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Massive expansion of the pig gut virome
based on global metagenomic mining

Check for updates

Jiandui Mi 1 , Xiaoping Jing 2, Chouxian Ma3, Yiwen Yang 4, Yong Li4, Yu Zhang5,
Ruijun Long 2 & Haixue Zheng6

The pig gut virome plays a vital role in the gutmicrobial ecosystem of pigs. However, a comprehensive
understanding of their diversity and a reference database for the virome are currently lacking. To
address this gap,weestablished aPigViromeDatabase (PVD) that comprisedof 5,566,804 viral contig
sequences from 4650 publicly available gut metagenomic samples using a pipeline designated
“metav”. By clustering sequences, we identified 48,299 viral operational taxonomic units (vOTUs)
genomes of at least medium quality, of which 92.83% of which were not found in existing major
databases. The majority of vOTUs were identified as Caudoviricetes (72.21%). The PVD database
contained a total of 2,362,631 protein-coding genes across the above medium-quality vOTUs
genomes that can be used to explore the functional potential of the pig gut virome. These findings
highlight the extensive diversity of viruses in the pig gut and provide a pivotal reference dataset for
forthcoming research concerning the pig gut virome.

The gutmicrobiota is a complexmicrobial ecosystem that plays crucial roles
in pig health, nutrient metabolism, and productivity1–4. Pig intestinal virus
infections are prevalent in the global pig industry, but the many diverse
viruses that inhabit the pig gut can greatly affect the structure and function
of the gutmicrobial ecosystem5. Controlling the occurrence of these diseases
solely through vaccines or medication is difficult. Thus, understanding the
pig gut virome is essential for improving pig health and enhancing pro-
duction efficiency. However, despite their ubiquity, knowledge of the
diversity of the virome in the pig gut ecosystem is limited, andmost virome
genomes fail to be found in existing genome databases. Furthermore, most
virome databases are established based on human gut metagenomic
samples6–8, and there is a lack of a specialized virus database for pigs9.
Therefore, a comprehensive database of the virome from the pig gut
microbiota is a prerequisite for characterizing virus diversity, understanding
host‒virus interactions, and resolving the functions of viral genomes.

Currently, there is a wealth of metagenomic data available that offers a
unique opportunity to discover viral genomes10. Despite being generated
through untargeted methods without virus particle enrichment, these
datasets still contain a significant number of viral genomes. Several data-
bases, such as GOV211, IMG/VR412, GVD7, MGV8, GPD6, and RVD13, have
been established to facilitate the analysis of viromes from various

environments using metagenomic data. Since the establishment of these
databases, the number of publicly available pig gut microbiota datasets has
rapidly increased9,14–21.

To make use of the existing resources and provide a comprehensive,
global view of the pig gut virome, we developed a comprehensive metav
analysis pipeline to examine 4650 metagenomic samples. We optimized
several software tools to improve processing speed and end-to-end output.
The Pig Virome Database (PVD) of the gut was established, containing
5,566,804 viral contig sequences estimated to be >50% complete, repre-
senting48,299 vOTUgenomes.Our analysis revealed adiverse and complex
pig gut virome,with ahighnumber of unique vOTUs (92.83%) compared to
other databases.Moreover, we identified several potential novel viral species
in the pig gut. These findings enhance our understanding of the pig gut
virome, and provide insights into the complexity of gut ecosystems,
emphasizing the importance of further research in this field.

Results
The DNA viruses from the pig gut microbiome
In this study, our objective was to create a comprehensive pig virome
database (PVD) of the gut utilizing next-generation sequencing of meta-
genomic samples and the development of metav, a virus detection pipeline
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that integrates established methods and signatures such as VirSorter2 and
DeepVirFinder for viral sequence identification22,23. Our findings indicated
that the choice of assembler, specifically Megahit versus metaSPAdes24,25,
had a minimal effect on the recovery of viruses, which was consistent with
prior research8. We used the Megahit assembler and selected -k-list 39, 59,
and 79 after testing different Kmer lists based on computational efficiency.
We applied metav to 4650 fecal and gut content samples from various
regions worldwide, including the USA, China, Europe, and Australia, and
identified 19,577,760 unique, single-contig viral genomes exceeding 1.5 kb
in length, which allowed us to comprehensively capture DNA viruses in the
pig gut (Fig. 1a and Supplementary Fig. 1). By clustering viral contigs using
95% ANI and 85% AF, we identified 3,219,423 viral operational taxonomic
units (vOTUs) at the species level (Fig. 1a). In addition, we evaluated vOTU
genome quality using CheckV and found 48,299 vOTU genomes (corre-
sponding to 5,566,804 viral contig sequences) that were at least 50%
complete26, including 12,515 complete vOTU genomes (corresponding to
2,099,394 viral contig sequences) (Fig. 1b, c, Supplementary Table 1, and
Supplementary Fig. 2). Notably, although only 1.50% of the total vOTU
genomesweremore than50%complete, theycorresponded to28.43%of the
contig sequences with >50% completeness of the total contig genomes
(Fig. 1c). Moreover, the size of most vOTU genomes with completeness
exceeding 50% was greater than 10 kb, indicating their potential to provide
more reliable results8,27.

Newly established and expanded pig gut viral diversity
To ensure comparability and consistency with established quality
standards for genomic comparisons28,29, we focused on 48,299 vOTU
genomes whose completeness exceeded 50%.We used CheckV on the

IMG/VR4, MGV, GVD, and GPD datasets to remove low-quality
sequences, retaining vOTU genome fragments with more than 50%
completeness. Following previous studies (Camarillo-Guerrero
et al. 6; Nayfach et al.)6,8, we combined all vOTU genomes >50% from
these four datasets with those from the PVD database and clustered
them at the species level using a query coverage of 0.9 and an identity
of 0.7. Our results showed that the PVD database significantly
enhanced the diversity of viral genomes from pig gut microbiota
metagenomic samples. Of the 47,650 species-level vOTUs in the PVD
database, 34,952 (92.83%) did not cluster with any vOTU genomes
from the other datasets (Fig. 2). The generalist IMG/VR4 database
contains many more viruses because it does not contain exclusively
mammalian gut samples. Of the 1,504,202 vOTU genomes from the
IMG/VR4, 1,455,627 (96.77%) were unique compared to those from
other databases (Fig. 2). However, the human gut metagenome
samples used to construct the GVD, MGV, and GPD databases
represented a greater proportion of viral genomes in the IMG/VR4
database than pig gut viruses. Specifically, GVD, MGV, and GPD had
4712 (58.79%), 43,464 (95.19%), and 25,377 (53.56%) sequences from
human gut metagenomes, respectively, while GPD, GVD, and MGV
had 20,695 (43.68%), 3247 (40.51%), and 1910 (4.39%) unique
sequences compared to the other databases, respectively (Fig. 2). Our
findings highlighted the importance of using comprehensive and
high-quality databases to improve our understanding of viral diver-
sity in different environments. The improved detection of viral reads
in whole metagenomes and expanded coverage of virus‒host con-
nections in the PVD database make it particularly useful for studying
pig gut viruses.
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Fig. 1 | Summary of viral genomes recovered from pig gut metagenomes.
a Overview of the PVD database viral discovery pipeline. b Proportion of vOTU
genomes based on quality tiers. c Distribution of density and number for different

vOTU qualities: complete (n = 12,515), high quality (n = 9600), medium quality
(n = 26,184), low quality (n = 1,726,336), and not determined (n = 1,444,778).
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Taxonomic annotation
We utilized the new ICTV classification, which abolished the para-
phyletic morphological families Podoviridae, Siphoviridae, and
Myoviridae and the order Caudovirales and replaced them with the
class Caudoviricetes to categorize all tailed bacterial and archaeal
viruses featuring icosahedral capsids and a double-stranded DNA
genome30. After using the new ICTV classification, the majority of

vOTUs (65.36%) were identified as Caudoviricetes (Fig. 3a and Sup-
plementary Table 2). However, only 10.97% of the medium-quality
vOTU genomes could be annotated at the family level using the new
ICTV database (Fig. 3b, c). These findings suggested significant
gaps in knowledge regarding pig gut virus taxonomy, which is also a
significant challenge for analyzing viromes from different
environments8,31,32.

Fig. 2 | Clustering and comparison with four
existing datasets of vOTUs that were above
medium-quality. The vOTU genomes from the
PVD (n = 37,650) catalog were compared with other
virus genomes with >50% completeness from four
databases: IMG/VR4 (n = 1,504,202), MGV
(n = 43,464), GPD (n = 47,383), and GVD
(n = 8015) at the species level with the parameters
query coverage 90, and identity 70.
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Fig. 3 | The taxonomy and composition of vOTUswith >50% completeness. aComposition of vOTUs at the class level.bComposition of vOTUs at the family level. cCircle
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Host prediction and temperate identification
Accurately predicting virus hosts is a critical step towards understanding
virus-host interactions and utilizing them tomanipulate the gut microbiota
ecosystem or design innovative phage tools33,34. In this study, we used the
iPHoP tool, which integrates multiple methods, to reliably predict the host
taxonomy of medium-quality vOTUs at the genus level35. As expected,
Firmicutes and Bacteroidetes, the most abundant bacterial phyla in the gut
microbiome,were found to be commonhosts for viruses at the phylum level
(Fig. 4a, b). At the genus level, Prevotella and Bacteroides (belonging to
Bacteroidetes) and Vescimonas and Faecousia (belonging to Firmicutes)
were the most commonly assigned hosts (Fig. 3a). Additionally, some
viruses were predicted to inhabit Lactobacillus, Ruminococcus, Faecali-
bacterium, and Blautia, which are known to play important roles in pig
productivity and feed efficiency36,37.

Previous study has shown that using incomplete viral contigs for
lifestyle prediction can lead to an overestimation of the number of virulent
viruses8. Thus, we used only the above high-quality (>90% completeness)
vOTU genomes to predict the virulent or temperate phages with two
software programs, BACPHLIP and PhaTYP (Fig. 4c). BACPHLIP
showed that the majority of the above high-quality (>90% completeness)
vOTU genomes (64%) were predicted to be virulent (Fig. 4c). PhaTYP, a
python library for bacteriophage prediction with a Bidirectional Encoder
Representations from Transformer (BERT)-based model, was used to
confirm the lifestyles of the same set of high-quality vOTUs (>90%
completeness, n = 22,115). The results showed that the temperate, viru-
lent, and unknown categories accounted for 62%, 34%, and 4%, respec-
tively, of all predictions. However, other studies have reported that
virulent viruses accounted for 65%~91% of the total viruses in the human
gut environment, which might be due to the inclusion of low-quality
vOTU8,38. These discrepancies suggest that further research should

employ high-quality vOTUs to predict the lifestyles of viruses more
reasonably.

Phylogenomic analyzes of viruses
Viruses that infect vertebrates can cause serious diseases in pigs, leading to
significant economic losses for the swine industry. For example, porcine
circovirus can cause porcine circovirus-associated disease (PCVAD)39,40.
In our metagenomic samples, we did not detect Asfarviridae, a large
encapsulated double-stranded DNA virus41, possibly because the samples
were collected from healthy or noninfected pigs. To explore the diversity
of pig gut viruses, we constructed a phylogenetic tree based on 265 gen-
omes with >50% completeness from the PVD (Fig. 5). The majority of
viruses from the PVD represented new lineages across the tree. Smacov-
iridae and Circoviridae were the most diverse families found, primarily
due to the broad phylogenetic distribution of the vOTUs belonging to
these groups, which are circular replication-associated protein (Rep)-
encoding single-stranded DNA viruses42–44. Moreover, we found porcine
circovirus-like viruses that have been associated with porcine diarrheal
disease43. Additionally, we found 206 viral genomes with >50% com-
pleteness in which the host was dominated by Methanobacteriaceae and
Methanomethylophilaceae, consistent with the archaeal virome found in
the human gut (Supplementary Fig. 3)45. Compared with recently pub-
lished collections of viruses from diverse environments and the human
gut8,46, our analysis of the PVD resulted in a substantial expansion of pig
gut viral diversity.

Functional capacity of the gut virome
To investigate the potential roles of the pig gut virome, we identified
2,362,631 protein-coding genes across 48,299 of the above mentioned
medium-quality vOTU genomes from our current study. To explore the

Fig. 4 | Host prediction and temperate identification of vOTUs. a Number of
vOTUs with >50% completeness for each predicted host at the phylum level.
b Number of vOTUs with >50% completeness for the top 30 predicted hosts at the
genus level. c The ratio of virulent and temperate phages for total vOTUs with >50%
completeness identified by PhaTYP and BACPHLIP. d The ratio of virulent and

temperate phages for the top 30 vOTUs with >50% completeness identified by
BACPHLIP at the genus level. The letters “S”, “P”, “F”, “F_C”, “F_A”, and “B” before
the italicized genus names represent the Spirochaetota, Pseudomonadota, Firmi-
cutes, Firmicutes_C, Firmicutes_A, and Bacteroidetes phyla, respectively.
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functional potential of the pig gut virome, we used eggNOG-mapper v.2 for
comparison against eggNOG 5.0 using default parameters6,47. Overall, 60%
(1,416,705/2,362,631) of the vOTU genes matched the database (Fig. 6a).
However, 73% of these genes were not assigned any biological function,
highlighting our limited understanding of the pig gut virome. Among the
matched genes, the largest protein clusters were single-stranded DNA-
binding proteins (n = 35,964), followed by proteins involved in other typical
viral functions, such asDNApolymerase and replicativeDNAhelicase (Fig.
6a). With respect to potential metabolic functions, we detected a total of
53,090 genes, with the top five categories being nucleotide metabolism
(n = 11,016), amino acid metabolism (n = 9492), carbohydrate metabolism
(n = 9036), metabolism of cofactors and vitamins (n = 6652), and energy
metabolism (n = 4533) (Supplementary Fig. 4).

We then compared these genes to databases such as SARG, MGEs,
VFDB, the quorum sensing, and BacMet databases using Diamond’s
BLASTp tool, with parameters set to --evalue1e-5, --query-cover 85, and
--id 80 (Fig. 6b andSupplementaryTables3–7).However,weonly identified
69 protein-coding genes in 55 viral contigs (55/48,299 = 0.11%) when
checking the SARG database for antibiotic resistance genes (ARGs) (Sup-
plementaryTable 3).Among them, there are 10 contigs carrying 2 genes and
2 contigs carrying 3 resistance genes (Supplementary Table 3). The top two
categories were macrolide-lincosamide-streptogramin (MLS) (n = 21) and
multidrug (n = 20) (Fig. 6b). We observed that the parameters of query
coverand identityhada significant impact on thenumberofARGsdetected.
Various studies have used different parameters to detect ARGs carried by
viruses, often below the 80% identity threshold used in our study and
recommended by Yin et al. 48–52. This could lead to inaccuracies and over-
estimations in the reported number of ARGs49,50,52. For example, by setting
the parameters of –query-cover 85 and –id 60 in BLASTp,we obtained 4564
hits, which is 66 times greater than the previous setting. To compare results
across different studies and establish more appropriate parameters for
detecting virus-carried ARGs, comprehensive evaluations of parameters
should be conducted in the future (Billaud et al.53; Enault et al., 2017)53,54.We
utilized a previously established database to detect mobile genetic elements
(MGEs) in pig gut vOTUs55. A total of 52 protein-coding genes were found
and encompassed two dominant categories: transposase (n = 21) and
integrase (n = 15) (Fi. 6b and Supplementary Table 4), which are known to
play important roles in the transposition of ARGs21,56. However, we found

only one viral genome containing both ARGs (n = 2) and MGEs (n = 1)
(Fig. 6c). Moreover, most ARG-positive vOTUs found in pig metagenomes
were not active53. Taken together, our results suggest that the pig gut virome
carries a small number of ARGs andmight contribute minimally to the gut
resistome.

We also explored the distribution patterns of virulence factor genes
(VFGs) carried by the virome (Fig. 6b and Supplementary Table 5). The
results showed that VFGs were dominated by adherence (n = 50) and
immunemodulation (n = 34), consistent with previous studies57. Notably,
we detected a small number of BacMet resistance protein genes (n = 48) in
the pig gut vOTUs (Fig. 6b and Supplementary Table 6). The majority of
metal resistance genes in the pig gut virome were associated with arsenic
(As) (n = 7) and copper (Cu) (n = 6). Cu is extensively used as a feed
additive for pigs and has a significant impact on the dissemination of
antibiotic resistance genes (ARGs) in manure and soil58. We also exam-
ined vOTUproteins against theQuorumSensing ofHumanGutMicrobes
(QSHGM) database59. We identified only 74 protein genes of pig gut
vOTUs that utilized quorum sensing languages, with the top three lan-
guages being HAQs, AI-2, and CAI-1 (Fig. 6b and Supplementary
Table 7).

Discussion
In the present study, we conducted a comprehensive analysis of pig gut viral
genomes by mining publicly available metagenomic samples (n = 4650)
using our integrated pipeline designated metav (https://github.com/
mijiandui/metav). The software tools in this pipeline were optimized to
improve the speed and accuracy of metagenomic analysis and enable
comparisons between different microbial ecosystems. We identified
19,577,760 draft-quality viral genomes, representing an estimated 3,219,413
species-level vOTUs. After applying CheckV, the PVD database was
established, which included 5,566,804 viral contigs with more than 50%
completeness, forming 48,299 species-level vOTUs. This is equivalent to the
finding in theMGV (n = 54,118) and GPD (n = 46,480) human gut virome
databases6,8. However, a pair-to-pair clustered comparison between IMG/
VR4, GPD,MGV, GVD, and PVD showed that PVD still contained 34,952
(92.83%) unique vOTUs, making it the largest resource of extensive pig gut
viral genomes to our knowledge. Although this study focused on DNA
viruses, other studies have explored RNA viruses5,10,60–63. Thus, future

Fig. 5 | Phylogenetic tree of vOTUs with vertebrates as hosts. A phylogenetic tree
was constructed from 265 viral genomes derived from the PVD. The tree was plotted
using iTOL. Branch color indicates whether a lineage is represented by previously

polished databases (IMG/VR4, MGV, GPD, and GVD) (black) or is unique to the
PVD database (green). The different colors in the middle ring represent classifica-
tions at the family level. The outer ring displays the length (kb) for each vOTU.
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investigations could utilize metatranscriptomic data from pig gut micro-
biota samples to investigate RNA viromes.

To rapidly recover viral genomes from metagenomics and metatran-
scriptomics data, ICTV has updated its taxonomy list, which has led to
significant changes compared to the previous version30. geNomad is sig-
nificantly faster than similar tools and can process large datasets, accurately
assigning identified viruses to the latest ICTV taxonomy release64. However,
this modification has made it difficult to compare the taxonomic results of
this study with those of previous studies. To address this issue, it would be
useful, in the future, to integrate several large-scale viral genome databases
and create a unified, updated, and standardized catalog that is compatible
with the new ICTV taxonomy. It is also essential to establish a unified and
standardized taxonomy classification pipeline or platform in the future65.

The results of our study provided significant insights into the com-
position and function of the pig gut virome. Our analysis revealed a diverse
and complex pig gut virome, consisting of numerous viral operational
taxonomicunits (vOTUs). In addition,wehave identified several potentially
novel viral species and found evidence of multiple viral species existing in
the pig gut. These discoveries highlight the importance of continued
research in this field, as they could have significant implications for our
understanding of viral evolution, pathogenesis, and host‒pathogen inter-
actions. Moreover, our findings suggest that the existence of multiple viral
species is common in the pig gut, which has important implications for
future studies investigating the impact of the pig gut virome on pig health
and productivity and the potential for viral transmission to other animals
andhumans.However, this studydidnot identify certain viruses, such as the
African swine fever double-stranded DNA virus, that have a significant
impacton thepig industry. The potential reason is that the samples collected
for this studywere fromhealthy pigs. In the future, building comprehensive

pig intestinal virome databases derived from pigs affected by different
pathogens (including viruses), and conducting a comparative analysis with
the viromes of healthy pigs, will provide essential data support for the
prevention and control of corresponding pig diseases. Given the lessons
learned from the COVID-19 pandemic, such as the potential for emerging
infectious diseases to adversely affect human health, there is a need for
increased awareness of zoonoses66,67. Therefore, we propose a “OneHealth”
framework that emphasizes the importance of studying the “ecosystem-
animal-livestock-human”pathogen systemusingmetagenomic technology.
This approach should include combining rich metadata, such as climate
change data, to reveal the sources, hosts, transmission, and evolutionary
mechanisms of known and unknown pathogens68.

In summary, our study lays the groundwork for further research into
the pig gut virome. Our identification of new viral species and evidence of
coexistence highlight the intricacies of gut ecosystems and emphasize the
importance of further investigation in this area. Our findings provide the
basis for a more comprehensive understanding of viral and microbial
ecology in the pig gut and are expected to facilitate the monitoring and
maintenance of pig health.

Methods
Assembly and viral identification in the gut contents and feces
of pigs
We developed “metav”, a pipeline for identifying viruses from raw meta-
genomics generated via next-generation sequencing. This analysis was
comprisedof threemain steps: 1) quality control of the raw reads using fastp
v.0.23.2 (with parameters --detect_adapter_for_pe and --dont_eval_dupli-
cation -w 16), followed by the removal of the host (pig genome: Sscrofa11.1)
contamination using BWA v.0.7.17 with parameters (-k 31 -p -S -K

Fig. 6 | Functional landscape of vOTUs that were above medium quality.
a Functional annotations for the 30 largest protein clusters. b Protein-coding viral
genes were identified against a structured antibiotic-resistance gene (SARG) data-
base, mobile genetic elements (MGEs) database, virulence factor database (VFDB),
quorum sensing databases, and BacMet (Antibacterial Biocide & Metal Resistance

Genes) with BLASTp using Diamond with the following specific parameters:
--evalue1e-5 –query-cover 85 –id 80. c The gene structure of one vOTU containing
ARGs and MGEs. The red font represents MGEs, while the blue font
represents ARGs.

https://doi.org/10.1038/s41522-024-00554-0 Article

npj Biofilms and Microbiomes |           (2024) 10:76 6

www.nature.com/npjbiofilms


200000000)69,70; 2) assembly of the data using Megahit v.1.2.9 (with -k-list
39, 59, and 79)25; and 3) viral identification using VirSorter2 v.2.2.3 and
DeepVirFinder v.2.022,23. Viral sequences were identified with the criteria
Keep1 (viral_gene >0) and Keep2 (viral_gene = 0 AND (host_gene = 0 OR
score >= 0.95 OR hallmark >2)) based on VirSorter2’s SOP71 and q-
value > =0.95 using DeepVriFinder. We collected metagenomic data from
various sources, including SRP188615/PRJNA52640516,17, CNP000082414,
PRJEB1175520, PRJNA78846217, PRJNA77506219, PRJEB2206218,
PRJCA0096099, PRJEB4411872, and 70 samples collected in our laboratory.
In total, 4,650 samples were used in our study to extract the viral contigs.
Each sample was processed using the above pipeline, and then all the viral
contigs were combined for subsequent analysis. To ensure the reliability of
the results, all subsequent analyzes were conducted using vOTUs of at least
medium quality (>50% completeness).

Viral contigs cluster and quality control
We applied CheckV v.1.0.1 (database v.1.4) to assess the quality of all viral
sequences26. All viral contigs were clustered into species-level vOTUs based
on 95% average nucleotide identity (ANI) and 85% alignment fraction (AF)
using pairwise ANI calculations from the CheckV repository’s rapid gen-
ome clustering supporting code. All-vs-all local alignments were performed
with the BLAST+ package v.2.13.0, with the parameters (-max_target_seqs
10000). Pairwise ANI values were calculated by combining local alignments
between sequencepairs using anicalc.py script.UCLUST-like clusteringwas
carried out with the aniclust.py script using the recommended parameters
(95% ANI+ 85% AF) from MIUVIG. The sequences of vOTUs resulting
from clustering were extracted from the viral contigs, and their quality was
re-evaluated using CheckV.

Viral taxonomy annotation
Viral taxonomy identification is challenging due to the lack of a specific
marker gene for viral sequences and the presence of a large amount of
‘dark matter’ in various environments. A new ICTV taxonomy was
released in 2022 and abolished the previous large proportion of the order
Caudovirales and the families Myoviridae, Siphoviridae, and
Podoviridae30. We applied geNomad v.1.2.064 to obtain the taxonomy of
vOTUs above 50% completeness. The new ICTV taxonomy database
(v.214) was used.

Functional annotation, host prediction, and lifestyle prediction
All protein-coding genes of vOTUs were predicted using prodigal-gv
v.2.9.073. Genes were annotated based on Dimond searches against protein
databases, including eggNOG 5.0 and VOGDB (http://vogdb.org)47, using
EggNOG-mapper with default parameters (Cantalapiedra et al.)74. The
structured antibiotic resistance gene (SARG) database48, antibacterial bio-
cide and metal resistance genes (BacMet) database75, mobile genetic ele-
ments (MGEs) database55, virulence factor database (VFDB)76, and quorum
sensing database59 were searched against with BLASTp using Diamond
v.2.0.15.153 with the specific parameters: --evalue 1e-5 –query-cover 85 –id
8077. iPHoP v1.3.335 was used for the vOTU host prediction with the
Aug_2023 release database and default parameters. We used BACPHLIP
v.0.9.678 and PhaTYP79, which use bidirectional encoder representations
from transformers (BERT), to determine whether the vOTUs were likely to
be temperate or virulent.

Comparison to other viral reference databases
In this study, the vOTUs from the PVD were compared against four
reference databases: IMG/VR v.4.012, GVD v.2.07, MGV v.1.08, and GPD
v.1.06. To improve computational efficiency and facilitate cross-database
comparison, all sequences were filtered to the vOTU species level and above
50% completeness according to the CheckV results before clustering
between different databases. The sequences were then combined and clus-
tered using the supporting code in theCheckV repositorywith the following
BLASTn-specific parameters: evalue 1e-5, max-target-seqs 10,000, query
coverage 90, and identity 70. We extracted the VCs between different

databases, and if the sequences clustered together, it indicated that the
vOTUwas sharedbetween twodatabases; otherwise, itmeant that theywere
different. The comparison results were visualized using the UpSetR
package80.

Phylogenetic analyzes
We generated phylogenetic trees for the vOTUs with completeness above
50% with taxonomy, host vertebrates, and archaea. First, we performed
multiple sequence alignment for each typeof vOTUsequenceusingMAFFT
v.7.515 with the “--auto”model81 for each type of vOTU sequence. Second,
we inferred a concatenated nucleic acid sequence phylogeny from the
multiple sequence alignment using FastTree v2.1.11 with the parameters
“-nt -gtr”82. Finally, the tree was midpoint rooted and visualized using
iToL83.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
Access to the full vOTUs genomes from PVD is provided at https://doi.org/
10.6084/m9.figshare.22671076.v1, and above medium-quality vOTUs
genomes is also provided at https://doi.org/10.6084/m9.figshare.25895290.
Any further requests for data should be directed to the corresponding
authors.

Code availability
Supporting code is provided at https://github.com/mijiandui/metav.

Received: 17 December 2023; Accepted: 16 August 2024;

References
1. Chen, C. et al. Prevotella copri increases fat accumulation in pigs fed

with formula diets.Microbiome 9, 175 (2021).
2. Hu, J. et al. Core-predominant gut fungus Kazachstania slooffiae

promotes intestinal epithelial glycolysis via lysine desuccinylation in
pigs.Microbiome 11, 31 (2023).

3. Wang, G. et al. Lactobacillus reuteri improves the development and
maturation of fecal microbiota in piglets through mother-to-infant
microbe and metabolite vertical transmission.Microbiome 10,
211 (2022).

4. Yang, H. et al. ABO genotype alters the gut microbiota by regulating
GalNAc levels in pigs. Nature 606, 358–367 (2022).

5. Shkoporov, A. N. et al. Viral biogeography of the mammalian gut and
parenchymal organs. Nat. Microbiol. 7, 1301–1311 (2022).

6. Camarillo-Guerrero, L. F., Almeida, A., Rangel-Pineros, G., Finn, R. D.
& Lawley, T. D. Massive expansion of human gut bacteriophage
diversity. Cell 184, 1098–1109 e9 (2021).

7. Gregory, A. C. et al. The gut virome database reveals age-dependent
patterns of virome diversity in the human gut. Cell Host Microbe 28,
724–740 e8 (2020).

8. Nayfach, S. et al. Metagenomic compendiumof 189,680DNA viruses
from the human gut microbiome. Nat. Microbiol. 6, 960–970 (2021).

9. Wu, R. et al. Early life dynamics of ARG and MGE associated with
intestinal virome in neonatal piglets. Vet. Microbiol. 274,
109575 (2022).

10. Edgar, R. C. et al. Petabase-scale sequence alignment catalyses viral
discovery. Nature 602, 142–147 (2022).

11. Gregory, A. C. et al. Marine DNA viral macro- and microdiversity from
pole to pole. Cell 177, 1109–1123 e14 (2019).

12. Camargo, A. P. et al. IMG/VR v4: an expanded database of
uncultivated virus genomes within a framework of extensive
functional, taxonomic, and ecological metadata. Nucleic Acids Res
51, D733–d743 (2023).

https://doi.org/10.1038/s41522-024-00554-0 Article

npj Biofilms and Microbiomes |           (2024) 10:76 7

http://vogdb.org
https://doi.org/10.6084/m9.figshare.22671076.v1
https://doi.org/10.6084/m9.figshare.22671076.v1
https://doi.org/10.6084/m9.figshare.25895290
https://github.com/mijiandui/metav
www.nature.com/npjbiofilms


13. Yan, M. et al. Interrogating the viral dark matter of the rumen
ecosystem with a global virome database. Nat. Commun. 14,
5254 (2023).

14. Chen, C. et al. Expanded catalog of microbial genes and
metagenome-assembled genomes from the pig gutmicrobiome.Nat.
Commun. 12, 1106 (2021).

15. Gaio, D. et al. Hackflex: low-cost, high-throughput, Illumina Nextera
Flex library construction.Microb. Genom. 8, 000744 (2022).

16. Gaio, D. et al. Post-weaning shifts in microbiome composition and
metabolism revealedby over 25,000pig gutmetagenome-assembled
genomes.Microb. Genom. 7, 000501 (2021).

17. Gaire, T. N. et al. The impacts of viral infection and subsequent
antimicrobials on the microbiome-resistome of growing pigs.
Microbiome 10, 118 (2022).

18. Luiken, R. E. C. et al. Farm dust resistomes and bacterial
microbiomes in European poultry and pig farms. Environ. Int. 143,
105971 (2020).

19. Tao, S., Zou, H., Li, J. & Wei, H. Landscapes of enteric virome
signatures in early-weaned piglets.Microbiol. Spectr. 10,
e0169822 (2022).

20. Xiao, L. et al. A reference gene catalogue of the pig gut microbiome.
Nat. Microbiol. 1, 16161 (2016).

21. Zhang, S. et al. Dissemination of antibiotic resistance genes (ARGs)
via integrons in Escherichia coli: A risk to human health. Environ.
Pollut. 266, 115260 (2020).

22. Guo, J. et al. VirSorter2: a multi-classifier, expert-guided approach to
detect diverse DNA and RNA viruses.Microbiome 9, 37 (2021).

23. Ren, J. et al. Identifying viruses from metagenomic data using deep
learning. Quant. Biol. 8, 64–77 (2020).

24. Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A.
metaSPAdes: a new versatilemetagenomic assembler.GenomeRes.
27, 824–834 (2017).

25. Li, D., Liu, C. M., Luo, R., Sadakane, K. & Lam, T. W. MEGAHIT: an
ultra-fast single-node solution for large and complex metagenomics
assembly via succinct de Bruijn graph. Bioinformatics 31,
1674–1676 (2015).

26. Nayfach, S. et al. CheckV assesses the quality and completeness of
metagenome-assembled viral genomes. Nat. Biotechnol. 39,
578–585 (2021).

27. Khan Mirzaei, M. et al. Challenges of studying the human virome –

relevant emerging technologies. Trends Microbiol. 29,
171–181 (2021).

28. Bowers, R. M. et al. Minimum information about a single amplified
genome (MISAG) andametagenome-assembledgenome (MIMAG)of
bacteria and archaea. Nat. Biotechnol. 35, 725–731 (2017).

29. Roux, S. et al. Minimum information about an Uncultivated Virus
Genome (MIUViG). Nat. Biotechnol. 37, 29–37 (2019).

30. Turner, D. et al. Abolishment of morphology-based taxa and change
to binomial species names: 2022 taxonomy update of the ICTV
bacterial viruses subcommittee. Arch. Virol. 168, 74 (2023).

31. Breitbart, M. et al. Metagenomic analyses of an uncultured viral
community from human feces. J. Bacteriol. 185, 6220–6223 (2003).

32. Liang, G. & Bushman, F. D. The human virome: assembly,
composition and host interactions. Nat. Rev. Microbiol. 19,
514–527 (2021).

33. Kauffman, K. M. et al. Resolving the structure of phage-bacteria
interactions in the context of natural diversity. Nat. Commun. 13,
372 (2022).

34. KhanMirzaei, M. & Deng, L. New technologies for developing phage-
based tools to manipulate the human microbiome. Trends Microbiol.
30, 131–142 (2022).

35. Roux, S. et al. iPHoP: An integrated machine learning framework to
maximize host prediction formetagenome-derived viruses of archaea
and bacteria. PLoS Biol. 21, e3002083 (2023).

36. Bergamaschi, M. et al. Gut microbiome composition differences
among breeds impact feed efficiency in swine.Microbiome 8,
110 (2020).

37. Ramayo-Caldas, Y. et al. Phylogenetic networkanalysis applied topig
gut microbiota identifies an ecosystem structure linked with growth
traits. ISME J. 10, 2973–2977 (2016).

38. Nishijima, S. et al. Extensive gut virome variation and its associations
with host and environmental factors in a population-level cohort.Nat.
Commun. 13, 5252 (2022).

39. Díaz, C., Celer, V. & Frébort, I. The main DNA viruses significantly
affecting pig livestock. J. Vet. Res. 65, 15–25 (2021).

40. Klangprapan, S., Weng, C. C., Huang, W. T., Li, Y. K. &
Choowongkomon, K. Selection and characterization of a single-chain
variable fragment against porcine circovirus type 2 capsid and
impedimetric immunosensor development. ACS Omega 6,
24233–24243 (2021).

41. Chen, Y. et al. Structure of the error-proneDNA ligaseof African swine
fever virus identifies critical active site residues. Nat. Commun. 10,
387 (2019).

42. Abbas, A. A. et al. Redondoviridae, a family of small, circular DNA
viruses of the human oro-respiratory tract associated with
periodontitis and critical illness. Cell Host Microbe 25,
719–729.e4 (2019).

43. Liu, X. et al. Emergence of porcine circovirus-like viruses associated
with porcine diarrheal disease in China. Transbound. Emerg. Dis. 68,
3167–3173 (2021).

44. Varsani, A. & Krupovic, M. Smacoviridae: a new family of animal-
associated single-stranded DNA viruses. Arch. Virol. 163,
2005–2015 (2018).

45. Li, R.,Wang,Y., Hu,H., Tan,Y. &Ma,Y.Metagenomic analysis reveals
unexplored diversity of archaeal virome in the human gut. Nat.
Commun. 13, 7978 (2022).

46. Al-Shayeb, B. et al. Clades of huge phages from across Earth’s
ecosystems. Nature 578, 425–431 (2020).

47. Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and
phylogenetically annotated orthology resource based on 5090
organisms and 2502 viruses. Nucleic Acids Res 47,
D309–D314 (2018).

48. Yin, X. et al. ARGs-OAP v3.0: antibiotic-resistance gene database
curation and analysis pipeline optimization. Engineering 27,
234–241 (2023).

49. Chen, M. L. et al. Viral community and virus-associated antibiotic
resistance genes in soils amended with organic fertilizers. Environ.
Sci. Technol. 55, 13881–13890 (2021).

50. Hu, J. et al. Characterizing the gut phageome and phage-borne
antimicrobial resistance genes in pigs.Microbiome 12, 102 (2024).

51. Karkman, A., Parnanen, K. & Larsson, D. G. J. Fecal pollution can
explain antibiotic resistance gene abundances in anthropogenically
impacted environments. Nat. Commun. 10, 80 (2019).

52. Moon, K. et al. Freshwater viral metagenome reveals novel and
functional phage-borne antibiotic resistance genes.Microbiome 8,
75 (2020).

53. Billaud, M. et al. Analysis of viromes and microbiomes from pig fecal
samples reveals that phages and prophages rarely carry antibiotic
resistance genes. ISME Commun. 1, 55 (2021).

54. Enault, F. et al. Phages rarely encode antibiotic resistance genes: a
cautionary tale for virome analyses. ISME J. 11, 237–247 (2017).

55. Pärnänen, K. et al. Maternal gut and breast milk microbiota affect
infant gut antibiotic resistome and mobile genetic elements. Nat.
Commun. 9, 3891 (2018).

56. Karvelis, T. et al. Transposon-associated TnpB is a programmable
RNA-guided DNA endonuclease. Nature 599, 692–696 (2021).

57. Liang, J. et al. Identification and quantification of bacterial genomes
carrying antibiotic resistance genes and virulence factor genes for

https://doi.org/10.1038/s41522-024-00554-0 Article

npj Biofilms and Microbiomes |           (2024) 10:76 8

www.nature.com/npjbiofilms


aquatic microbiological risk assessment. Water Res 168,
115160 (2020).

58. Li, N. et al. Cu and Zn exert a greater influence on antibiotic resistance
and its transfer than doxycycline in agricultural soils. J. Hazard.Mater.
423, 127042 (2022).

59. Wu, S. et al. Machine learning aided construction of the quorum
sensing communication network for human gut microbiota. Nat.
Commun. 13, 3079 (2022).

60. Chen, Y.M. et al. RNA viromes from terrestrial sites acrossChina expand
environmental viral diversity. Nat. Microbiol. 7, 1312–1323 (2022).

61. Dominguez-Huerta, G. et al. Diversity and ecological footprint of
Global Ocean RNA viruses. Science 376, 1202–1208 (2022).

62. Neri, U. et al. Expansion of the global RNA virome reveals diverse
clades of bacteriophages. Cell 185, 4023–4037.e18 (2022).

63. Zayed, A. A. et al. Cryptic and abundant marine viruses at the
evolutionary origins of Earth’s RNA virome. Science 376,
156–162 (2022).

64. Camargo, A. P. et al. Identification of mobile genetic elements with
geNomad. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-
01953-y (2023).

65. Bolduc, B. et al. iVirus 2.0: Cyberinfrastructure-supported tools and
data to power DNA virus ecology. ISME Commun. 1, 77 (2021).

66. Banerjee, S. & van der Heijden, M. G. A. Soil microbiomes and one
health. Nat. Rev. Microbiol. 21, 6–20 (2022).

67. Ko, K. K. K., Chng, K. R. & Nagarajan, N. Metagenomics-enabled
microbial surveillance. Nat. Microbiol. 7, 486–496 (2022).

68. Carlson, C. J. et al. Climate change increases cross-species viral
transmission risk. Nature 607, 555–562 (2022).

69. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one
FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

70. Li, H. & Durbin, R. Fast and accurate short read alignment with
Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

71. Guo, J., Vik, D., Pratama, A., Roux, S., Sullivan, M. Viral sequence
identification SOP with VirSorter2 V.3. dx.https://doi.org/10.17504/
protocols.io.bwm5pc86. (2021).

72. Zhang, Y. et al. Porcine gut microbiota in mediating host metabolic
adaptation to cold stress. NPJ Biofilms Microbiomes 8, 18 (2022).

73. Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation
initiation site identification. BMC Bioinforma. 11, 119 (2010).

74. Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P. &
Huerta-Cepas, J. eggNOG-mapper v2: functional annotation,
orthology assignments, and domain prediction at the metagenomic
scale.Mol. Biol. Evol. 38, 5825–5829 (2021).

75. Pal, C., Bengtsson-Palme, J., Rensing, C., Kristiansson, E. & Larsson,
D. G. J. BacMet: antibacterial biocide and metal resistance genes
database. Nucleic Acids Res. 42, D737–D743 (2013).

76. Liu, B. et al. 2022: a general classification scheme for bacterial
virulence factors. Nucleic Acids Res 50, D912–D917 (2021).

77. Buchfink, B., Reuter, K. & Drost, H. G. Sensitive protein alignments at
tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368 (2021).

78. Hockenberry, A. J. & Wilke, C. O. BACPHLIP: predicting
bacteriophage lifestyle from conserved protein domains. PeerJ 9,
e11396 (2021).

79. Shang, J., Tang, X. & Sun, Y. PhaTYP: predicting the lifestyle for
bacteriophages using BERT. Brief. Bioinform. 24, bbac487 (2022).

80. Conway, J. R., Lex, A. &Gehlenborg, N. UpSetR: an Rpackage for the
visualization of intersecting sets and their properties. Bioinformatics
33, 2938–2940 (2017).

81. Katoh,K.,Misawa,K., Kuma,K. I. &Miyata, T.MAFFT: a novelmethod
for rapid multiple sequence alignment based on fast Fourier
transform. Nucleic Acids Res. 30, 3059–3066 (2002).

82. Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree: Computing large
minimum evolution trees with profiles instead of a distance matrix.
Mol. Biol. Evol. 26, 1641–1650 (2009).

83. Letunic, I. & Bork, P. Interactive Tree of Life (iTOL) v5: an online tool for
phylogenetic tree display and annotation. Nucleic Acids Res 49,
W293–w296 (2021).

Acknowledgements
This study was supported by the Major Science and Technology Project of
Gansu Province (23ZDNA007) and the International Collaboration 111
Program (BP0719040). We would like to express our gratitude to the
Supercomputing Center of Lanzhou University for their valuable support in
the computation works.

Author contributions
J.M. designed the study, plotted the figures, and wrote the manuscript.
J.M., Y.L., and Y.Z. collected the metagenomic data. Y. Y. provided
suggestions. J.M., and C.M. performed the metagenomic analysis. X.J.,
R.L., and H.Z. contributed to the scientific discussion and preparation of
the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41522-024-00554-0.

Correspondence and requests for materials should be addressed to
Jiandui Mi, Ruijun Long or Haixue Zheng.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if you modified the licensed material. You
do not have permission under this licence to share adapted material
derived from this article or parts of it. The images or other third party
material in this article are included in the article’s Creative Commons
licence, unless indicated otherwise in a credit line to thematerial. If material
is not included in thearticle’sCreativeCommons licenceandyour intended
use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by-
nc-nd/4.0/.

© The Author(s) 2024

https://doi.org/10.1038/s41522-024-00554-0 Article

npj Biofilms and Microbiomes |           (2024) 10:76 9

https://doi.org/10.1038/s41587-023-01953-y
https://doi.org/10.1038/s41587-023-01953-y
https://doi.org/10.1038/s41587-023-01953-y
https://doi.org/10.17504/protocols.io.bwm5pc86
https://doi.org/10.17504/protocols.io.bwm5pc86
https://doi.org/10.17504/protocols.io.bwm5pc86
https://doi.org/10.1038/s41522-024-00554-0
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/npjbiofilms

	Massive expansion of the pig gut virome based on global metagenomic mining
	Results
	The DNA viruses from the pig gut microbiome
	Newly established and expanded pig gut viral diversity
	Taxonomic annotation
	Host prediction and temperate identification
	Phylogenomic analyzes of viruses
	Functional capacity of the gut virome

	Discussion
	Methods
	Assembly and viral identification in the gut contents and feces of pigs
	Viral contigs cluster and quality control
	Viral taxonomy annotation
	Functional annotation, host prediction, and lifestyle prediction
	Comparison to other viral reference databases
	Phylogenetic analyzes
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




