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Rejection is still a critical barrier to the long-term survival of graft after liver transplantation,
requiring clinicians to unveil the underlying mechanism of liver transplant rejection. The
cellular diversity and the interplay between immune cells in the liver graft microenvironment
remain unclear. Herein, we performed single-cell RNA sequencing analysis to delineate
the landscape of immune cells heterogeneity in liver transplantation. T cells, NK cells, B
cells, and myeloid cell subsets in human liver and blood were enriched to characterize their
tissue distribution, gene expression, and functional modules. The proportion of CCR6
+CD4+ T cells increased within an allograft, suggesting that there are more memory CD4+
T cells after transplantation, in parallel with exhausted CTLA4+CD8+ T and actively
proliferating MKI67+CD8+ T cells increased significantly, where they manifested
heterogeneity, distinct function, and homeostatic proliferation. Remarkably, the changes
of CD1c+ DC, CADM+ DC, MDSC, and FOLR3+ Kupffer cells increase significantly, but
the proportion of CD163+ Kupffer, APOE+ Kupffer, and GZMA+ Kupffer decreased.
Furthermore, we identified LDLR as a novel marker of activated MDSC to prevent liver
transplant rejection. Intriguingly, a subset of CD4+CD8+FOXP3+ T cells included in
CTLA4+CD8+ T cells was first detected in human liver transplantation. Furthermore,
intercellular communication and gene regulatory analysis implicated the LDLR+ MDSC
and CTLA4+CD8+ T cells interact through TIGIT-NECTIN2 signaling pathway. Taken
together, these findings have gained novel mechanistic insights for understanding the
immune landscape in liver transplantation, and it outlines the characteristics of immune
cells and provides potential therapeutic targets in liver transplant rejection.
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INTRODUCTION

Liver transplantation is the only effective way to treat a variety of
end-stage liver diseases (1, 2), but rejection is still one of the
important reasons leading to the failure of liver transplantation
(3). Therefore, studying the mechanism of liver transplant
rejection and inducing immune tolerance are the research
hotspots in the field of organ transplantation (4). It is well
known that cellular immunity plays a leading role in the
occurrence and development of rejection (5). It is complex for
immune cells to participate in liver transplant rejection or
immune tolerance. Different immune cells play different
functions in the process of transplant rejection and play
different roles in the establishment of immune rejection or
immune tolerance (6, 7). A key problem hindering the
immune related research of liver transplantation is the lack of
understanding of the remodeling of the immune environment in
liver transplantation.

Establishing a more comprehensive landscape of immune
cells heterogeneity in liver transplantation is crucial to improve
understanding of the pathologic physiology. The recent single-
cell transcriptome sequencing technologies have brought
many new insights into complex physiological mechanisms (8).
Single-cell transcriptome sequencing analysis of immune cells
allows detailed understanding of these cells in the tissue
microenvironment (9). Recently, the new technology has been
applied to cancerous and immune cells from patients revealing T
cell exhaustion signature and their connection to T cell activation
(10, 11). It can help us understand tumor biology regarding
collective behavior and regulation of a given tumor cell
community (12). In our study, 70,000 cells for the single-cell
RNA sequencing analysis were isolated from liver biopsy
specimens and PBMC of patients who underwent liver
transplantation. We hypothesized that immune cells ’
heterogeneity may contribute to a molecular and biological
diversity of a cell community in liver transplantation. It should
be noted that the interaction between immune cells and
hepatocytes in different genetic backgrounds may affect the
immune function and metabolic homeostasis of transplanted
liver. Fully understanding the process of immune cells
remodeling in transplanted liver graft is of great significance to
understanding the pathogenesis of postoperative complications
and formulate treatment strategies.

Todeepen the characterizationof the immune cells’heterogeneity
of liver graft after transplantation,we identified some subpopulations
of immune cells (CCR6+ CD4+ T, CTLA4+CD8+ T, CD163+
Kupffer, CD4+CD8+FOXP3+ T, LDLR+MDSC), characterized by
different spatial distribution in the allograft and gene expression
profiles suggesting functional disparity. Therefore, the interaction
between donor and recipient to reconstruct the immune
microenvironment homeostasis of graft deserves further study.
Interestingly, we found that intercellular communication between
LDLR+ MDSC and CTLA4+CD8+ T cells interact through TIGIT-
NECTIN2 signaling pathway. Collectively, our work provides new
light on the cellular compartments that underlie the physiology of the
transplanted liver graft and represents a reliable reference for studies
on immunemicroenvironment in human liver transplantation.
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MATERIALS AND METHODS

Study Subjects
For baseline patient data (Supplementary Table S1), we
included patients (n=55) who underwent liver transplantation
at Organ Transplantation Center, the Affiliated Hospital of
Qingdao University, among November 2020 and October
2021. Data related to patients consisted of gender, age, ABO
blood group, and etiology while donor also included organ type,
gender, age, ABO blood group, and laboratory data. All liver
grafts were voluntarily donated after cardiac death or by living
donors and we also included several healthy people as control,
which were approved by the Ethics Committee of the Affiliated
Hospital of Qingdao University (QYFYWZLL26550). For
scRNA-seq, histological analysis, and flow cytometry, all
human liver (n=4) and blood samples (n=4) were collected
from patients after liver transplantation.

Human Tissue Cell and PBMC Isolation
After liver puncture tissues were obtained, we placed them into
tissue preservation solution immediately. Then, the tissues were
transported to be dissociated routinely. Briefly, tissues were cut
into approximately 1-2 mm3 pieces in the RPMI-1640 medium
(Gibco) and digested into single-cell suspensions with the Tumor
Dissociation Kit, human (Miltenyi) at 37°C for 60 min. For
blood, we collected about 5 ml peripheral blood from one person
using anticoagulant tube, which was then centrifuged to prepare
PBMC (13). We prepare PBMC using the density gradient
centrifugation technique. This is done using an isotonic
solution (lymphocyte separator, HISTOPAQUE) with a specific
gravity between red blood cells, multinucleated white blood cells,
and lymphocytes. The specific gravity of lymphocytes and
monocytes is less than or equal to that of the stratified
solution, and they float on the surface of the stratified solution
after centrifugation. The dissociated cells were subsequently
passed through a 70-µm SmartStrainer and centrifuged at 400
g for 5 min. After the supernatant was removed, the pelleted cells
were suspended in red blood cell lysis buffer (Miltenyi) to lyse red
blood cells. After washing twice with 1× PBS (Gibco), the cell
pellets were re-suspended in sorting buffer [PBS supplemented
with 2% fetal bovine serum (FBS, Gibco)].

Library Preparation and Sequencing
Cells were loaded approximately 17,400 cells/chip position using the
10x Chromium Single Cell 3’ Library, Gel Bead &Multiplex Kit and
Chip Kit (10x Genomics, V3.1 barcoding chemistry) according to
the manufacturer’s instructions. Purified libraries were analyzed by
an Illumina nova-seq 6000 sequencer with 150-bp paired-end reads.
We applied Cell Ranger (version 3.0.1, 10x Genomics) to generate
single-cell data, which processed chromium single-cell RNA-seq
outputs to align reads and generate the feature barcode unique
molecular identifier (UMI) matrices.

Single Cell Gene Expression Quantification
and Subcluster Delineation
We used the Seurat R package (version 3.2.0) importing raw data to
quality control, normalize, scale, and further process data (14). Low
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quality cells were removed with the following criterion: cells had
either fewer than 501 expressed genes, 2001 UMIs, or more than
25% mitochondrial counts. The remaining high-quality cells were
normalized and scaled with the default parameters. Highly variable
features were identified using FindVariableFeatures function. Then
we performed PCA analysis on the scaled data with the determined
variable features, dimension reduction, and cluster using
FindNeighbors (dims = 1:10) and FindClusters (resolution = 0.5)
function. Then we run non-linear dimensional reduction (tSNE) to
explore and visualize data.

Cell Type Determination
We used FindMarkers and FindAllMarkers function to find
differentially expressed features of each cluster. Cell types were
annotated to known biological types with the canonical marker
genes (Supplementary Table S2) according to CellMarker database
(http://bio-bigdata.hrbmu.edu.cn/CellMarker/) (15) and published
articles (16–19). Furthermore, we also used the SingleR package
(version 1.2.4) to help identify the cell types (20).

Functional Enrichment Analysis
After the annotation of each cell type, we employed the
functional enrichment analysis to differentially expressed genes
between different clusters for Gene Ontology (GO) and KEGG
(Kyoto Encyclopedia of Genes and Genomes) analysis to
illustrate the biological process and potential function of
different cells using clusterProfiler package (version 3.17.0)
(21) and org.Hs.eg.db package (version 3.11.4). The p value
cutoffs of GO and KEGG were both 0.05. The top 10 terms of
results were visualized by barplot or dotplot.

Pseudotime Analysis
Trajectory analysis was performed using monocle package (version
2.17.0) (22). Including T cells, NK cells, B cells, andmyeloid cells, we
performed analysis of each group with the following parameters:
lowerDetectionLimit=0.5, min_expr=0.1, num_cells_expressed>=
10. For visualization, plot_cell_trajectory function was used to
plot the potential trajectory according to pseudotime, seurat
clusters, and meta data.

Cell-Cell Communication Analysis
Cell-to-cell interactions were done using CellChat package
(version 1.1.2) (23). The majority of ligand-receptor interactions
were mainly on the basis of KEGG signaling pathway database
and recent peer-reviewed experimental studies. The main steps
of inference of intercellular communications are as follows:
(1) Identification of differentially expressed signaling genes.
(2) Calculation of ensemble average expression. (3) Calculation
of intercellular communication probability.

Bulk RNA Sequencing Analysis
The transcriptome data for validation were downloaded and
processed from the NCBI Gene Expression Omnibus (http://
www.ncbi.nlm.nih.gov/geo/) with accession number GSE145780
(7), which measured gene expression by microarrays in 235 liver
transplant biopsies, including normal, rejection, and fibrosis
Frontiers in Immunology | www.frontiersin.org 3
samples. We performed further statistic analysis using R
software (version 4.0.2).

Immune Infiltration Estimation
We used CIBERSORT, a method for characterizing complex
immune infiltration of tissues according to gene expression
profiles, which was developed by Newman et al. (24) from the
Alizadeh Lab and was popular in indication of immune infiltration.

Histological Staining
The fresh liver tissues were fixed with 4% paraformaldehyde and
embedded in paraffin, then sectioned in 4 mm in thickness and
stained with hematoxylin and eosin (HE), reticular fiber for
morphological evaluation, and Masson’s trichrome staining for
fibrosis detection.

Multiplex Immunofluorescence Staining
Briefly, slides were rehydrated with a series of graded ethanol
solutions in deionized water. Antigen retrieval was performed,
then slides were serially stained with the following antibodies:
CD4, CD8, CD11b, CD14, CD15, and FOXP3. Subsequently, Opal
IHC Detection Kit (Akoya Biosciences) was applied as a secondary
label and antibody signals. Image acquisitions were performed using
the Vectra Polaris multispectral imaging platform (Akoya
Biosciences), with the entire slide image being scanned and 3-5
representative regions of interest chosen by the pathologist (25).

Immunohistochemical Staining Analysis
Paraffin sections are routinely dewaxed to hydration, and washed with
distilled water. Following incubation in 3%H2O2 for 10min, antibodies
anti-CD4, CD8, CD11b, CD14, and CD15 were added and incubated
at 4°C for overnight. The specimens were incubated with secondary
antibodies at 37°Cfor 1 h, followed by diaminobenzidine staining (26).

Flow Cytometry
Cells were stained using fluorochrome-conjugated antibodies
anti-CD3, CD4, CD8a, CD14, CD15, CD45, HLA-DR, and
CD11b (BioLegend) according to the protocols provided by the
manufacturer. Samples were analyzed using FlowJo software.

Statistics
For the experimental data, GraphPad Prism 8 (GraphPad
Software) was used to perform statistical analyses and graphics
production. Data represent mean ± SEM. Results were
considered significant when P < 0.05. Differences among the
three groups were analyzed using a one-way analysis of variance
and Newman-Keuls test for post-hoc comparisons.
RESULTS

Single Cell Atlas Construction of Human
Liver Transplantation
To reveal the cellular diversity and gene signatures, we
performed single cell sequencing from 4 in human liver
May 2022 | Volume 13 | Article 890019
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penetrating tissues and 4 PBMCs from patients after liver
transplantation using 10X genomics sequencing, and to
discriminate between liver-resident and circulating leucocytes
(Figure 1A). The clinical meta data and HE staining of samples
are shown in Supplementary Table S1 and Figure 1G. We also
merged 3 healthy liver data of our previous work. We applied
strict filtering on data, including cells expressed genes, unique
molecular identifiers (UMIs), and mitochondrial counts
(Supplementary Figures S1A, B), and further performed
normalization and scaling.

We conducted dimensional reduction and clustering
including principal component analysis (PCA) and t-
distributed stochastic neighbor embedding (t-SNE), of the
combined liver tissues and PBMCs with 68,172 high quality
cells (Supplementary Figure S1C). Compared with PBMCs, cells
from liver tissues expressed higher levels of CXCR4 and CCL3L1
genes (Supplementary Figures S1D–F), which were liver-
resident markers. These clusters were annotated using
canonical marker genes (Supplementary Table S2 and
Figures 1B, D), across 6 cell lineages, each containing cells
from both health and liver transplantation tissues: T cells (27,976
cells, 41.0%, marked with CD3D, CD3E and CD3G), NK cells
(14,477 cells, 21.2%, marked with CD7, FGFBP2, and KLRF1), B
cells (4534 cells, 6.7%, marked with CD79A, CD79B, and
MS4A1), myeloid cells (15,687 cells, 23.0%, marked with
CD68, CD14, and CD163), endothelial cells (3944 cells, 5.8%,
marked with PECAM1, ICAM2, and ERG), and fibroblasts (1554
cells, 2.3%, marked with COL1A2, COL3A1, and ACTA2). It was
found that T, NK, and myeloid cells were dominant in the liver
transplantation landscape across samples (Figures 1C, E). The
differentially expressed genes of each type are shown in
Figure 1F and Supplementary Table S3.

T, NK Cell Clustering and Subtype
Analysis
To delineate the intrinsic landscape and potential function of the
whole T, NK cell of liver tissues, we first re-clustered the 31,300
liver-resident T, NK cells from 7 livers (n=3 health and n=4 liver
transplantation), revealing 15 clusters (Figures 2A–C). It
emerged 7 clusters for CD8+ T cells, 3 clusters for CD4+ T
cells, 1 cluster for double negative T cells, and 2 clusters for NK
cells (Figure 2D and Supplementary Figures S2A–D), each
cluster containing cells from both healthy and transplanted livers
(Figure 2B). Cells of the first CD8+ cluster, C3-GZMK-CD8T,
specifically expressed marker genes including GZMK, DUSP4,
and COTL1 (Figure 2E and Supplementary Table S4), which
was thought to be cytotoxic CD8+ T cells. The second cluster,
C4-CRTAM-CD8T, was dominant in healthy tissue significantly
(Figure 2F), expressing the high levels of CRTAM, HLA-DQA2,
and MLF1. The CRTAM gene was involved in regulation of
CD8+ T cell regulation, so this cluster was identified as
regulatory-like CD8+ T cells. Enrichment analysis also
confirmed the phenomenon called “regulation of mRNA
metabolic process” (Supplementary Figure S2E and
Supplementary Table S4). However, it did not express
traditional Treg markers such as FOXP3 and IL2RA.
Moreover, this cluster showed a myeloid phenotype due to the
Frontiers in Immunology | www.frontiersin.org 4
expression of HLA-DQA2 and MLF1. The third cluster, C5-
GZMH-CD8T, also showed a cytotoxic phenotype, characterized
by specific expression of killing markers including GZMH and
GZMA (Figure 2G). Furthermore, EGR1 expression pointed to
the transcriptional regulator function of this cluster. Particularly,
we found 3 CD8+ T clusters with higher proportion in liver
transplantation tissues. C9-HBB-CD8T holds plenty of unique
genes consisting of HBB, HBA, and ALB, pointing out its specific
functions, which needs to be studied further. C10-CTLA4-
exhausted CD8T, holding 1495 cells, predominantly composed
of cells from liver transplantation tissues, expressed high levels of
exhaustion markers CTLA4, PDCD1, and LAG3. C11-MKI67-
proliferative CD8T was labelled as the proliferative cluster
for the high level of related factors including MKI67 and
TOP2A (Figure 2G).

CD8+ T clusters showed comparable distribution among
patients (Figures 2A, C, F). C4- regulatory-CD8T with CRTAM
expression and C5-cytotoxic-CD8T with GZMH expression were
prevalent in health tissue, while C10-exhausted-CD8T and C11-
proliferative-CD8T cells were dominant in liver transplantation
tissues. Interestingly, we performed pseudotime analysis to order
CD8+ T cells in pseudotime to project the developmental
trajectories and found that clusters showed relative time-process,
which began with C11-proliferative-CD8T and ended with C10-
exhausted-CD8T (Supplementary Figures S2F, G). Thus,
exhausted CD8+ T cells were highly enriched in the period of
the last phase, indicating the T cell state went from proliferation
and exhaustion.

Similarly, we identified 3 major CD4+ T clusters (Figure 2A),
which all expressed high levels of IL7R and LTB (Supplementary
Table S4). The first cluster, C1-IL7R-CD4T, was significantly
dominant in heath tissue, expressing the highest level of IL7R
gene, which was identified as T helper cells (Figure 2F).
Moreover, it especially expressed markers such as TNF and
CD40LG, which indicated the activation vs. Type1 immunity.
The second cluster, C6-CCR7-CD4T, showed high levels of
LEF1, CCR7, and CD62L. CCR7 and CD62L have been shown
to mediate the migration of memory T cells, thus this cluster was
identified as central memory CD4+ T cells. It also showed the
enhancer function for the LEF1. While the last CD4+ cluster,
called C8-CCR6-CD4T, similarly expressed CCR7, was identified
as another memory T cluster for the special expression of CCR7
and CCR6. With poor expression of CD4 and CD8, we found
double negative T cell clusters in the graft tissues, C12-CCL3-
DNT, whose marker genes were CCL3L1, IFIT2, and DNAJB4.
We identified it as exhausted DNT cluster (Figures 2A, E). Two
NK clusters (C0-XCL1-NK, C2-FGFBP2-NK) showed different
distributions among tissue. The former, C0-XCL1-NK,
accounting for the highest proportion of T, NK clusters,
showed high levels of XCL1, AREG, and IRF8. While the latter
cluster, C2-FGFBP2-NK, expressing FGFBP2, MYOM2, and
FCGR3A, was dominant in liver transplantation tissues
(Figures 2A, F and Supplementary Table S4).

B Cell Clustering and Subtype Analysis
B cells also play great roles in the process of liver transplant
rejection. There were 2091 cells further re-clustered and showed
May 2022 | Volume 13 | Article 890019
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functional profile in healthy and liver transplantation tissues. We
matched 11 clusters and acquired the differentially expressing
genes of each cluster (Supplementary Figures S2H, I and
Supplementary Table S5). C0-RASSF6 expressed high levels of
Frontiers in Immunology | www.frontiersin.org 5
RASSF6, SSPN, and CD82. RASSF6 functions to encode an RAS
effector protein which induces apoptosis. Thus, we named this
cluster as C0-apoptosis-cluster. C1-ZBTB16, C2-FCRL3, C3-IL6,
and C5 might show similar functions for the common high levels
A

B

D

G

E F

C

FIGURE 1 | Single cell atlas of human liver transplantation. (A) Schematic diagram of scRNA-seq analysis workflow. (B) tSNE plots for cell type identification of
68,174 high-quality cells. (C) tSNE plot colors by spatial distribution of cells in normal (N) and liver transplantation (LT) tissues. (D) Expression of canonical cell
markers including CD3D, KLEF1, CD68, CD79A, CDH5, and COL1A2. (E) Barplots showing the proportion of cell types in each sample. (F) Heatmap showing the
top 10 genes of each cell type. (G) HE, Masson, and reticular staining of liver transplantation samples.
May 2022 | Volume 13 | Article 890019
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of the list of genes, including IGHD, YBX3, IL4R, and FCER2, of
which FCER2 is a B cell specific antigen while both IL4R and
FCER2 involve the regulation of IgE production. C1-ZBTB16
expressed genes related to cell cycle and cell division, including
ZBTB16 and CENPM, simultaneously. C2-FCRL3 holds plenty
of unique genes such as FCRL5, FCRL3, and ARL4D, which
implicates B cell development. Furthermore, C4-IGHG showed a
lot of IGHG family members: IGHG1, IGHG2, IGHG3, and
Frontiers in Immunology | www.frontiersin.org 6
IGHG4. The group of C5-HRK significantly differentially
expressed HRK, CCDC191, NEIL1, and PCDH9. Notably,
HRK encodes a family of BCL2 proteins, members of which
are involved in promoting or inhibiting apoptosis. Thus, C5-
HRK was a separate group of apoptosis from the C0-RASSF6.
However, the proportion of these two groups of cells in liver
transplantation tissue was decreased (Supplementary Figure
S2J). Both C6-IL32 and C7-IGHA2 expressed T and NK cell
A CB

D E

F

G

FIGURE 2 | Identifying T and NK cell subpopulations in liver tissue. (A) Clustering of 31,300 T and NK cells and cell annotation. (B) tSNE plot colors by spatial
distribution of cells in normal (n=3) and liver transplantation (n=4) human tissues. (C) tSNE plot colors by spatial distribution of cells in 7 samples. (D) Barplots
showing the proportion of CD4+ T cells, CD8+ T cells, and NK cells in each sample. Immunofluorescence including CD4 and CD8 in normal and liver transplantation.
(E) Heatmap of each T and NK cells cluster top 5 marker genes. (F) Fractions of T, NK cell subpopulations in normal (n=3) and liver transplantation (n=4) samples
(* means p < 0.05). (G) RidgePlots showing the expression of exhausted, cytotoxic, proliferating, and helper T cells of CD8+ T cells and CD4+ T cells.
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related genes, including IL32, NKG7, CD7, GZMK, and GZMA,
which are involved in cytotoxicity.

Distinct Lymphocytes Depict Profile in
PBMC
Compared with liver biopsy, peripheral blood is easier to obtain
clinically, which has certain potential value in the occurrence and
development of transplant rejection and tolerance (27). Thus, we
similarly built the liver transplantation atlas of PBMC at the
single cell level. By merging 4 healthy data (28), we obtained
46,808 high quality cells after quality control. Dimensionality
reduction, cell cluster, and annotation turned out 22 clusters,
including 30,465 (65.09%) T/NK cells, 12,557(26.83%) myeloid
cells, and 3786 (8.09%) B cells (Supplementary Figures S3A–C).
We performed further analysis by re-clustering each cell type and
detailed annotation (Supplementary Figure S3D).

Re-clustering T and NK cells obtained 5 CD4+ T cell clusters, 8
CD8+ T cell clusters, and 2 NK clusters (Figures 3A, B,
Supplementary Figure S3E, and Supplementary Table S6). We
found CD8+ T cells were much more enriched in liver
transplantation tissues while CD4+ T cells were relatively lower
than those in normal tissue (Figure 3C), which was further
confirmed by flow cytometry (Figure 3D). Similarly, we also
identified cytotoxic CD8+ T cells, covering C7-GZMH-CD8T,
C8-GZMK-CD8T, C9-KLRB1-CD8T, C10-CCL5-CD8T, and
C14-GZMA-CD8T, using canonical markers including GZMA,
GZMK, and GZMH (Supplementary Figure S3F). Interestingly,
we found C7-GZMH-CD8T was significantly dominant in liver
transplantation tissue, and it showed NK cell-related genes
including NKG7 and FGFBP2. In addition, LAG3 was highly
expressed in this cluster, pointing out the potential exhausted state
(Supplementary Figure S3F). However, we did not find a
proliferative CD8+ T cluster. We found C1-TSHZ2-CD4T
(TSHZ2 and FHIT highly expressing) and C4-ITGB1-CD4T
(ITGB1 and AQP3 highly expressing) in liver transplantation
tissue were significantly lower than those in healthy tissue
(Figure 3E). Importantly, C5-GZMB-NK (GZMB+ SPON2+) is
much more prominent in liver transplantation tissue, pointing out
that this cluster may play an important role in the process of liver
transplant rejection and tolerance.

A total of 3786 B cells were further analyzed (Figures 3F–H).
We also found several clusters had different proportions between
liver transplantation and normal tissue (Figure 3I). C2-IL4R-B
cell expressed high levels of IL4R, TCL1A, and H1FX, while C4-
NEIL1-B cell holds increased expressing level of ALI39020.1,
PCDH9, and NEIL1. The proportion of both clusters in liver
transplantation tissues was significantly higher than that in
healthy tissue. On the contrary, C3-AIM2-B cell and C8-
IGLL5-B cell were dominant in healthy tissue. The former
expressed S100A11, AIM2, and TLR10 genes while the later
expressed IGLL5, IGJ, and HSPA6 genes.

The Specific Phenotypes of Exhausted
CD8 T Cells
The percentage of C10-exhausted-CD8T cells were increased
significantly in liver transplantation graft tissues (Figure 2F),
Frontiers in Immunology | www.frontiersin.org 7
especially in rejection tissues (Figure 4D), which indicated that
it may play a significant role in the period of immune tolerance
and transplant rejection. Thus, we further explored this cluster,
which showed extra markers, such as HAVR2, TIGIT, and DUSP4
(Figure 4A). In addition, we validated the high expression of PD-1
using immunohistology of liver transplantation tissues
(Figure 4B). With identified differentially expressed genes of
this cluster, we conducted pathway enrichment analysis. The
results showed that these genes were involved in the regulation
of T cell activation, T cell receptor signaling pathway, PD-L1
expression, and PD-1 checkpoint pathway (Figure 4C,
Supplementary Figure S4A and Supplementary Table S4). The
group of C10-exhausted-CD8T cells represented the highest
proportion in the rejection group (Figure 4D). We confirmed
this finding in the bulk RNA-seq, as the expression of exhausted
CD8T cells marker genes such as CTLA4 and LAG3 in the
rejection group were significantly higher than the non-rejection
group (Figure 4E, Supplementary Figure S4B), confirming the
exhausted CD8T cells increased in the rejection group. Moreover,
CIBERSORT deconvolution algorithm was used to analyze
immune infiltration according to bulk RNA-seq data, which
showed that CD8+ T cells were significantly higher in rejection
samples than those in stable samples (Supplementary
Figure S4E).

To further delineate the structure of exhausted CD8+ T cells,
we re-clustered this group and acquired 3 detailed clusters
(Figure 4F). The top 5 marker genes of each cluster are shown
in Figure 4G. C10-exhausted-CD8T were divided into three
groups and cluster 3 expressed higher CD4 and FOXP3 than the
others (Figure 4H). In addition, we confirmed this finding using
multiplex immunofluorescence staining (Figure 4I). According
to pseudotime analysis, we mentioned above that C10-
exhausted-CD8T was highly enriched in the period of the last
phase (Supplementary Figure S2F). Curious about cluster 2,
called CD4+CD8+FOXP3+ T cells, we further speculated on the
internal evolution of exhausted CD8 cells. Interestingly, we
found CD4+CD8+FOXP3+ T were at the beginning of
differentiation (Supplementary Figures S4C, D).

Distinct Myeloid Cells Inhabit the
Liver Tissue
We identified 14 clusters by clustering the whole myeloid cells in
liver tissue, which were annotated as dendritic cells (DCs), Kupffer
cells (KCs), macrophage cells (TMs), and tissue monocytes
(Monos) (Figures 5A–D and Supplementary Tables S8, 9).
Clusters 7, 9, and 13 were identified as KCs because of the high
expression of known markers including MARCO, TIMD4, CD5L,
and VCAM1 (Figures 5A, E). C7-CD163-Kupffer expressed high
levels of classical markers of macrophage such as CD163, which
was dominant in health tissue. C9-APOE-Kupffer also holds the
larger proportion in healthy tissue with expression of complement
C1q family, including C1QA, C1QB, and C1QC. C13-GZMA-
Kupffer showed potential cytolytic function, whose markers were
GZMA and NKG7, similar to cytotoxic NK cells. Then, we
performed pseudotime analysis to 3 KCs, which implied that
C13-GZMA-Kupffer was at the end of differentiation
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(Figure 5F). KCs showed similar results to exhausted CD8+ T cells
(Supplementary Figure S2F). We also found 3 clusters of
conventional macrophage cells: C2-THBS1-Macro, C5-
CDKN1C-Macro, and C6-FOLR3-Macro. It is worth noting that
C2-THBS1-macro was expanded in normal liver significantly.

Clustering of myeloid cells acquired 5 clusters of DCs
(Figures 5A, G). C0-CD1C-DC showed the largest expression
Frontiers in Immunology | www.frontiersin.org 8
of CD1C, and other markers were FCER1A, CD1E, and SPIB.
The second cluster was C4-SDS-DC, with special markers
including SDS and A2M. C10-CADM-DC and C11-CD141-
DC had similar markers, such as CLEC9A, CADM1, and
IDO1, while C10-CADM-DC was enriched in the expression
of EGLN3, TACSTD2, and the late state (Figure 5H and
Supplementary Figure S5C).
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FIGURE 3 | Identifying T and NK cell subpopulations in PBMC. (A) Clustering of 30,465 T and NK cells and cell annotation. (B) tSNE plot colors by spatial distribution of cells
in normal (n=4) and liver transplantation (n=4) human tissues. (C) tSNE plot colors by spatial distribution of cells in 8 samples. (D) Flow cytometry analysis of CD4+ T cells and
CD8+ T cells fraction in normal and liver transplantation tissues. (E) Fractions of T, NK cell subpopulations in normal (n=4) and liver transplantation (n=4) samples (* means p <
0.05). (F) Clustering of 3786 B cells. (G) tSNE plot colors by spatial distribution of cells in normal (n=4) and liver transplantation (n=4) human tissues. (H) tSNE plot colors by
spatial distribution of cells in 8 samples. (I) Fractions of B cell subpopulations in normal (n=4) and liver transplantation (n=4) samples (* means p < 0.05).
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The Specific Phenotypes of LDLR+ MDSC
We found C3-LDLR-macro was expanded in liver transplantation
tissues (Supplementary Figure S5A), so we further explored this
cluster. Interestingly, we named it as a group of MDSC with high
expression of TMEM176B, S100A8, and S100A9 (Figure 6A). The
flow cytometry result for PBMC and tissue staining confirmed the
result (Figures 6B, C). Enrichment analysis indicated that this
cluster was involved in neutrophil activation and response to
lipopolysaccharide (Figure 6C, Supplementary Figure S6A),
which means plenty of marker genes of this cluster participated in
lipid metabolism. In addition, this cluster expressed high levels of
RETN and LDLR, which are thought to be strong lipid metabolism
related genes. The percentage of LDLR+ MDSC was increased
Frontiers in Immunology | www.frontiersin.org 9
significantly in liver transplantation tissues, especially in rejection
tissues (Figure 6D). MDSC was recognized as a key factor in
inducing immune tolerance and inhibiting transplant rejection.
Bulk RNA-seq confirmed MDSC markers, S100A8 and S100A9,
were significantly higher in liver transplant rejection tissues than
those in stable tissues (Figure 6D). We demonstrated these results
using immunohistochemistry and fluorescence (Figure 6E).

The Multi-Lineage Interactome in the
Liver Tissue
After defining the population of T, NK cells, and myeloid cells,
we performed cellular communication analysis within liver
tissues using CellChat, to infer the intercellular communication
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FIGURE 4 | The specific phenotypes of exhausted CD8 T cells. (A) Expression of differentially expressed genes in exhausted CD8 T cells. (B) Immunohistology of PD1
in normal and liver transplantation tissue. (C) Enrichment analysis of Gene Ontology terms for differentially expressed genes in exhausted CD8 T cells. (D) Fractions of
exhausted CD8 T cells in normal (n=3), stable (n=2), and rejection samples (n=2) after liver transplantation. (E) Bulk RNA-seq expression of CTLA4 and LAG3 in stable
(N, n=129) and rejection samples (R, n=37) after liver transplantation. (F) tSNE plots showing re-clustering of exhausted CD8 T cells. (G) Heatmap of each cluster’s top 5
marker genes. (H) Expression of CD4, CD8A and FOXP3 among clusters. (I) Immunofluorescence including CD4 and FOXP3 in normal and liver transplantation.
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network (Figure 7A). We constructed the immune populations’
interactions with outgoing and incoming pathways, between
ligands, receptors, and cofactors (Supplementary Table S10).
We visualized the dominant senders and receivers using scatter
plot, which unfolded that KC_1, DC_4, and KC_2 showed the
top 3 outgoing interaction strengths while CD8T_1, CD8T_2,
and CD8T_6 showed the top 3 incoming interaction strengths
(Figure 7B). Further, to explore how multiple cell types
and signaling pathways coordinate, we identified global
communication patterns (Supplementary Figure S7A). Two
patterns of secreting cells basically distinguished T cells and
myeloid cells, which were involved in different pathways
individually. Three patterns of target cells emerged, noting that
DC_2, KC_1, and KC_2 gathered as the same pattern with
specific signals.
Frontiers in Immunology | www.frontiersin.org 10
TIGIT-NECTIN2 Pathway Matters Between
CTLA4+ Exhausted CD8 T Cells and
LDLR+MDSC
Having proved that C10-CTLA4-exhausted CD8T was dominant
in liver transplantation tissue, with special characteristics, we
further explored the interactions between C10-CTLA4-
exhausted CD8T and the whole myeloid cells (Figure 7C).
Importantly, we found the TIGIT-NECTIN2 pathway
particularly existed in C10-CTLA4-exhausted CD8T and C3-
LDLR-MDSC (Figure 7C). C10-CTLA4-exhausted CD8T
showed the most powerful outgoing strength in the TIGIT
signaling pathway network while LDLR+MDSC placed second
to receivers, and TIGIT-NECTIN2 contributed most of TIGIT
signal’s ligand-receptor pair (Figure 7D). Meanwhile, two clusters
showed similar results in the NECTIN signaling pathway network
A

D

B

E F

G H

C

FIGURE 5 | Identifying myeloid cell subpopulations in liver tissue. (A) Clustering of 4883 myeloid cells and cell annotation. (B) tSNE plots colors by spatial distribution of cells
in normal (n=3) and liver transplantation (n=4) human tissues. (C) tSNE plots colors by spatial distribution of cells in 7 samples. (D) Dotplots of each cluster of myeloid cells’ top
5 marker genes. (E) Gene expression of Kupffer cells’ canonical markers across myeloid cells. (F) Pseudotime analysis with identified 3 Kupffer groups. (G) Gene expression of
dendritic cells’ canonical markers across myeloid cells. (H) Pseudotime analysis with 5 dendritic cell groups.
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(Supplementary Figure S7B). Moreover, we visualized the
signaling gene expression distributed among clusters, showing
TIGIT and NECTIN2 expressed high levels in C10-CTLA4-
exhausted CD8T and C3-LDLR+MDSC separately (Figure 7E).

Next, we found the TIGIT gene was highly expressed in T
cells from liver transplantation tissue while NECTIN2 genes
were dominant in myeloid cells from liver transplantation tissue
(Figure 7F). In addition, we validated this finding using the
Frontiers in Immunology | www.frontiersin.org 11
immunohistochemical technique (Figure 7G). Bulk RNA-seq
confirmed TIGIT and NECTIN2 are significantly expressed
higher in liver transplant rejection tissues than that in stable
tissues (Figure 7H). In summary, our exploration of the key
ligand-receptor interactions between C10-CTLA4-exhausted
CD8T and C3-LDLR+MDSC mentioned the TIGIT-NECTIN2
pathway as an important regulator in the process of transplant
rejection and induced immune tolerance.
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FIGURE 6 | The specific phenotypes of LDLR+ MDSC. (A) Expression of differentially expressed genes in LDLR+ MDSC. (B) Flow cytometry analysis of MDSC fraction
in normal and liver transplantation PBMC, and immunofluorescence including CD11b, CD14, and CD15 in normal and liver transplantation. (C) Enrichment analysis of
Gene Ontology (GO) terms for differentially expressed genes in LDLR+ MDSC. (D) Fractions of LDLR+ MDSC in normal (n=3), stable (n=2), and rejection samples (n=2)
after liver transplantation. Bulk RNA-seq expression of S100A8 and S100A9 in stable (n=129) and rejection samples (n=37) after liver transplantation. (E) Immunohistology
of CD8, CD11b, CD14, and CD15 in liver transplantation tissue, and immunofluorescence including CD8, CD11b, CD14, and CD15 in liver transplantation.
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DISCUSSION

The differential distribution of immune cells and the heterogeneity
of gene expression in various solid organ transplants have been
Frontiers in Immunology | www.frontiersin.org 12
gradually reported (29). In the process of liver transplantation,
many immune cells from the recipient enter the donor liver to
reshape a new immune microenvironment together with the
resident immune cells. However, it is not yet possible to
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FIGURE 7 | The multi-lineage interactome in the liver tissue. (A) Overview of outgoing and incoming signaling patterns among T, NK, and myeloid cell groups in liver
transplantation tissue. (B) Projecting signaling pathways with bubble plots. Each dot represents the communication network of one signaling pathway. Dot size is
proportional to the overall communication probability. (C) Dotplots showing the interactions between exhausted CD8+ T cells and myeloid cells in liver transplantation.
(D) The distribution and contribution of TIGIT signaling pathway network. (E) Expression of TIGIT and NECTIN2 among T, NK, and myeloid cells. (F) tSNE plots showing
the TIGIT expression in exhausted CD8+ T cells and the NECTIN2 expression in LDLR+ macrophage cells. (G) Immunohistology of TIGIT and NECTIN2 in normal and
liver transplantation tissue. (H) Bulk RNA-seq expression of TIGIT and NECTIN2 in stable (n=129) and rejection samples (n=37) after liver transplantation.
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systematically understand the heterogeneity of immune cells, and
it is unclear how this difference leads to graft rejection or immune
tolerance. Here, we generated a comprehensive single-cell
landscape to identify shared cell types, transcriptional programs,
and signaling pathways between lymphocyte and myeloid cells in
rejection after liver transplantation. It is the first report to
demonstrate the presence of biological and transcriptomic
heterogeneity of immune cells in human liver transplantation.

First, we analyzed the heterogeneity distribution and gene
expression of T, B, and NK cells in liver penetrating tissues and
PBMC. According to the immune landscape, we can see that the
immune microenvironment is reconstructed and the distribution
of immune cells in liver tissues is changed after liver
transplantation. Compared with normal liver tissue, the
proportion of FGFBP2+ NK, GZMK+CD8+ T, GZMH+CD8+
T, CCR6+CD4+ T, CTLA4+CD8+ T, and MKI67+ CD8 + T cells
was increased in transplanted liver. We also found that cytotoxic
molecules GZMA, GZMB, GZMH, and NKG7 were highly
expressed in these cells. Granzyme A (GZMA) and perforin as
markers for rejection in cardiac transplantation (30) and urinary
GZMA mRNA levels may entail a diagnostic non-invasive
biomarker to distinguish patients with subclinical and acute
cellular rejection (31). Biologically, liver penetrating tissues
with high rejection level displayed more T cell infiltration and
cytotoxicity in comparison with liver penetrating tissues with
mild rejection after liver transplantation.

Our data give some novel clues for categorization of both T
and NK cell subsets, for T cells, IL7R defines T helper cell, CCR7
defines T naive and Trm cells, CCL3 does for exhausting T cells
and CXCR6 does for Trm, CXCR4 defines T helper cells, CXCR3
does for circulating Tem cells, and GZMA/GZMB/GZMK do for
cytotoxic T cells. CXCR6, as tissue residence marker, is likely a
better marker to define resident memory T cells (Trm), and the
proportion of CCR6+CD4+ T cell also increased in the graft,
suggesting that there are more memory CD4+ T cells in liver
transplantation. Trm maintain immunity in diverse sites, and
play an essential role in orchestrating the adaptive immune
system through crosstalk (32). Lung transplant recipients
exhibiting higher frequencies of persisting donor Trm
experienced fewer adverse clinical events compared with
recipients with low donor Trm persistence (33).

At the same time, we also found that exhausted CTLA4+CD8+
T cells and actively proliferating MKI67+CD8+ T cells increased
significantly in the liver graft. By identifying different cell types in
graft immune ecosystem of liver transplantation, we evaluated the
relative importance of the different immune checkpoint molecules
in human liver transplantation. These exhausted molecules
CTLA4, LAG3, HAVCR2, TIGIT, and PDCD1 were highly
expressed in the CTLA4+CD8+ T cell. However, our data show
that some cell populations are still reduced in the transplanted
liver, such as IL-7R+CD4+ T cell, CRTAM+CD8+ T cell, etc.

While analyzing the heterogeneity of lymphocytes and NK
cells in transplanted liver and peripheral blood, we also focused
on the changes of myeloid cells, such as DC, Kupffer, monocytes,
etc. Our data suggest that the number of DC cells in donor liver
increases after liver transplantation, and the changes of CD1c+
Frontiers in Immunology | www.frontiersin.org 13
DC and CADM+ DC cells are more significant. Kupffer cells in
the liver showed different trends, FOLR3+ Kupffer cell increased
significantly but the proportion of CD163+ Kupffer, APOE+
Kupffer, and GZMA+ Kupffer decreased. CD163+ Kupffer is
defined as M2-Kupffer, a macrophage with immunosuppressive
function (34), which can inhibit liver transplant rejection (35).
The proportion of GZMA+ Kupffer also decreased, highly
expressed IL-32, NKG7, GZMK, CCL5, and other genes
promoting rejection after organ transplantation. Our analysis
reveals a distinct immune ecosystem in liver transplantation,
characterized by reduced fractions of classic immunosuppressive
cells CD163+ Kupffer and APOE+ Kupffer but the increased
fractions of LDLR+ MDSC and CTLA4+ CD8+T cells with
highly expressed exhausting molecules and dysfunctional
cytotoxicity. These results provide unprecedented insights into
the shared programs between normal liver tissue and liver graft
immune microenvironment.

The single-cell RNA sequencing analysis had helped us find the
MDSC, a subpopulation of myeloid cells (LDLR+, S100A8+,
S100A9+, S100A12+, and TMEM176B+) in graft of liver
transplantation. For instance, we identified LDLR as a novel
marker of activated MDSC, inhibiting liver transplant rejection.
MDSC is a group of heterogeneous cells derived from bonemarrow,
which have the ability to significantly inhibit immune cell response
(36). MDSC can induce transplantation immune tolerance by
inhibiting antigen nonspecific T cells and promoting Treg
proliferation (37). After renal transplantation, M-MDSC in
peripheral blood increased immediately, and inhibited the
proliferation and effect of CD4+ T and CD8+ T cells, which was
conducive to graft survival (38). Through the analysis of
intercellular interaction, we found that there was an intercellular
communication relationship between LDLR+ MDSC and CTLA4
+CD8+ T cell. This data aroused our interest and curiosity, and we
conducted a deep analysis of CTLA4+CD8+ T cell. According to the
heterogeneity of gene expression, CTLA4+CD8+ T cell was divided
into three subgroups, and we were surprised to find that there were
a group of CD4+CD8+FOXP3+ T cells. To the best of our
knowledge, this is the first report of heterogeneity in the LDLR+
MDSC and CTLA4+CD8+ T cell in human liver transplantation.

Through pseudotime analysis, we believe that, in the process of
gradual infiltration, CD8+ T cell is regulated by several factors, then
CD8+ T cells increase CD4 gene expression and the phenotype of
regulatory T gradually increase the expression of transcription
factor FOXP3 to differentiate into CD4+CD8+FOXP3+ T cells.
Interestingly, CD4+CD8+ T cells have recently been associated with
multiple diseases, and cells can be suppressive or cytotoxic,
depending on conditions (cancer, HIV, systemic sclerosis)
(39–41). Although some studies support mature CD4+ T cells as
the source of CD4+CD8+ T cells (42), evidence of CD8 as the origin
lineage of CD4+CD8+ T cell also exists (43). The expression of CD4
on CD8+ T cells is considered to be mainly related to the activation
of naive rather than memory CD8+ T cells (44). However, there are
few reports on the phenotype and function of CD4+CD8+FOXP3+
T cells, especially in the field of organ transplantation.

An unexpected finding was that CD4+CD8+FOXP3+ T cell
was present in the liver tissues of the rejection group persisted
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throughout the periods of high levels of rejection. How specific
CD4+CD8+FOXP3+ T cell populations contribute to liver
transplantation is a topic of ongoing discussion. Our findings
may constitute a first step toward the identification of new
therapeutic targets in rejection after liver transplantation.
Interestingly, we analyzed the intercellular communication
between LDLR+ MDSC and CTLA4+CD8+ T cells interact
through the TIGIT-NECTIN2 signaling pathway. We also
observed the higher expression of TIGIT and NECTIN2
signaling components enriched with MDSC, Kupffer cells, and
T cells of liver graft, suggesting the importance of TIGIT-
NECTIN2 signaling in maintenance of transplantation
immunity ecosystem. TIGIT on T cel ls belongs to
immunoglobulin superfamily receptors, which interacts with
NECTIN molecules. The signals formed by TIGIT-NECTIN2
contribute to regulation of immune functions. Blocking TIGIT/
NECTINs may have a potential effect on immunotherapy
(45, 46). Similar to previous reports, tumor-associated
macrophages suppress tumor T cell infiltration and TIGIT-
NECTIN2 interaction regulates the immunosuppressive
environment in HBV-associated HCC (47). The validation of
these pathways greatly contributes to better resolution of CD163
+ Kupffer, LDLR+ MDSC, and CD4+CD8+FOXP3+ T cell.
Taken together, among the subpopulations of LDLR+ MDSC
was specifically engaged in immune-suppressive interactions
with CTLA4+CD8+ T cell.

In summary, we try to delineate the underlying high-resolution
multifaceted landscapes, and provide new light on the cellular
compartments that underlie the physiology of the liver
transplantation and represents a reliable reference for studies on
immunemicroenvironment in human liver transplantation. Given
the wide range of functional contributions of immune cells for
liver transplant rejection, a better understanding of the
heterogeneity and subpopulations of LDLR+MDSC and
CTLA4+CD8+ T, especially CD4+CD8+FOXP3 T cells may
help to identify novel therapeutic targets to treat rejection after
liver transplantation.
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Supplementary Figure 1 | Quality control, cluster, and liver-resident gene
expression. (A)NFeature_RNA, nCount_RNA, and percent.mt (refers to the number
of genes, UMIs, and the percentage of mitochondrial genes, respectively) used for
quality control. (B) Visualization of nCount_RNA-percent.mt relationship and
nCount_RNA-nFeature_RNA relationship using FeatureScatter. (C) Clustering of
69,816 high-quality cells. (D) CXCR4 and CCL3L1 expression between blood and
liver across cell types.

Supplementary Figure 2 | T, NK, and B cells annotation and analysis. (A) tSNE
plots showing the expression of the CD4 gene (white to blue). (B) tSNE plots
showing the expression of the CD8 gene. (C) tSNE plots showing the expression of
the KLRF1 gene. (D) Clustering of 31,300 T and NK cells and annotation basically.
(E) Pathway enrichment analysis of differentially expressed genes of C4-CRTAM-
CD8T. (F) Pseudotime analysis of CD8+ T cells in liver tissue. (G) Pseudotime
analysis showing CD8T_6 and CD8T_7 in liver tissue. (H) Clustering of 2091 B cells
among normal and liver transplantation samples. (I) Top 5 marker genes’
expression of each B cluster. (J) Fractions of B cell subpopulations in normal (n=3)
and liver transplantation (n=4) samples.

Supplementary Figure 3 | Clustering and annotation of the whole cells in PBMC.
(A) tSNE plots showing the clustering of 46,808 high quality cells in PBMC. (B) tSNE
plots showing the cells’ distribution among normal and liver transplantation
samples. (C) tSNE plots showing the annotation of cells. (D) tSNE plots showing the
gene expression of CD4, CD8, and KLRF1 (white to blue). (E) tSNE plot colors by
spatial distribution of T and NK cells in 8 samples. Clustering of 30,465 T and NK
cells and annotation basically. (F) Violin plots showing the expression of selected
cytotoxic, exhausted, proliferative marker genes.
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Supplementary Figure 4 | Clustering and analysis of myeloid cells in liver tissue.
(A) Fractions of myeloid cell subpopulations in normal (n=3) and liver transplantation
(n=4) samples. (B) Clustering of 4883 myeloid cells and annotation basically.
(C) Pseudotime analysis with identified 5 dendritic cell groups (colored by
pseudotime).

Supplementary Figure 5 | Further analysis of exhausted CD8+ T cells.
(A) Enrichment analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG)
terms for differentially expressed genes in exhausted CD8 T cells. (B) Bulk RNA-seq
expression of PDCD1 in stable (N, n=129) and rejection samples (R, n=37) after liver
transplantation. (C) Pseudotime analysis with identified 3 subgroups of exhausted
CD8+ T cells (colored by pseudotime). (D) Pseudotime analysis with identified 3
subgroups of exhausted CD8+ T cells (colored by clusters). (E) Estimated
Frontiers in Immunology | www.frontiersin.org 15
proportion of CD8+ T cells among stable (N, n=129) and rejection (R, n=37)
samples after liver transplantation using CIBERSORT algorithm.

Supplementary Figure 6 | The multi-lineage communication patterns and
inferred signals between LDLR+ macro and T cells. (A) Outgoing communication
patterns of secreting cells (left) and incoming communication patterns of target cells
(right). (B) Dotplots showing the interactions between LDLR+ macro cells and T
cells in liver transplantation (left). The distribution and contribution of NECTIN
signaling pathway network (right).

Supplementary Figure 7 | Enrichment analysis of KEGG terms for differentially
expressed genes in LDLR+ MDSC. (A) Enrichment analysis of GO terms for
differentially expressed genes in LDLR+ MDSC.
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