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INTRODUCTION

Digital healthcare is a field that deals with personal health and 
medical information, devices, systems, and platforms, and en-
compasses the convergence of comprehensive medical servic-
es.1 Although digital healthcare is an umbrella term used for 
various purposes, in essence, it refers to offering healthcare ser-
vices for the prevention, diagnosis, treatment, and follow-up 
management of diseases regardless of time and location by con-
necting healthcare with information and communication tech-
nology.

Traditionally, the field of healthcare has been centered on 
healthcare institutions and physicians, and the medical infor-
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mation they generated was exclusively handled by healthcare 
workers within the hospital. However, over time, the focus shift-
ed to the prediction and prevention of chronic diseases, rather 
than treatment-oriented medicine, with the growing interest 
in healthcare outside the hospital.2 Against this background, 
digital healthcare is also developing at a rapid pace due to the 
remarkable advances in computing power and technologies 
related to data acquisition and analysis. For instance, the devel-
opment of various sensors, communication networks, and por-
table and wearable devices has enabled data acquisition dur-
ing the day-to-day life of a patient.3 Based on the acquired data 
as such, the development of algorithms for diagnosing or pre-
dicting specific diseases outside the hospital, so-called medical 
artificial intelligence (AI), has emerged as a major area of re-
search.

Cardiovascular disease is the most common cause of death 
in the United States,4 and it incurs annual medical costs of up 
to $363 billion.5 Since most cardiovascular diseases follow a 
chronic course, lifestyle modifications and the periodic moni-
toring of diseases are very important even after acute treatment 
in hospital. Therefore, it is difficult to cope with the burden and 
death of cardiovascular disease by treatment in hospital alone.

Meanwhile, several AI models for the detection and predic-
tion of arrhythmias, diabetes, and sleep apnea using biosig-
nals, such as those used for electrocardiogram (ECG) or pho-
toplethysmography (PPG), have been reported. A systematic 
literature review revealed that deep learning models for ana-
lyzing ECG showed better performance compared to existing 
methods, such as the hardware or rule-based algorithms used 
for the detection or prediction of cardiovascular disease.6 How-
ever, it is difficult to apply any of them to a wearable device. A 
conventional supine 12-lead ECG or arterial pressure waveform, 
for instance, requires complicated or invasive procedures.

We postulated that a separate review of AI algorithms which 
could be applied to wearable devices was necessary to evalu-
ate the applicability of AI for cardiovascular-related diseases 
in digital healthcare settings. This systematic literature review 
and meta-analysis aimed to identify the AI models developed 
for or applicable to wearable devices for cardiovascular-relat-
ed diseases.

MATERIALS AND METHODS

Search strategy
This systematic review and meta-analysis was performed in ac-
cordance with the guidelines of the Preferred Reporting Items 
for Systematic Reviews and Meta-Analyses (PRISMA) 2020.7 
The searched databases included Medline, Embase, and Co-
chrane Library. The purpose of the search was to identify the 
studies related to medical AI used to detect or predict cardio-
vascular-related disease, which have been developed or appli-
cable to portable and wearable devices. A wide range of key-

words were set by referring to previous related reviews8,9 to 
include the AI models for various cardiovascular-related dis-
eases (cardi*, heart*, coronary*, angina*, ventric*, myocard*, 
pericard*, isch(a)em*, arrhythm*, atrial fibrillat*, tachycardi*, 
endocardi*, stroke, cerebro*, hypertensi*, blood pressure, hyper-
lipid*, hyperchole*, hyperlipo*, hypertrigly*, arterio*, arthero*, 
metabolic, deep learning, neural network, artificial intelligence, 
smart, wearable, portable, 1-lead, single lead, photoplethys-
mog*, and PPG). The search was performed on September 5, 
2021, by one author (S.L), and all publications searched from 
January 1, 1970 to the present were searched without any lim-
itation on the publication date.

Study selection
The abstracts and titles of the retrieved studies were first 
screened by two main reviewers (S.L and Y.C). The criteria for 
eligible studies were as follows: 1) studies whose main tasks re-
lated to the detection or prediction of cardiovascular-related 
disease; 2) studies that developed AI models by utilizing either 
deep learning or conventional machine learning algorithms; 
3) studies that developed AI models for smartphones or using 
data acquired from mobile and wearable devices; and 4) stud-
ies that used biosignals that are considered relatively easy to 
obtain outside of healthcare institutions, such as 1-lead or 
2-lead ECG and PPG, even if those studies did not directly pres-
ent the keywords associated with wearable device. The exclu-
sion criteria were as follows: 1) studies that simply measured 
or estimated cardiovascular parameters (e.g., heart rate and 
blood pressure), regardless of disease status; 2) studies that 
used invasive signals (e.g., arterial pressure waveform); 3) stud-
ies that reported only the models with biosignals that are diffi-
cult to apply to wearable devices, such as conventional supine 
12-lead ECG; and 4) studies that did not report the quantita-
tive performance of the model.

All studies whose eligibility could not be determined based 
on the abstract and title alone were included in the full-text 
evaluation. Studies written in languages other than English or 
Korean were excluded due to the language proficiency of the 
authors. Studies with only abstracts in which details on the study 
settings or design, the nature of the data used were unknown, 
and the details of the model were unknown were also excluded. 
In the case of disagreement between the two main reviewers, el-
igibility was finally decided through discussion with two addi-
tional reviewers (J.S.R and S.Y).

Data extraction and quality assessment of study
We extracted important variables using data extraction sheets 
from the final selected studies. The data sheets were defined 
prior to conducting the literature searches and study selec-
tion. The items extracted from each study included the publi-
cation year, author, target disease, task, data availability (pub-
lic or proprietary), data source (in-hospital device or wearable 
device), input data domain (ECG, PPG, combined or others), 
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algorithm type (conventional machine learning or deep neu-
ral network), and model performance metrics.

So far, there has been no optimal assessment tool that can 
evaluate the applicability and risk of bias for AI studies. There-
fore, we evaluated the risk of bias of individual studies using the 
Quality Assessment of Diagnostic Accuracy Studies-2 (QUA-
DAS-2) tool.10 However, since the validity of using the scale has 
not been verified for AI studies, it was not used to determine 
whether to include or exclude a particular study.

Data synthesis
We intended to synthesize the performance of AI models that 
could be mounted on wearable devices or mobile devices, and 
that could be used to predict various cardiovascular-related 
diseases and present them as summary statistics. However, ac-
cording to our pilot study, most of the identified models were 
developed for the detection of atrial fibrillation (AF). There-
fore, the quantitative meta-analysis was limited to studies on 
AF. For those studies, the number of true positives, false posi-
tives, true negatives, and false negatives were extracted. If those 
parameters were not directly presented, they were estimated 
from the number of subjects (AF and non-AF) and the perfor-
mance metrics, such as sensitivity and specificity. In order to 
resolve heterogeneity among studies in the meta-analysis, sub-
group analysis was performed according to the algorithm type 

(conventional machine learning vs. deep neural network), data 
availability (public vs. proprietary), and data source (in-hospi-
tal device vs. wearable device). Only qualitative analysis was 
performed for studies on diseases other than AF.

Statistical analysis
The number of true positives, false positives, true negatives, and 
false negatives were used to calculate meta-analyzed sensitivity 
and specificity. As high heterogeneity between studies was sus-
pected, a random-effects model was used for synthesis. Forest 
plots for sensitivity and specificity for AF detection was created 
by using R package meta.11 Hierarchical summary receiver 
operating characteristics curves and 95% confidence interval 
(CI) were estimated by the Reitsma bivariate model12 using R 
package mada.13 All statistical analyses were performed by us-
ing R version 4.1.0 (R Statistical Computing).

RESULTS

Study selection
The PRISMA 2020 flow diagram is shown in Fig. 1. After a full 
text review, 102 studies in total were included in the qualita-
tive review.14-115 Table 1 presents the summary statistics for the 
included studies. Table 2 and Supplementary Table 1 (only on-

Fig. 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 flow diagram for study selection.
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line) shows the description and findings of the individual stud-
ies. Supplementary Fig. 1 (only online) shows the quality as-
sessment for the included studies using the QUADAS-2 tool. 
As described above, as the validity of the tool used to evaluate 
the quality of research for development and validation of AI 
models has not yet been verified, all individual studies were in-
cluded in the final analysis regardless of the quality assessment 
results.

Model and dataset characteristics
In 68 studies, deep learning methods, such as neural networks, 
were used alone or in combination with other machine learn-
ing methods (Table 1). Unlike conventional methods that ex-
tracted several handcrafted features from ECG or PPG and used 
them for training and validation of algorithms for disease pre-
diction, methods that used deep learning tended to utilize the 
signal itself as an input (Fig. 2). For input domain, 1-lead and 
2-lead ECG were the most commonly used biosignals, followed 
by PPG. They were often used as a single input source, but some 
studies used multimodal data.23,28,98

A total of 59 studies used an open dataset, most of which were 
related to the detection of arrhythmias or sleep apnea. Supple-
mentary Table 2 (only online) summarizes the representa-
tive public datasets containing 1-lead or 2-lead ECG or PPG 
data.116-137 However, the models for diabetes and other diseases 

mostly used proprietary datasets that were newly collected or 
constructed for the study. There were 47 studies that utilized 
data collected through wearable devices, such as smart watches.

Arrhythmia
The studies related to arrhythmias accounted for the largest 
proportion, at 62 studies14-75 (Supplementary Table 1, only on-
line). Most studies had AF detection as the main task. The ar-
rhythmias other than AF, such as premature ventricular contrac-
tion, were often grouped and treated as “non-AF” or “other 
rhythms.” A large number of models have been reported based 
on the rich public dataset, which allowed performance compar-
isons between the studies. Although many studies have utilized 
public datasets, such as the MIT-BIH database alone, there were 
also studies that performed external validation by construct-
ing a proprietary dataset with multi-institutional data.17,23,26,27

In total, 26 studies included AF as a detection target, and 
thus were included in the quantitative meta-analysis. The di-
agnostic accuracy of AF detection models are presented in 
Figs. 3 and 4A. The results overall show very high performance 
with a meta-analyzed sensitivity of 94.80% (95% CI, 91.94%–
96.68%) and specificity of 96.96% (95% CI, 94.99%–98.17%). In 
the subgroup analysis performed to resolve the heterogeneity 
between studies, however, there was a significant difference 
in the model performance between studies (Fig. 4B–D). The 
models developed with deep neural network alone or com-
bined with other algorithms (AUROC of 0.981) showed a su-
perior performance compared to the models developed with 
conventional machine learning alone (AUROC of 0.961). In 
contrast, the models tested on the proprietary data (AUROC of 
0.972) showed an inferior performance compared to the mod-
els tested on the public data (AUROC of 0.986). In addition, 
the model tested on the data acquired from wearable devices 
(AUROC of 0.977) showed an inferior performance than the 
models tested on the data acquired from in-hospital devices 
(AUROC of 0.983).

With the advent of deep neural networks, the competition for 
predictive performance has virtually reached saturation, and 
the development of a lightweight model that can be mounted 
on a wearable device and operated in real time has recently be-
come a major topic of research.18,27 There have been studies to 
determine a critical point that does not compromise the diag-
nostic accuracy while reducing the data size through compres-
sion of the ECG signal itself, in addition to reducing the weight 
of the model.32,38,43

Meanwhile, research using the ECG data collected through 
a ring-type or patch-type device, rather than data collected in a 
hospital, has been reported.40,44 These studies have also shown 
satisfactory performance in general, but reported slightly lower 
performance for detecting arrhythmias compared to the mod-
els trained with resting ECG-based data obtained in the hospi-
tal. One study, in particular, reported difficulty for an algorithm 
trained on resting ECG data to show proper prediction perfor-

Table 1. Summary of the Included Studies

Characteristics No. of studies
Target disease

Arrhythmia 62
Sleep apnea 11
Peripheral vascular disease   6
Diabetes mellitus   5
Hyper/hypotension   5
Valvular heart disease   4
Heart failure   3
Critical care   2
Others   4

Algorithm type
Conventional machine learning alone 34
Deep learning network (alone or combined) 68

Input domain
Electrocardiography 70
Photoplethysmography 17
Multimodal data 10
Others 5

Data availability
Public dataset 59
Proprietary dataset (alone or combined) 43

Data source
In-hospital device alone 55
Wearable device (alone or combined) 47
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Table 2. Artificial Intelligence Models for Cardiovascular-Related Diseases Other Than Arrhythmia

Study Task Dataset Method Results
Yu, et al., 202176 Sleep apnea 

(Screening for sleep apnea)
Apnea-ECG DB LSTM Accuracy, 87.09%; Sensitivity, 77.96%; 

Specificity, 91.74%; F1 score: 0.8161

Chang, et al., 202077 Sleep apnea 
(Detection of sleep apnea)

Apnea-ECG DB CNN Accuracy, 97.1%; Sensitivity, 95.7%; 
Specificity, 100%

Iwasaki, et al., 202178 Sleep apnea 
(Screening of sleep apnea)

Proprietary (1-lead ECG 
of 24 patients)

LSTM Sensitivity, 100%; Specificity, 100%

Papini, et al., 202079 Sleep apnea 
(Estimation of the apnea-hypopnea index)

SOMNIA and 
HealthBed DB

CNN AUC, 0.80; Accuracy, 85%; Sensitivity, 38%;  
Specificity, 94%

Wang, et al., 201980 Sleep apnea 
(Detection of sleep apnea)

Apnea-ECG DB Time window 
with a neural 
network

Per segment: AUC, 0.945; Accuracy, 87.3%;  
Sensitivity, 85.1%; Specificity, 88.7%

Per recording: AUC, 1.000; Accuracy, 97.1%;  
Sensitivity, 100.0%; Specificity, 91.7%

Bozkurt, et al., 201981 Sleep apnea 
(Determination of respiratory arrests)

Proprietary DB 
(2358 PPG)

SVM Accuracy, 87.36%; Sensitivity, 86%;  
Specificity, 88%

Wang, et al., 201982 Sleep apnea 
(Detection of sleep apnea)

Apnea-ECG DB and 
UCDODB

CNN AUC, 0.950; Accuracy, 87.6%; 
Sensitivity, 83.1%; Specificity, 90.3%

Lin, et al., 201883 Sleep apnea 
(Detection of obstructive sleep apnea)

Apnea-ECG DB ANN Accuracy, 79%; Sensitivity, 90%;  
Specificity, 73%

Urtnasan et al., 201884 Sleep apnea 
(Detection of obstructive sleep apnea)

Proprietary DB (1-lead ECG 
of 82 persons)

CNN Sensitivity, 96%; F1 score: 0.96

Sharma, et al., 201685 Sleep apnea 
(Detection of sleep apnea)

Apnea-ECG DB SVM AUC, 0.978; Accuracy, 97.14%;  
Sensitivity 95.8%, Specificity, 100%

Babaeizadeh, 
et al., 201086

Sleep apnea 
(Detection of sleep apnea)

Apnea-ECG DB Quadratic 
classifier

Accuracy, 84.7%; Sensitivity, 76.7%;  
Specificity, 89.6%

Allen, et al., 202187 Peripheral vascular disease 
(Detection of peripheral arterial disease)

Proprietary DB (214 PPG) CNN Accuracy, 88.9%; Sensitivity, 86.6%;  
Specificity, 90.2%

Lee, et al., 202088 Peripheral vascular disease 
(Prediction of ankle brachial index)

MIMIC III LSTM Accuracy, 98.34%; Sensitivity, 97.14%;  
F1-score: 0.9743

Dall’Olio et al., 
202089

Peripheral vascular disease 
(Prediction of vascular aging)

Heart for Heart CNN AUC, 0.953

Alty, et al., 200790 Peripheral vascular disease 
(Prediction of arterial stiffness)

Proprietary DB (461 PPG) SVM Accuracy, 86.1%; Sensitivity, 86.7%;  
Specificity, 85.3%

Allen and Murray 
199691

Peripheral vascular disease 
(Arterial pulse waveform classification)

Proprietary DB (366 PPG) ANN Accuracy, 80%; Sensitivity, 92%;  
Specificity, 63%

Allen and Murray 
199392

Peripheral vascular disease 
(Classification of peripeheral vascular 
disease of the lower limb artieries)

Proprietary DB (150 PPG) ANN Accuracy, 90%; Sensitivity, 93%;  
Specificity, 85%

Baig, et al., 202193 Diabetes mellitus (Early detection 
of prediabetes and type 2 diabetes 
mellitus)

Proprietary DB 
(Demographics,  
vital signs, activity data,  
ECG, and others)

Fuzzy 
inference 
system

Accuracy, 91%; Sensitivity, 94%;  
Specificity, 90%

Avram, et al., 202094 Diabetes mellitus 
(Detection of diabetes)

Proprietary DB 
(2589448 PPG)

CNN Primary cohort: 
AUC, 0.766 (95% CI, 0.750–0.782);  
Sensitivity, 75%; Specificity, 65%,

Contemporary cohort:  
AUC, 0.740 (95% CI, 0.723–0.758);  
Sensitivity, 81%; Specificity, 54%

Porumb, et al., 202095 Diabetes mellitus 
(Detection of nocturnal low glucose)

Proprietary DB (1-lead 
ECG of 25 persons)

CNN AUC, 0.907; Accuracy, 92.8%;  
Sensitivity, 91.6%; Specificity, 89.9%

Porumb, et al., 202096 Diabetes mellitus 
(Detection of hypoglycemic events)

Proprietary DB  
(ECG of 4 persons)

CNN and RNN 5-min prediction: Accuracy 87.7%;  
Sensitivity, 88.3%; Specificity, 88.5%

10-min prediction: Accuracy, 90.0%;  
Sensitivity, 87.4%; Specificity, 92.2%



S98

Artificial Intelligence for Cardiovascular Diseases

https://doi.org/10.3349/ymj.2022.63.S93

Table 2. Artificial Intelligence Models for Cardiovascular-Related Diseases Other Than Arrhythmia (continued)

Study Task Dataset Method Results

Faruqui, et al., 201997 Diabetes mellitus 
(Forecasting daily glucose levels)

Proprietary DB (Daily 
monitoring of diet, 
physical activity, weight, 
and blood glucose  
over 6 months  
of 10 patients)

LSTM Accuracy of 64.837% for ±10% range 
of the actual glucose level value

Lee, et al., 202198 Hyper/hypotension (Prediction 
of intraoperative hypotension)

The VitalDB CNN AUC, 0.931 (95% CI, 0.929–0.934);  
Sensitivity, 85.6% (95% CI, 85.3%–86.0%);  
Specificity, 85.6% (95% CI, 85.3%–85.9%)

Kwon, et al., 202099 Hyper/hypotension 
(Detection of pulmonary hypertension)

Proprietary DB 
(70709 1-lead ECG)

CNN Internal validation:  
AUC, 0.859 (95% CI, 0.855–0.863);  
Accuracy, 76.4% (95% CI, 76.1%–76.8%);  
Sensitivity, 80.0% (95% CI, 79.6%–80.3%);  
Specificity, 74.7% (95% CI, 74.4%–75.0%)

External validation:  
AUC, 0.902 (95% CI, 0.900–0.905);  
Accuracy, 84.0% (95% CI, 83.7%–84.3%);  
Sensitivity, 80.0% (95% CI, 79.7%–80.2%);  
Specificity, 84.3% (95% CI, 84.0%–84.6%)

Devaki, et al., 2020100 Hyper/hypotension 
(Diagnosis of hypertension)

Proprietary  
(PPG of 140 subjects)

CNN Accuracy, 83.3%; Sensitivity, 100%;  
Specificity, 75%

Naifisi, et al., 2018101 Hyper/hypotension (Identification 
of hypotension-related episodes)

Proprietary DB  
(781 PPG of 10 patients)

AdaBoost Accuracy, 94.5%; Sensitivity, 91.7%;  
Specificity, 95.8%

Liang, et al., 2018102 Hyper/hypotension 
(Hypertension risk stratification)

MIMIC II and MIMIC III   CNN F1 score of Normal vs. 
prehypertension: 0.8052; 
F1 score of Normal vs. hypertension: 0.9255; 
F1 score of Normal+prehypertension vs. 
hypertension: 0.8295

Kwon, et al., 2020103 Valvular heart disease 
(Detection of mitral regurgitation)

Proprietary DB 
(70529 1-lead ECG)

CNN Internal validation:  
AUC, 0.758 (95% CI, 0.753–0.762);  
Accuracy, 52.6% (95% CI, 51.2%–53.7%);  
Sensitivity, 90.0% (95% CI, 89.6%–90.3%);  
Specificity, 40.8% (95% CI, 39.6%–41.9%)

External validation:  
AUC, 0.850 (95% CI, 0.842–0.857);  
Accuracy, 57.3% (95% CI, 56.1%–59.2%);  
Sensitivity, 90.1% (95% CI, 89.5%–90.5%);  
Specificity, 56.0% (95% CI, 54.9%–57.2%)

Yang, et al., 2020104 Valvular heart disease 
(Detection of aortic stenosis)

Proprietary DB 
(Seismocardiogram and 
gyrocardiogram of 21 
patients)

CNN Accuracy, 95%; Sensitivity, 94%

Yang, et al., 2020105 Valvular heart disease 
(Detection of aortic stenosis)

Proprietary DB 
(Seismocardiogram and 
gyrocardiogram 
of 21 patients)

Random 
forest

Accuracy, 98.96%; Sensitivity, 98.33%; 
Specificity, 99.58%

Kwon, et al., 2020106 Valvular heart disease 
(Detection of aortic stenosis)

Proprietary DB 
(56689 1-lead ECG)

CNN Interval validation:  
AUC, 0.845 (95% CI, 0.841–0.848)

External validation:  
AUC, 0.821 (95% CI, 0.816–0.825)

Cho, et al., 2021109 Heart failure (Detection of heart failure 
with reduced ejection fraction)

Proprietary DB 
(47203 1-lead ECG)

CNN Internal validation:  
AUC, 0.874 (95% CI, 0.859–0.890);  
Accuracy, 67.1% (95% CI, 65.5%–68.6%);  
Sensitivity, 93.2% (95% CI, 90.9%–95.6%);  
Specificity, 63.2% (95% CI, 61.5%–65.0%)
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Table 2. Artificial Intelligence Models for Cardiovascular-Related Diseases Other Than Arrhythmia (continued)

Study Task Dataset Method Results
External validation:  

AUC, 0.929 (95% CI, 0.911–0.946);  
Accuracy, 82.5% (95% CI, 81.4%–83.7%);  
Sensitivity, 92.1% (95% CI, 88.0%–95.8%);  
Specificity, 82.1% (95% CI, 80.9%–83.2%)

Ahmedov, 
and Amirjanov, 
2021107

Heart failure 
(Measurement of a cardiac stroke volume)

Proprietary DB 
(Blood pressure, heart 
performance measured 
by ballistocardiographic 
sensor, skin warming time 
of 92 persons)

Fuzzy model Correlation r: 0.803;  
Mean square error: 8.185 

Wang and Zhou, 
2019108

Heart failure 
(Detection of congestive heart failure)

BIDMC-CHF,  
CHF-RR, MITNSRDB,  
FD, and NSR-RR

LSTM Accuracy, 82.51%–99.22%

Rashid and Al 
Faruque, 2020110

Critical care 
(Detection of myocardial infarction)

PTB diagnostic ECG DB Binarized neural 
network

Accuracy, 90.29%; Sensitivity, 90.41%; 
Specificity, 90.16%

Kwon, et al. 2020111 Critical care 
(Detection of cardiac arrest)

Proprietary DB 
(47505 1-lead ECG)

CNN Internal validation:  
AUC, 0.887 (95% CI, 0.846–0.929);  
Sensitivity, 85.7% (95% CI, 75.9%–92.6%);  
Specificity, 78.1% (95% CI, 76.9%–79.4%)

External validation:  
AUC, 0.921 (95% CI, 0.899–0.998);  
Sensitivity, 82.2% (95% CI, 81.5%–83.0%);  
Specificity, 82.2% (95% CI, 81.5%–83.0%)

Grogan, et al., 2021112 Others 
(Detection of cardiac amyloidosis)

Proprietary DB 
(4995 1-lead ECG)

CNN AUC, 0.86

Kwon, et al., 2020113 Others 
(Detection of anemia)

Proprietary DB 
(70074 1-lead ECG)

CNN Internal validation:  
AUC, 0.870 (95% CI, 0.853–0.887);  
Sensitivity, 87.8% (95% CI, 84.1%–90.8%);  
Specificity 68.0% (95% CI, 67.0%–69.1%)

External validation:  
AUC 0.841 (95% CI, 0.815–0.866);  
Sensitivity, 88.7% (95% CI, 83.3%–92.8%);  
Specificity 65.4% (95% CI, 64.0%–66.8%)

Chiarelli, et al., 2019114 Others 
(Prediction of cardiovascular age)

Proprietary DB 
(2400 1-lead ECG + PPG)

CNN Correlation r, 0.92;  
Mean square error, 7 years

Fan, et al., 2019115 Others (Prediction of 1-day-forward 
self-reported wellness)

Proprietary DB (1-lead 
ECG of 11 persons)

Bidirectional 
LSTM

Accuracy, 93.21%; Sensitivity, 92.51%;  
F1 score: 91.98%

ECG, electrocardiography; PPG, photoplethysmography; ANN, artificial neural network; AUC, area under the curve; CNN, convolutional neural network; LSTM, 
long short-term memory; SVM, support vector machine; RNN, recurrent neural network.
Refer to Supplementary Table 1 (only online) for artificial intelligence models for arrhythmia detection. Refer to Supplementary Table 2 (only online) for dataset 
abbreviations and description.

arrest,111 and other conditions, including cardiac amyloidosis 
and anemia (Table 2).112-115

The most common study following arrhythmia was the de-
tection of sleep apnea. Sleep apnea itself is not a cardiovascu-
lar disease, but obstructive sleep apnea is a major detection 
target for prediction models for cardiovascular-related disease 
that use wearable devices, as it is associated with or increases 
the risk of major cardiovascular diseases. The public dataset 
PhysioNet Apnea-ECG116 has been used in numerous studies. 
There have been several studies that used raw ECG with deep 
learning algorithms, but machine learning models using hand-

mance when applied to ambulatory ECG data.64 In addition, a 
model that could detect AF in a large number of patients using 
a video of the facial region rather than ECG monitoring was 
reported, confirming that diverse types of input data could be 
utilized.36

Other conditions
There were few studies on the screening and detection of dis-
eases such as sleep apnea,76-86 peripheral vascular diseases,87-92 
diabetes,93-97 hyper/hypotensive disease,98-102 valvular dis-
ease,103-106 heart failure,107-109 myocardial infarction,110 cardiac 
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crafted features, such as heart rate variability, have also been 
reported. In addition to ECG, there have also been studies that 
use PPG, many of which were studies that used proprietary 
datasets. There was a study to predict the apnea-associated 
index using wrist-worn reflective PPG obtained directly using 
a wearable device.79 This particular study investigated the 
changes in model performance due to limbic movement, and 
reported that false positive detection had an adverse effect on 
the specificity and positive predictive value of the model.

These studies mainly used proprietary datasets, as there were 

very few public datasets available. As expected, they showed 
very heterogeneous performance, depending on the task. For 
instance, the models showed very high predictive power for 
valvular diseases, such as aortic stenosis, which is known to 
accompany some changes in the ECG. However, the models 
did not show an equally high performance for the detection of 
diabetes or anemia that were not accompanied by substantial 
changes in the ECG. In a study that developed an AI model for 
heart failure, the algorithm was tested on several populations 
with a varying prevalence of heart failure, confirming a very 

Fig. 2. Schematic illustration for wearable device-based artificial intelligence for cardiovascular-related diseases. ECG, electrocardiography; PPG, 
photoplethysmography; CNN, convolutional neural network; RNN, recurrent neural network; LSTM, long short-term memory.

Fig. 3. Meta-analyzed sensitivity and specificity of artificial intelligence for atrial fibrillation detection.
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large difference in the accuracy of the algorithm from 82.51% 
to 99.22%, depending on the prevalence of heart failure in the 
study population.108

For diseases other than arrhythmia, it was difficult to com-
pare the performance of models due to the small number of 
studies for each disease, as well as the use of data from hetero-
geneous settings. Considering the low availability of public 
data and the characteristics of studies with individual datasets, 
external validation was rarely performed.

DISCUSSION

This systematic review and meta-analysis summarized the AI 
models that were developed for or that are potentially useful for 
wearable devices, and that could be used to detect or predict 
cardiovascular-related diseases. In addition to the models for 

arrhythmia detection, including AF, studies have reported on 
models to predict various cardiovascular-related diseases such 
as sleep apnea, diabetes, valvular disease, and anemia.

Fig. 2 summarizes the development and application of an 
AI model for the detection and prediction of cardiovascular-re-
lated diseases. The first step is data collection. The most com-
monly used biosignal for monitoring using a wearable device is 
the 1-lead or 2-lead ECG signal, followed by PPG. Owing to a 
large database, such as the MIT-BIH arrhythmia database,122,123 
various detection models for arrhythmias, including AF, have 
been reported. As these were hospital-based data, there was a 
limit to using the data in implementing an algorithm for wear-
able devices. Fortunately, the availability of biosignals that were 
collected using mobile devices has increased, as databases such 
as the PhysioNet Computing in Cardiology Challenge117 have 
been made public. However, there is a clear need for ambula-
tory biosignals, since the performance of an algorithm devel-

Fig. 4. Hierarchical summary of receiver operating characteristics curves of artificial intelligence for atrial fibrillation detection. (A) All studies. (B) 
Studies with conventional machine learning vs. studies with deep neural networks. (C) Studies tested with public dataset vs. studies tested with pro-
prietary dataset. (D) Studies tested with data acquired from in-hospital devices vs. studies tested with data acquired from wearable devices. HSROC, hi-
erarchical summary receiver operating characteristics.
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oped from the data of a resting setting is quite poor in an am-
bulatory setting.64 Recently, in addition to Holter monitoring, 
which has been traditionally used, the use of patch-type, watch-
type, ring-type, and clothing-type monitoring systems have 
been approved by the FDA.138 Accordingly, the availability of 
ambulatory biosignals is expected to increase significantly in 
the future.

One thing to note in relation to the data is the difference in 
systematic performance between the models that use public 
datasets, proprietary datasets, data acquired from in-hospital 
devices, and data acquired from wearable devices. Data char-
acteristics may vary significantly depending on the methods 
(resting vs. ambulatory) and settings (intensive care unit, in-
patient, outpatient, and general population) of data acquisition. 
For example, the prevalence of cardiovascular diseases varies 
greatly depending on the population, and the class imbalance 
between normal data and disease data may have a significant 
impact on the model performance.108 Therefore, it is very im-
portant in model development to use the collected from a pop-
ulation group that has characteristics similar to the target group 
to which the developed AI model will be applied. In order to de-
velop a more universal model from the perspective of digital 
healthcare, it is preferable to use data collected from large gen-
eral populations rather than data collected from hospitals.

The collected data are transformed into a form more suitable 
for model learning through preprocessing, such as denoising or 
normalization. For example, the length of the input signal could 
be changed or converted to an average signal, depending on 
the type or design of the AI model. Various machine learning 
methods have been used to predict cardiovascular disease us-
ing handmade features such as heart rate variability, R-R inter-
val, and QRS amplitude extracted from ECG or PPG as gener-
al input values. However, the popularization of deep neural 
networks has enabled raw signals themselves to be used as 
input data. Since biosignal data has a time-series characteris-
tic and is not limited in the length of an input signal, recurrent 
neural network (RNN) or long short-term memory is logically 
the most preferred model. However, there have been a consid-
erable number of models that used convolutional neural net-
work (CNN) alone or CNN combined with RNN-based algo-
rithms. In addition to signals, facial imaging videos have been 
used in a model for detecting arrhythmias.36 Those developed 
with deep neural networks generally perform better than tra-
ditional models, suggesting the possibility that AI can extract 
features from imaging as well as signal data that can be used 
for predicting disease states that humans cannot visualize. Al-
though current studies have often used a single biosignal as 
an analysis domain, it would be possible to develop a multi-
modal model that utilizes various signals, imaging data, and 
other clinical information together.

Nevertheless, the most significant problem with deep learn-
ing is that it has a black box-like characteristic that makes un-
derstanding its operation and judgment principle difficult. De-

spite the high accuracy of deep learning models, the decisions 
cannot be accepted by healthcare workers without proper in-
terpretation. While a small number of studies have adopted a 
strategy that uses salient maps to improve interpretability,98,113 
such attempts are still difficult to find compared to the models 
in the field of medical imaging. Extracting interpretable hand-
crafted features from clinical information or biosignals that are 
familiar to human experts and using them together in deep 
learning models could be a feasible alternative to improving 
the interpretability of AI.

Unlike medical imaging, AI models for cardiovascular-relat-
ed disease are preferred to be used with wearable and porta-
ble devices carried by individuals in their day-to-day lives. It is 
difficult to operate a large-scale model on portable devices due 
to hardware limitations. For the analysis of lifelogs collected in 
real time, the operating speed is also a major consideration. 
Therefore, it is essential to develop a lightweight and fast mod-
el, even if there is a slight loss in performance.18,27,32,38,43 Second, 
the algorithm is operated in an environment that is not well-
controlled, unlike a hospital environment. As mentioned earli-
er, a model that is developed using resting biosignals as a source 
rarely works well for ambulatory biosignals.64 In addition, even 
resting ECG signals may be more prone to artifacts or noise if 
they are acquired in daily life. If too many false positive alarms 
for these abnormal signals occur, the user may prefer to stop 
using the wearable device. Therefore, proper data preprocess-
ing and thresholding are required to detect a life-threatening 
condition without tiring the user.

Wearable device-enabled detection of cardiovascular-relat-
ed diseases are likely to become more common as healthcare 
technology expands.139 It is estimated that more than 50 mil-
lion people in the United States use wearable device to record 
their daily activities.140 These lifelogs could lead to the early 
detection of diverse cardiovascular-related diseases and po-
tentially life-threatening conditions. However, although pa-
tient-activated daily monitoring has the potential benefit to im-
prove the detection of subclinical or occult diseases, there are 
limitations of their widespread use. For example, poor signal 
quality and false alarms can lead to inappropriate interpreta-
tion, resulting in unnecessary medical referrals and testing.141 
It is essential to understand the limitations of consumer-based 
technologies to avoid improper dependence on the diagnosis 
and treatment of cardiovascular diseases.142 Even while these 
devices may help diagnose cardiovascular-related diseases, it 
remains to be seen how they can be optimally incorporated in 
current healthcare practices to improve patient outcomes.139

One limitation of this systematic review and meta-analysis lies 
in the high heterogeneity of the studies included in the analysis. 
For instance, some studies used ECG data obtained from an in-
tensive care unit, whereas some studies directly utilized data ob-
tained with a smart watch. Although a subgroup analysis was 
performed to resolve the heterogeneity, nevertheless, inap-
propriate statistical estimates may have been produced in the 
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process of quantitatively synthesizing studies that were con-
ducted with data that were collected using different modali-
ties from different population groups. In addition, for diseases 
and tasks other than AF, meta-analysis could not be performed, 
as there were too few studies to be quantitatively synthesized.

In conclusion, this systematic review and meta-analysis re-
vealed that AI models for the diagnosis and prediction of vari-
ous cardiovascular-related diseases as well as arrhythmias are 
being developed, and that they are gradually developing into 
a form that is suitable for wearable and mobile devices. Nu-
merous studies have demonstrated that the deep learning al-
gorithm shows very high performance compared to the exist-
ing analysis methods that use human visualization or the 
extraction of handmade features for biosignals, such as ECG 
or PPG signals. However, there must still be sufficient consid-
eration of various aspects, such as the data acquisition process, 
characteristics of the acquired data, characteristics of the pop-
ulation to which the algorithm is applied, weight reduction of 
the algorithm, working principle, and interpretability of the 
model, to develop a practical medical AI model that can be used 
in the real world.
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