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Summary 
CD3~" and CD37/form disulfide-linked homo- or heterodimers important in targeting partially 
assembled Tiot-B/CD3qd~e T cell receptor (TCR) complexes to the cell surface and transducing 
stimulatory signals after antigen recognition. Here we identify a new TCR isoform expressed 
on splenic CD2 +, CD3/Tic~-/~ +, CD4-,  CDS-,  CD16 +, NKI.1 + mouse large granular 
lymphocytes (LGL), which are devoid of CD3~" and CD371 proteins. The TCRs of this subset 
contain homodimers of the ~/subunit of the high affinity receptor for IgE (FceRI3,) in lieu of 
CD3~" and/or CD3~/proteins. The LGL display natural killer-like activity and are cytotoxic for 
B cell hybridomas producing anti-CD3e and anti-CD16 monoclonal antibodies, demonstrating 
the signaling capacity of both TCR and CD16 in this cell type. These findings provide evidence 
for an additional level of complexity of TCR signal transduction isoforms in naturally occurring 
T cell subsets. 

T he TCR has been described as a muhimolecular com- 
plex formed by three groups of transmembrane proteins: 

(a) the clonotype antigen/MHC recognition unit, termed 
Tiol-/~ (or Ti"/-/~) heterodimer (1-3); (b) the highly homolo- 
gous CD33,, CD3/~, and CD3e subunits (4-8); and (c) the 
structurally distinct CD3~" and CD3~/subunits, alternatively 
spliced products of a common genetic locus (9-12). FceRb/, 
an essential component of FcelLI3, and the transmembrane 
type FcytLIII (CD16) (13), has significant structural homology 
to CD3~" and CD3~/(9, 10, 14, 15) and is encoded on the 
same chromosome (mouse chromosome 1), suggesting that 
CD3~'/~ and FceRIqr are derived from a common ancestral 
gene (11, 12, 16, 17). In addition, CD3~" can substitute for 
FceRI3, to form a high affinity IgE receptor on Xenopus oo- 
cytes injected with mRNAs for FceRIot, FceRI/~, and CD3~" 
in the absence of FcelLl3, (18). Moreover, in the CTLL cell 
line, CD3~', CD3~, and FceRI3, genes are coexpressed and 
their proteins form atypical disulfide-linked dimers in the TCR 
complex of that cell (19). These in vitro results suggested 
to us that subunits other than CD3~'/7/might be incorpo- 
rated into a functional TCR. To investigate this possibility 
and determine whether heterogeneity in TCR signal trans- 
duction subunits exists within physiologic cell populations, 
we focused our attention on a subset of T lymphocytes with 
unusual phenotypic and functional attributes and the mor- 

phology of LGL. The results identify among splenocytes a 
population of IL-2-responsive T cells expressing a "noncon- 
ventional" functional TCR isoform containing an FceRI~/ 
homodimer in lieu of CD3~" and ~/subunits. 

Materials and Methods 

Flow Cytometric Analysis. LGL cells (2-3 x l& cells/ml) were 
stained with RM2-1 (anti-CD2; 10 ~g/ml), 2Cll (anti-CD3e; 10 
Izg/rnl), H57-597 (anti-Tia-13; 10 ~g/ml), 3A10 (anti-Ti3,-8; 10 
gg/ml), GK1.5 (anti-CD4; 10 #g/m1), ADH4 (anti-CD8; culture 
supematant), 2.4G2 (Fc3dLII/III; 10 gg/ml), and PK136 (NKI.1; 
culture supernatant) followed by FITC-conjugated second antibodies 
and analyzed on an Epics V cell sorter. Percent reactivities were 
17% for CD2, 92% for CD3, 88% for Tio~-13, 0% for Ti3,-~5 and 
CD4, 7% for CD8, 83% for F~RII/III, and 88% for NKI.1. 
Note that the percent CD2 reactivity is misleading since essen- 
tially all LGL express low levels of CD2. Although most LGL are 
CD8-, a small fraction of the ceils (5-15%) were found to be 
CD8 + . 

Polyraerase Chain Reaction Analysis. For PCR. analysis, a cDNA 
copy was produced from 15 gg of total cellular RNA using an 
oligo(dT) primer and AMV reverse transcriptase (Molecular Genetics 
Resources, Tampa, FL). 10% of the product was used as a template 
for PCR using the sense amplimer 5'GGTC~CATAGCTGG- 
AGGAAC3' located at base pairs 470-488 of Fc3,RIII and the 
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antisense amplimer 5'GGAGGCACATCACTAGGGAGY at base 
pairs 738-714 in the transmembrane region of Fc-cKIII (numbers 
are according to reference 20). The PCK product of Fc~cRIII is 
a 269-bp fragment. To identify Fc~KIIbl and Fc~KIIb2 the same 
sense amplimer was used with the antisense amplimer 5'GCA- 
GCTTCTTCCAGATCAGG3', which lies at base pairs 1232-1213 
of FcR~,Ilbl, 3' to the 138-bp insertion found in FcR~clIbl as com- 
pared with FcR'lclIb2. Amplification of FcR~clIbi and FcK~rlIb2 
cDNAs produce DNA fragments of 484 and 345 bp, respectively. 
For PCK, the denaturing, annealing, and extension were performed 
at 94~ for 1 min, 60~ for I min, and 72•C for 0.5 min, respec- 
tively, on a Techne thermocycler using the Gene Amp Kit reagents 
(Perkin Elmer Cetus, Norwalk, CT) for 35 cycles. The products 
were run on a 2% agarose gel, blotted to Zeta-Probe membrane 
(Bio-Rad Laboratories, Richmond, CA), and hybridized to the oli- 
gonucleotide 5'GCCTGTCACCATCACTGTCCT at base pairs 
642-661 of Fc'yRIII and base pairs 921-940 of Fc3"RIIb~ and 
Fc',r The oligonucleotide was labeled by 5' phosphorylation 
using polynucleotide kinase and "y-[32p]ATP. Hybridization was 
performed in 6 x SSC, 5 x Denhardt's, 10 #g/ml denatured salmon 
sperm DNA, and 0.1% SDS at 54~ The blot was then washed 
for 20 min in 6x SSC-0.1% SDS at the hybridization temperature 
and exposed at -70~ to Kodak X-Omat AR x-ray film. 

R N A  Analysis. Total RNA was isolated from cell lines using 
guanidine isothiocyanate (21). RNA concentrations were measured 
spectrophotometrically and 10 #g of total KNA was run per lane 
on a 1% agarose gel containing 2.2 M formaldehyde and 1• MOPS 
buffer (21). The RNA was then transferred to nitrocellulose in 20 x 
SSC and the RNA blot hybridized to a rat FceRI3c-specific cDNA 
probe comprising the 3' BamHI/XbaI fragment (14). Hybridiza- 
tion was carried out in a solution containing 50% formamide, 5 x 
SSC, 5 x Denhardt's, 250 #g/ml denatured salmon sperm DNA, 
50 mM NaHPO4, pH 6.5, at 42~ for 16-20 h with 106 cpm/ml 
probe. Subsequently, the blot was washed in 2x SSC, 0.1% SDS 
for 15-30 min at room temp and 0.1x SSC, 0.1% SDS at 50~ 
for 30 min, and was exposed to Kodak X Omat AK x-ray film 
at -70~ for the indicated time. 

For KNase protection, pBSA17 was derived from the mouse 
CD37/cDNA clone pBS17 (10) as follows: a portion of the CD3~ 
cDNA, the StyI/SmaI fragment, containing the 3' 681 bp of exon 
9 was excised from pBS17. The StyI 5' overhang was filled with 
Klenow and the linearized plasmid was ligated to obtain pBSA17. 
Antisense RNA was synthesized from pBSA17 linearized with AccI 
using T3 polymerase, Riboprobe Gemini System kits (Promega 
Biotech, Madison, WI) and 100 #Ci of [32p]UTP according to 
previously described methods (22). Antisense KNA probe (5 x 
1@ cpm) and total cell RNA were hybridized in 30 #1 of a solu- 
tion consisting of 80% formamide, 0.4 M NaC1, 1 mM EDTA, 
40 mM Hpes, pH 6.7, at 45~ After 18 h, the RNAs were digested 
for 1 h at 30~ by adding 300/A of a solution consisting of 5 
mM EDTA, 0.3 M NaC1, 10 mM Tris/HC1, pH 7.5, and 4 #g/ 
ml KNase T1. After proteinase K digestion, phenol/chloroform: 
isoamylalcohol extraction, and ethanol precipitation, half of each 
sample was analyzed on a 5% denaturing polyacrylamide gel. 

Labelin,~ lmmunoprecipitation, and Two-dimensional Reducing~Non- 
reducing SDS-PAGE Analysis. For metabolic labeling, 3 x 107 
cells were suspended in methionine- and cysteine-free KPMI 1640 
supplemented with 100 U/ml rlL-2 and 10% FCS (ICN Biochem- 
icals, Irvine, CA), which had been dialyzed against PBS and la- 
beled with Trans-3SS-Label for 3 h followed by 1 h chasing in 
regular media consisting of RPMI 1640 supplemented with 10% 
FCS and 100 U/ml rib2. Cells were then washed with 150 mM 
NaC1, 20 mM Tris/HC1, pH 7.4 (TBS), and lysed in digitonin 

lysis buffer solution (1% digitonin in TBS supplemented with 0.24 
TIU/ml aprotinin, 1 mM PMSF, 5/lg/ml leupeptin, and 10 mM 
iodoacetamide). For cell surface labeling, 107 LGL were surface io- 
dinated with 1 mCi of 12si by the lactoperoxidase method and 
lysed in digitonin lysis buffer solution. Postnuclear superuatant was 
subjected to immunoprecipitation with mAb-coupled Sepharose 
beads or protein A-Sepharose beads precoated with rabbit antibodies. 
After extensive washing, the immunocomplex was eluted by boiling 
in Laemmli's nonreducing sample buffer solution (23). Samples were 
resolved on two-dimensional (2-D) 1 nonreducing/reducing di- 
agonal gels, and labeled proteins were detected by autoradiography 
or fluorography. Gels were exposed to X-Omat AR x-ray films 
for 4 d. Molecular weight markers were OVA (44K), carbonic an- 
hydrase (28K), lactoglobulin (18K), lysozyme (13K), and bovine 
trypsin inhibitor (7K). 

Cytotoxic Assay. Target cells were labeled with SlCr (100 
/~Ci/106 cells) for 1 h at 37~ Targets were then washed three 
times and added to V-bottomed microtiter plates at 5,000 cells/well 
in RPMI 1640 containing 10% FCS and 100 U/ml rll~2. Effector 
cells were added at the indicated ratios in a final volume of 180 
/A. Plates were centrifuged at 800 rpm for 5 min and then incubated 
for 4 h at 37~ After recentrifugation at 2,000 rpm for 2 min, 
90/~1 was removed from each well for assay of gamma radioac- 
tivity. Percent specific lysis was calculated according to the formula: 
100x [(E - C)/ (M - C)]; where E is the experimental value 
in cpm, C is the control value, and Mis the maximum release value. 
C was determined as the average release in control wells from which 
effector cells were omitted. M was determined as the average re- 
lease in wells to which 1% NP-40 was added in place of effector 
cells. All determinations were performed in triplicate. 

Results and Discussion 
Splenocytes from B10.BR and C3H/HeJ mice cultured for 

several weeks in the presence of rlL-2 as described (24) ex- 
press both Tic~-B and CD16. This result is of note since these 
two structures are mutually exclusive in cellular distribution 
with rare exception (25, 26). As shown in Fig. 1 A, Ib2- 
dependent LGL from B10.BR are CD2 +, CD3 +, Tioe-B +, 
Ti'Ir CD4- ,  CD8- ,  FcyR +, NKI.I§ The phenotype 
of LGL from C3H/HeJ is identical except for the absence 
of the allelic NKI.1 marker, which is not expressed in the 
C3H/HeJ strain (27). Because antibody 2.4G2 does not dis- 
tinguish between FcyRII and Fc'yRIII, PCR analysis was 
used. PCR with specific oligonucleotide amplimers shows 
that Fc~R on the LGL are exclusively of the FcyRIII iso- 
type, the mouse homologue of CD16 (Fig. 1 B). In contrast, 
$49 thymoma cells express both Fc3cRII and Fc3cRIII (Fig. 
1 B) while C1.MC/57.1 mast cells express readily detectable 
Fc'yIklII (Fig. 1 B) and, on longer exposures of the autora- 
diogram, FcyRII (data not shown). Flow cytometric anal- 
ysis using mAbs against three different V~ gene products 
showed that the LGL are polyclonal (Table 1). Consistent with 
this finding, we detected usage of multiple J~3 segments in 
both V~6 + and Vfl8 + populations using PCR analysis with 
amplimers for VB and JB regions (L. D'Adamio, manuscript 
submitted for publication) (data not shown). These results 
indicated that the LGL populations are not restricted to a 

1 Abbreviation used in this paper: 2-D, two-dimensional. 
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Figure 1. Characterization of LGL 
from B10.BR mice. (A) Flow cyto- 
metric analysis of surface antigens on 
BI0.BR LGL. (B) Analysis of FeyR iso- 
type by PCR. Reverse PCR was per- 
formed with RNAs from C1.MC/57.1 
(mast cell line; Fc~RII l~ Fc'~RIlI~h), 
B10.BR LGL, and $49 (T lymphoma; 
Fc~,RIIhlg h, FoyRIII low) using specific 
oligo primers to FoyRIII (CD16; pre- 
viously denoted as FeyR/Ia) or Fe~RIIb 
(previously denoted as Fc3,Rllbl and 
F~RIIb2). PCR products were blotted 
and probed with specific internal oli- 
gonucleotides. Numbers on the left side 
indicate the molecular weight markers 
in base pairs. (C) Northern blotting 
analysis of FceRI~ expression. 10 #g 
of total RNA from a T cell hybridoma 
(2B4.11), a mast cell line (C1.MC/57.1), 
and B10.BR LGL were size fractionated 
and transferred onto a nitrocellulose 
filter. The filter was hybridized with a 
specific probe for FceRI% The positions 
of 18S and 28S ribosomal RNAs are in- 
dicated. (D) R.Nase protection analysis 
of CD3~'/~/ mRNA. 15 /~g of total 
RNA from thymocytes and B10.BR 
LGL were analyzed for CD3~'/~/ 
mRNAs by RNase protection analysis. 
173 and 100 bp signals represent CD3~/ 
and CD3~', ~-spectively. Exposure times 
for RNAs from thymus and LGL are 
6 and 15 h, respectively. 
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Table  1. VI~ Usage in LGL Determined by Flow Cytometry 

V3 usage 

LGL VB8 V36 V33 

B10.BR no. 1 77 <1 3 
B10.BR no. 2 16 41 <1 

C3H/HeJ  43 <1 <1 

Cells were stained with mAbs F23.1 (anti-VB8), 44.22.1 (anti-VB6), and 
KJ25 (anti-V33), and FITC-conjugated second antibody. The fraction 
of cells specifically expressing each VB was determined by flow cytome- 
try using an irrelevant IgG mAb as a control. 

unique donotype. The LGL herein have a similar phenotype 
to a population of thymus-dependent ceils distinct from NK 
cells described by Pardoll and colleagues (28) in both thymus 
and spleen. The high percentage of V~8 usage in the above 
LGL is consistent with the finding that the V38 family is 
used at a greater frequency in the Tiot-3 +, CD4-, CD8-, 
NKI.1 § subpopulation than in other T calls (28). Although 
not tested, it is likely that the previously described Ticz-3 +, 
NKI.1 + population (28) expresses CD16 and represents 
<1% of total splenic T ceils (28). 

Because CD16 expression requires the Fc~Rb/subunit (29), 
we examined LGL for FceRI3~ mRNA. As shown in Fig. 
1 C, the amount of steady-state 0.7-kb FceRIy mRNA in 
the LGL is equivalent to or greater than that of the mast 
cell line C1.MC/57.1. To specifically address whether FceRb/ 
might also be a component of the TCR on LGL, ceUs were 
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Figure 2. Characterization of the TCR. complex ex- 
pressed on LGL. Metabolically labeled (a-e) and surface 
iodinated ~ LGL and metabolically hbeled MA~'-*/301 
(g and h) were lysed in digitonin lysis buffer solution and 
immunoprecipitated with (a) 3A10 (hamster mAb against 
Ti3,-8), (b and g) 2Cll (hamster mAb against CD3e), (c) 
normal rabbit serum, (d and h) rabbit antiserum no. 386 
against CD3~'/~/(30), or (e and f)  rabbit antibody against 
human FcER.I3, (19). Proteins were resolved in 2-D non- 
reducing/reducing SDS-PAGE followed by autoradiography 
(a--e, g, and h) or fluorography (~. Closed and open ar- 
rowheads indicate positions of Ti~x-~ and FcePd'y, respec- 
tively. 
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Figure 3. Cytotoxic activity ofLGL. Cytotoxic activity 
of B10.B1L LGL no. 2 (O), C3H/HeJ LGL (O), and MA~'- 
7301 (A) were analyzed by standard 4-h 5:Cr release assay 
with the indicated E/T ratios. 

metabolically labeled with 3SS-methionine/cysteine and im- 
munoprecipitation was performed with either the anti-CD3e 
mAb, 2Cll, anti-CD3~'/~ antibody (30), or anti-FceRI3, an- 
tibody (19). As shown in Fig. 2, 2Cll precipitates the Tiol-f 
heterodimer as an off-diagonal spot in a nonreducing/reducing 
2-D-diagonal gel. Surprisingly, however, no CD3~'/~/dimers 
(CD3~'/~, CD3~'/~, or CD3~/7/) are observed in 2Cll or 
anti-CD3~'/~ immunoprecipitates (Fig. 2, b and d, respec- 
tively). This contrasts with the results from T cells expressing 
"conventional" TCR subunits containing CD3~'/~ homo- 
or heterodimers (Fig. 2, g and h). Instead of CD3~'/r/, we 
observe a disulfide-linked homodimer of molecular weight 
'~9,000 associated with TCR (Fig. 2 b). This low molecular 
weight structure represents FceRI3, dimers as shown by the 
fact that rabbit anti-FceRI3, antibody precipitated both the 
FceRI3' homodimer and Tic~-B heterodimer (Fig. 2 e). Fur- 
thermore, the same dimers are precipitated from surface- 
iodinated LGL cells by the anti-FceRI3, antibody (Fig. 2/'). 
Identical results are obtained with each of the LGL in Table 
1. Thus, we conclude that LGL express on their cell surface 
a novel type of TCR complex in which an FceRIh, homodimer 
substitutes for CD3~" and/or CD3~ dimers. The absence of 
CD3~'/~ proteins is not a consequence of a weak association 
between the TCR and CD3~'/~ dimers in these cells since 
direct immunoprecipitation with rabbit anti-CD3~'/~ anti- 
body also failed to identify CD3~'/~/dimers (Fig. 2 d). 

Of particular interest, RNase protection analysis identifies 
the presence of CD3~" and CD37/mRNAs in the LGL (Fig. 
1 D), and these mlkNAs are of the appropriate size as judged 
by RNA blots (data not shown). This discordance between 
CD3~'/~/mRNA and protein expression is striking but not 
without precedent. We have previously shown that the level 
of CD3~'/7/proteins increases during T cell differentiation 
despite a decrease in the steady-state level of their mRNAs, 
demonstrating that expression is controlled, at least in part, 
by a posttranscriptional mechanism (12). The lack of detect- 
able CD3~'/y protein in LGL expressing CD3~'/~ mRNAs 
defines yet another likely posttranscriptional control mecha- 

nism. Given that CD3~'-FceRI3, and CD3y-FceR.I3, hetero- 
dimers but not FcelkI3, homodimers have been described in 
CTLL (19), the regulation of dimer expression among these 
subunits is likely to be complex. 

To examine whether this novel TCR is functional in LGL, 
cells were analyzed for cytotoxic activity and IL-2 produc- 
tion after receptor crosslinking. As shown in Fig. 3, LGL 
show a strong cytotoxic activity against two B cell hybrid- 
omas, one expressing an anti-CD3e mAb (2Cll) and a second 
expressing anti-CD16 mAb (2.4G2). Unlike with 2Cll or 
2.4G2 hybridomas, no significant killing of NS1 or PC61 
producing an anti-Ib2Rot (p55) mAb was observed (data not 
shown). LGL also show spontaneous cytotoxic activity against 
the NK-sensitive target YAC-1 cells but failed to lyse L cells. 
In contrast, none of the targets are killed by a helper T cell 
hybridoma, MA~'-7/301 (31), These results indicate that CD16 
as well as the novel TCR containing Fc.eRI3, can transit signals 
leading to cytotoxic activity of LGL. However, unlike MA~'- 
7301, LGL produce no significant level of IL-2 when incubated 
in wells precoated with anti-CD3e mAb (data not shown). 

In conclusion, FceRI'), homodimers can substitute for CD3~" 
and CD3~ homo- or heterodimers in targeting partially as- 
sembled Ti o~-B/CD3y~e TCR complexes to the cell surface 
and transducing stimulatory signals after TCR triggering 
(31-36). Thus, TCRs can exist in multiple isoforms being 
comprised of various disulfide-linked dimers of the CD3~'/~- 
FceRI7 family (19, 32, 35, 36). Although it is not known 
whether the signal transduction properties of FceRI'y- 
containing TCRs are distinct from conventional CD3~'- and 
CD3~-containing TCRs, this is a likely possibility. It is also 
noteworthy that members of CD3~'/~-Fcelklh' family can 
dimerize differentially in other receptor complexes. For ex- 
ample, human NK cells express CD3~" as well as FceRI-), in 
association with CD16 in the absence of other TCR compo- 
nents (Tiol, Tiff, CD3% CD3~, CD3e) (37-39). It is now 
critical to ascertain the functional attributes of the various 
CD3~'/y-FceRI3, dimers. 
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