesivir (0.0454 kcal/mol), indicating the
higher stability of K3G-A.

Plants 2022, 11, x FOR PEER REVIEW 7 of 17 
 

 

HOMO LUMO 

  

 
  

Figure 5. Spatial distribution remdesivir (A) and K3G-A (B). 

2.3.2. Molecular Electrostatic Potential Maps (MEPs) 
MEPs present the electrostatic potential of the considered molecule in a 3D form de-

pending on the partial charges, the electronegativity, and the chemical reactivity [51]. 
MEPs can be utilized to assess the binding and interaction of a compound to a specific 
protein [52]. In MEPs, the electronegative atoms, which are expected to be H-bond accep-
tors, are stained red, whereas atoms of poor electrons, which are expected to be H-bond 
donors, are stained blue. Finally, neutral atoms, which are expected to form hydrophobic 
interactions, are stained green to yellow [53]. 

The MEPs of K3G-A and remdesivir are illustrated in Figure 6A,B, respectively. In-
vestigating these figures indicates that remdesivir has ten red-colored patches and seven 
blue-colored patches. In addition, there is a yellow-colored patch on the aromatic moiety, 
indicating a high possibility of hydrophobic interaction. For kaempferol 3-O-(6″-O-ace-
tyl)-glucoside, ten red-colored patches and six blue-colored patches can be observed. Fur-
thermore, there is a yellow-colored patch on K3G-A moiety, indicating a high possibility 
of hydrophobic interaction. These findings indicate the high similarity of the electronic 
structure of K3G-A and remdesivir. In addition, it suggests the high possibility of K3G-A 
interacting with the target receptor. 

  

Figure 5. Spatial distribution remdesivir (A) and K3G-A (B).

Table 3. Molecular orbital spatial distribution of remdesivir and K3G-A.

Total
Energy a

Binding
Energy a

HOMO
Energy a

LUMO
Energy a

Dipole
Mag

Band Gap
Energy a

Remdesivir −1595.39 −6.7804 −0.2001 −0.1547 0.8313 0.0454
K3G-A −1777.81 −11.4455 −0.1548 −0.0841 2.0613 0.0707

a Unite = Ha.
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2.3.2. Molecular Electrostatic Potential Maps (MEPs)

MEPs present the electrostatic potential of the considered molecule in a 3D form de-
pending on the partial charges, the electronegativity, and the chemical reactivity [51]. MEPs
can be utilized to assess the binding and interaction of a compound to a specific protein [52].
In MEPs, the electronegative atoms, which are expected to be H-bond acceptors, are stained
red, whereas atoms of poor electrons, which are expected to be H-bond donors, are stained
blue. Finally, neutral atoms, which are expected to form hydrophobic interactions, are
stained green to yellow [53].

The MEPs of K3G-A and remdesivir are illustrated in Figure 6A,B, respectively.
Investigating these figures indicates that remdesivir has ten red-colored patches and
seven blue-colored patches. In addition, there is a yellow-colored patch on the aro-
matic moiety, indicating a high possibility of hydrophobic interaction. For kaempferol
3-O-(6′′-O-acetyl)-glucoside, ten red-colored patches and six blue-colored patches can be
observed. Furthermore, there is a yellow-colored patch on K3G-A moiety, indicating a high
possibility of hydrophobic interaction. These findings indicate the high similarity of the
electronic structure of K3G-A and remdesivir. In addition, it suggests the high possibility
of K3G-A interacting with the target receptor.
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2.4. Docking Studies

The presented results indicate a great degree of similarity between K3G-A and remde-
sivir, the ligand of RdRp (PDB ID: 7BV2). According to these outputs, K3G-A is expected
to bind correctly to RdRp (PDB ID: 7BV2). To examine this claim, docking studies were
conducted, in which the crystal structure of RdRp (PDB ID: 7BV2) was utilized. Remdesivir
was used as a reference. The free energy of binding (∆G) on a site with the binding mode
against RdRp was considered the main factor distinguishing between the docked poses.

Confirmation of the docking analysis was tested by carrying out the docking for
remdesivir only in the active pocket of RdRp. The produced RMSD value between the
docked pose and the apo ligand was 0.92 ◦A. This low RMSD value indicates the accuracy
of the utilized docking protocol (Figure S1).

Remdesivir demonstrated a binding energy value of −23.57 Kcal/mol against the
active site of RdRp. It showed five H-bonds, six hydrophobic interactions, and two electro-
static interactions. In detail, the heteroaromatic system (4-aminopyrrolo[2,1-f][1,2,4]triazin)
formed two H-bonds with Urd10. Furthermore, it formed six hydrophobic interactions
with Urd20, Ade11, and Ser682. Moreover, the aromatic system formed an electrostatic
attraction with Arg555.

The sugar moiety was incorporated in two H-bonds with Asp623 and Ser759. The
phosphate derivative moiety exhibited an H-bond Arg555, and two electrostatic interactions
with Asp760 and Arg555 (Figure S2).

K3G-A showed a binding free energy of −27.43 kcal/mol, which was higher than
that of remdesivir. It exhibited six H-bonds, and three hydrophobic and two electrostatic
interactions. In detail, the 5,7-dihydroxy-4H-chromen-4-one moiety was consolidated in
two H-bonds with Urd20. Furthermore, two hydrophobic interactions with Urd20 and an
electrostatic interaction with Arg555 were formed. The 4-hydroxyphenyl at the 2-position
of chromene moiety was consolidated in two hydrophobic interactions with Ade11 and
Val557, and an H-bond with Ser682 and an electrostatic interaction with Thr687. The
acylated sugar moiety was incorporated in three H-bonds with Asp623, Arg555, and Urd20
(Figure 7).
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2.5. In Silico ADMET Analysis

The in silico ADMET was computed for K3G-A to investigate its likeness to be used as
a drug compared to remdesivir. The experiment was conducted using Discovery Studio
software. The outputted data (Table 4 and Figure 8) indicate the general likeness of K3G-A
to be administrated as a drug, having great similarity to remdesivir in the five examined



Plants 2022, 11, 2072 10 of 16

parameters. The obtained results outline the expected safety of K3G-A in comparison to
remdesivir regarding the CNS and liver toxicity.

Table 4. Predicted ADMET for K3G-A and remdesivir.

Compound BBB Level Sol. Level Abs. Level CYP2D6
Inhibition PPB Binding

Remdesivir V. low Low V. poor Not inhibitor lower than 90%,

K3G-A V. low Low V. poor Not inhibitor lower than 90%,
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2.6. In Silico Toxicity Studies

The expected toxicity of K3G-A against seven toxicity models was computed in Dis-
covery Studio. The outputs are listed in Table 5 and indicate the general safety of K3G-A,
which exhibited very safe results compared to remdesivir in the applied acute and chronic
models. Consequently, few possible side effects are expected.

Table 5. Toxicity properties for K3G-A and remdesivir.

Comp.

FDA Rat
Carcinogenic

Potential
(Female Mice)

Carcinogenic
Potential TD50

(in Rats) a

Maximum
Tolerated Dose

(in Rats) b

Oral LD50
b

(in Rats)

Chronic
LOAEL b

(in Rats)

Ocular
Irritation

Skin
Irritation

Remdesivir Not carcinogen 1.012 0.235 0.309 0.004 Mild Mild

K3G-A Not carcinogen 0.544 0.718 1.041 0.080 Moderate None
a Unit: mg/kg /day b Unit: g/kg.

2.7. MD Simulations Studies

The main advantage of molecular dynamics (MD) simulation studies is the capability
to compute the flexibility of any protein–compound complex. Thus, MD can accurately
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determine both thermodynamics and kinetics variations that occur through the protein–
compound binding (52). To validate the binding and explore the thermodynamic properties
of K3G-A against RdRp, MD simulations were conducted.

The dynamic variations in atoms and conformational modifications of backbone atoms
of the RdRp-K3G-A complex were calculated by RMSD to examine their stability after
bonding. Although the complex fluctuated until 40 ns~, it stabilized later, at the end of the
study (Figure 9A). The flexibility of each residue of the considered complex was predicted
in terms of RMSF to explore the region of the RdRp that fluctuated through the simulations.
The obtained results (Figure 9B) indicate that the binding of K3G-A makes the RdRp-
slightly flexible in 840–860 residue areas. The compactness of the RdRp-K3G-A complex
was predicted by the examination of the radius of gyration (Rg). The Rg of the RdRp-K3G-A
complex (Figure 9C) exhibited lower values than those at the starting time, which indicates
the great stability of the complex. The interaction between the RdRp-K3G-A complex and
the encompassing solvents was computed by the solvent accessible surface area (SASA)
over the simulation period. SASA indicates the extent of the conformational changes that
appeared during the bonding. Fortunately, the RdRp-K3G-A complex featured a decrease
in the surface area, which was indicated by lower SASA values than those at the starting
time of the study (Figure 9D). Hydrogen bonding among the RdRp-K3G-A complex was
examined. As shown in Figure 9E, the highest number of conformations of RdRp- formed
up to four H-bonds with kaempferol 3-O-(6′′-O-acetyl)-glucoside.
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3. Experimental
3.1. Isolation of Compounds

A total of 1.1 kg of Calligonum tetrapterum areal parts was collected and extracted.
Successive several chromatographic techniques led to the isolation and identification of
three compounds. Details are reported in the Supplementary Materials.

Kaempferol 3-O-(6′′-O-acetyl)-glucoside K3G-A;
White amorphous crystals with m.p. 271-275 ◦C; UV max (ACN-H2O) 263,

295 (shoulder) and 350 nm; 1H and 13C NMR (DMSO-d6) (see Table 1). More details
are reported in the Supplementary Materials.

Kaempferol, K:
Isolated by elution with a heptane-ethyl acetate system (1:7); Yellow crystals, m.p.

277–278 ◦C (lit. 272–275 ◦C); Mass spectra: [M+H]− c m/z 287. UV max (ACN-H2O) 270,
294 (shoulder) and 360 nm;

β-Sitosterol β-S:
Isolated by elution with a heptane-ethyl acetate system (7:3). White crystals, m.p.

140–145 ◦C; Mass spectra: [M+H]− c m/z 415

3.2. Molecular Similarity

Molecular similarity of K3G-A against nine co-crystallized ligands of SARS-CoV-2
proteins was determined by Discovery Studio 4.0 [54,55] (see Supplementary Materials).

3.3. DFT

The DFT parameters were computed for K3G-A and remdesivir using Discovery
Studio 4.0 software [56] (see Supplementary Materials).

3.4. Docking Studies

A docking investigation was conducted for K3G-A and remdesivir using MOE-2014
software. The outputs of the docking were visualized by Discovery Studio 4.0 software [57–59]
(see Supplementary Materials).

3.5. ADMET

ADMET descriptors of K3G-A were estimated using Discovery Studio 4.0. [60,61] (see
Supplementary Materials).

3.6. Toxicity Studies

Seven toxicity parameters of K3G-A and remdesivir were estimated using Discovery
Studio 4.0 [62–64] (see Supplementary Materials).

3.7. Molecular Dynamics Simulations

The K3G-A-RdRp complex was prepared by the web-based CHARMM-GUI [65–67]
interface employing the CHARMM36 force field [68] and NAMD 2.13 [69] package. The
TIP3P explicit solvation model was utilized (see Supplementary Materials).

4. Conclusions

The rare flavonol glycoside, kaempferol 3-O-(6′′-O-acetyl)-glucoside, K3G-A, was
isolated from the aerial parts of Calligonum tetrapterum for the first time. K3G-A exhibited
promising in silico inhibitory potential of K3G-A against SARS-CoV-2 RdRp. The molecular
fingerprints and structural similarity studies indicated the great similarity of K3G-A and
remdesivir, the co-crystallized ligand of RdRp (PDB ID: 7BV2). A DFT study confirmed
that similarity at the electronic and orbital levels. The binding of K3G-A against RdRp
was confirmed by molecular docking studies, in addition to several MD studies at 100 ns.
Additionally, in silico ADMET and toxicity revealed the safety and the drug-likeness of
K3G-A. In addition to K3G-A, two other metabolites were isolated from the same plant and
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identified to be kaempferol 2 and β-sitosterol 3. The obtained data represent encouraging
primary results that may be very helpful in the fight against COVID-19.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/plants11152072/s1. Figure S1. Superimposition of the co-crystallized
and the docked pose of remdesivir, Figure S2. (A) 3D (B) 2D and (C) Surface mapping of remde-
sivir docked into the active site of RdRp 1D and 2D spectral data of K3G-A, methodology, and
toxicity report.
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