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Abstract

Voluntary movements and the standing of spinal cord injured patients have been facilitated

using lumbosacral spinal cord epidural stimulation (scES). Identifying the appropriate stimu-

lation parameters (intensity, frequency and anode/cathode assignment) is an arduous task

and requires extensive mapping of the spinal cord using evoked potentials. Effective visuali-

zation and detection of muscle evoked potentials induced by scES from the recorded elec-

tromyography (EMG) signals is critical to identify the optimal configurations and the effects

of specific scES parameters on muscle activation. The purpose of this work was to develop

a novel approach to automatically detect the occurrence of evoked potentials, quantify the

attributes of the signal and visualize the effects across a high number of scES parameters.

This new method is designed to automate the current process for performing this task,

which has been accomplished manually by data analysts through observation of raw EMG

signals, a process that is laborious and time-consuming as well as prone to human errors.

The proposed method provides a fast and accurate five-step algorithms framework for acti-

vation detection and visualization of the results including: conversion of the EMG signal into

its 2-D representation by overlaying the located signal building blocks; de-noising the 2-D

image by applying the Generalized Gaussian Markov Random Field technique; detection of

the occurrence of evoked potentials using a statistically optimal decision method through

the comparison of the probability density functions of each segment to the background

noise utilizing log-likelihood ratio; feature extraction of detected motor units such as peak-

to-peak amplitude, latency, integrated EMG and Min-max time intervals; and finally visuali-

zation of the outputs as Colormap images. In comparing the automatic method vs. manual

detection on 700 EMG signals from five individuals, the new approach decreased the pro-

cessing time from several hours to less than 15 seconds for each set of data, and demon-

strated an average accuracy of 98.28% based on the combined false positive and false

negative error rates. The sensitivity of this method to the signal-to-noise ratio (SNR) was
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tested using simulated EMG signals and compared to two existing methods, where the

novel technique showed much lower sensitivity to the SNR.

Introduction

Previously, it has been shown that epidural electrical stimulation in combination with locomotor

training and/or pharmacological interventions in animal models were able to highly promote

spinal circuits functionality after complete spinal cord transections in rats [1,2]. Subsequently, in

the past several years, clinical studies have also reported that lumbosacral spinal cord epidural

stimulation (scES) combined with activity-based training progressively re-enabled full weight

bearing standing [3,4] and volitional control of lower limbs in individuals with chronic complete

paralysis [5,6]. Remarkably, the appropriate selection of stimulation parameters (amplitude,

pulse width, frequency and anode/cathode assignment) was shown to be critical to promote the

generation of effective motor patterns [3]. Mapping experiments were initially performed with

participants in supine position, recording motor evoked potentials from different lower limb

muscles using surface electromyography (EMG) during scES with different sets of electrode con-

figurations. The purpose of these experiments was to study the topographical features of recruit-

ing leg muscles by scES [7] and also to provide useful information for the selection of electrode

configurations applied for promoting lower limb motor function. The task of determining the

links between scES parameters and the characteristics of the evoked potentials is referred to as

the “mapping” task in this study.

To study the characteristics of the scES induced evoked potentials, the first step is to localize

them inside raw EMG signals that are recorded from several leg muscles by segmenting each

EMG signal based on the stimulation onset. One of the most challenging tasks in EMG analysis

in the scES content is the precise detection of each epidurally evoked potential. This task is cru-

cial in order to determine the effective threshold for scES intensity that triggered the occur-

rence of the first visible evoked potential for each muscle. The evoked potential (activation)

detection is usually performed manually by a trained observer visually inspecting the raw

EMG signals, which is considered to be the most accurate method for activation detection.

However, it is a laborious task when facing a large stack of data recorded from several muscles

during various experiments. Moreover, manual method can be prone to human errors and

inter/intra-observer variation and would also limit the ability to allow scalability to a high

number of patients. Therefore, to facilitate the activation detection process, an accurate com-

puter-based method is proposed in this work.

There have been several methods proposed for computer-based change detection for EMG

signals in the literature, such as the single or double threshold detector [8], Teager–Kaiser

Energy Operation [9–11], wavelet template matching [12], supervised and unsupervised learn-

ing algorithms [13] or statistical criterion determination methods like hidden Markov models

[14] and Gaussian mixture models [15,16]. The main goal of all these methods is to convert

the original raw signals into a set of estimated sequences that make the highest distinction

between before and after change as well as detect the occurrence of the change and the corre-

sponding time instant, t0, as early as possible [15].

Most of the automatic onset detection methods can be divided into four main stages: pre-

processing, conditioning, decision thresholding, and post processing. Most methods have a

pre-processing stage for filtering the raw signal with a band-pass filter in order to remove arti-

facts and reduce the noise level in the signal. In the conditioning stage, the EMG signal passes
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through a test function, i.e. a type of event indicator. In the third stage, the algorithm will set a

threshold that indicates the first point of the signal change. Finally, the last stage deals with the

false alarms by setting certain constraints on the detected onset values [15,17]. Most of the

methods differ based on the type of test function; the decision rule, which involves the selec-

tion of constant or dynamic thresholds; and the heuristic constraints for the final detected

onset, which varies based on the application and the characteristics of the EMG signals. There

are several categories of event indicator functions, such as on-line vs. off-line, or supervised

versus unsupervised learning algorithms. If an algorithm has been executing the task in a

sequential fashion for each incoming data point, the method is called on-line; otherwise it is

considered off-line [15]. Also, if the training input data for a learning method is already labeled

using a priori information, the method is supervised, and if the algorithm estimates a model

for the input data using specific parameter estimation techniques, it is an unsupervised

technique.

In every activation detection method, sensitivity to the noise level in the signal is a great

challenge. Selection of proper pre- and post-processing methods usually helps to minimize the

effect of noise on the accuracy of the method. It is also notable that some of the proposed

methods are highly dependent on prior information of the signal, i.e. supervised methods,

which makes those methods semi-automatic and their accuracy application-dependent. In this

study, we suggest a novel method to address these two main challenges that a fully automatic

activation detection method faces, by proposing an unsupervised and on-line approach that

deals with the stochastic characteristics of the EMG signals in the scES application.

The main purpose of this work is to develop a novel method for automatic detection of the

epidurally evoked potentials using a generalized framework to perform the scES-EMG map-

ping task. The generalized framework will: 1) effectively de-noise, detect, and extract the key

features of the signal; 2) visualize the occurrence of the muscle evoked potentials induced by

scES; and, 3) increase the accuracy and efficiency of the physiological mapping process in

order to determine the underlying relationships between the scES parameters and muscle acti-

vations. Consequently, this framework will assist the data analysts to promptly decide on fur-

ther adjustments or improvements in designing future experiments.

Materials and methods

Participants

In this study, five male individuals with motor complete spinal cord injury (SCI) have partici-

pated. Two of these participants have American Spinal Injury Association Impairment Scale

(AIS) grade B and three of them have AIS grade A. The average age of these five individuals at

the time of the experiments was 29.8 ± 4.5 years old and the average time since injury was

4.2 ± 1.6 years. All five participants have provided written, informed consent for the experi-

mental procedures, which have been approved by the University of Louisville Institutional

Review Board.

Spinal cord epidural stimulation

A stimulation unit (RestoreAdvanced Neurostimulator, Medtronic, Inc., Minneapolis, MN) in

combination with a chronic, 16-electrode array (39565 paddle electrode array, Medtronics,

Inc., Minneapolis, MN) is surgically implanted at the T11–L1 vertebral levels over the spinal-

cord segments L1–S2. It is used to deliver electrical stimulation to the lumbosacral spinal cord

of each SCI individual. The electrode array was connected to the IPG unit that was implanted

in a subcutaneous abdominal pouch [5].
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EMG recording system

National Instrument Data Acquisition system (National Instruments, Austin, TX) was built to

collect both EMG signal and the signal from the communication signal detector. EMG signals

were recorded and filtered (band-pass filter of 10 Hz–2 kHz (−3 dB)) with differential surface

electrodes (Motion Lab Systems, Baton Rouge, LA) from Motion Lab MA300 EMG system.

Two surface electrodes were placed symmetrically lateral to the electrode array incision site

over the paraspinal (PS) muscles in order to record the stimulation artifacts. Other electrodes

are placed to record 14 thigh and leg muscles signal. A communication signal detector was

developed to capture the communications signal (stimulation parameters) between the Clini-

cian Programmer and IPG. The communication signal detector sends detected stimulation

parameter change to the data acquisition system. Using the PS EMG artifact signal and the

captured communication signal to mark the onset of each stimulation pulse [7]. Fig 1 illus-

trates the connections between the epidural stimulation unit and the EMG recording system.

EMG data acquisition

The scES lower limbs mapping experiments start 2–3 weeks after the surgical implantation

[5,7]. The supine experiments are performed in accordance with the procedures previously

described by [5] with the participants relaxed in a supine position. The electrical stimulation

waveforms are comprised of a rectangular, biphasic shape with pulse duration of 450 μs. In the

supine experiments, specific combinations of electrodes are selected for activation, which is

referred to as stimulation configuration. A total of 12 different stimulation configurations are

examined for each individual. For each configuration, stimulation intensity or frequency will

be increased whilst the other parameters are fixed. The stimulation voltage (intensity) ramp-

up experiments are performed with the scES intensity (in volts) gradually increased and the

frequency is set at 2 Hz. During each intensity ramp-up, the scES intensity starts at a pre-acti-

vation value (V) and increases at either 0.1 or 0.5 V increments up to 10 V with time interval

between each ramp-up at least 2–3 seconds, which in this time interval scES delivers a mini-

mum of five stimulus pulses for each intensity level (at 2 Hz). In the frequency ramp-up exper-

iments on the other hands, after the intensity is set at the value where all the muscles are

activated (f = 2Hz), the frequency is increased from 2 to 5 Hz and from 5 to 60 Hz with the

step 5 Hz.

During the performance of each experiment, the surface EMG signals are recorded from 14

leg muscles, using bipolar surface electrodes that are placed on the left (L) and right (R) soleus

(SOL), medial gastrocnemius (MG), tibialis anterior (TA), vastus lateralis (VL), rectus femoris

(RF), medial hamstrings (MH), and gluteus maximus (GL). The recorded EMG signals are dig-

itized at a sampling rate of 2000 samples per second. The heart rate and blood pressure data of

each participant are also recorded during the experiments.

Methodology

In this study, a set of five algorithms is proposed to perform the mapping task in an automated

fashion to convert the raw recorded EMG signal into its significant building blocks, i.e. the

evoked potentials induced by scES. Additionally, the algorithms extract several key features of

these evoked potentials, such as peak-to-peak amplitude, latency, integrated EMG and Min-

max time intervals, and enable visualization of these features to effectively represent the

desired hidden information in the EMG recordings to the data analysts. Fig 2 illustrates the

block diagram of the general framework, and the pseudocode for each step of the framework is

presented in the supplementary materials, S2 Appendix.
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Fig 1. Schematic representation of the epidural stimulation unit (16-electrode array, IPG unit and wireless programmer) and its connections to

the EMG recording system. (The Motion Lab EMG System and EMG electrodes illustrations are from Motion Lab System Inc. Manual).

https://doi.org/10.1371/journal.pone.0185582.g001

Fig 2. Block diagram of the proposed framework for visualization and activation detection of evoked

potentials induced by scES.

https://doi.org/10.1371/journal.pone.0185582.g002
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2-D representation of EMG signal. From a computational point of view, each single

record of the EMG (xk,k� 1) is a set of sample observations from a discrete random process

(Xk,k� 1). The EMG signals, which are recorded from all 14 leg muscles, consist of evoked

potentials (w1,w2,. . .,wN 2W) that are induced by ES. Utilizing the onsets of the stimulation

pulses, the whole EMG signal is segmented into its building blocks (W set) where each seg-

ment consists of the time interval between two consecutive stimulation pulsations (Fig 3A and

3B). Subsequently, the first algorithm converts the EMG signal, Xk, to a 3-D image, δk(x,y,z),

by overlaying all the EMG signal segments and then displaying their value in 3-D graphs (Fig

3C). These 3-D graphs are converted to 2-D images using Colormap algorithm where the

amplitude values are represented as colors (Fig 3D). Each row in the Colormap image illus-

trates one segment of the whole EMG signal (Algorithm I in S2 Appendix). Fig 2 demonstrates

all the steps for this conversion process for a sample EMG signal.

Noise reduction. After signal to image conversion, it is possible to use image-processing

techniques for smoothing the images and consequently de-noising the signals. In this study, a

2-D generalized Gaussian Markov Random Field (GGMRF) model is applied to the con-

structed 2-D images so as to reduce the noise level from the EMG signal [18]. This particular

smoothing method preserves continuity and removes inhomogeneity in the image, which in

this context is caused by background noise in the original EMG signals. This is achieved by

comparing each pixel’s value, which is the evoked potential amplitude in μV, to the n-neigh-

borhood pixel set and recalculating the respective pixel value based on Eq 1.

δ̂ s ¼ argminδs
fjδs �

~δ sj
q
þ σqλpP

r2υs
bs;rj

~δ s � δrj
p
g ð1Þ

Where δs, δ̂ s and ~δ s are the original pixel value, its recalculated value, and expected estimate,

respectively. υs is the 8-neighborhood pixel set; bs,r is the GGMRF potential; and σ and λ are

scaling factors. The parameter p 2 [1.01, 2.0] controls the smoothing level (e.g., p = 2 for

smooth versus p = 1.01 for relatively abrupt edges). The parameter q 2{1, 2} determines the

Gaussian (q = 2) or Laplacian (q = 1) prior distribution of the estimator [19]. Our simulations

are conducted with σ = 1, λ = 5, p = 1.01, q = 2, and bs;r ¼
ffiffiffi
2
p

(see [18] for more details on

GGMRF). The size of the neighborhood, n, has a great impact on the level of smoothing and

needs to be adjusted for each application. An example of the input and output of the GGMRF

method and their corresponding muscle activation segments is demonstrated in Fig 4 (Algo-

rithm II in S2 Appendix).

Advantages of spatial smoothing of the EMG signals compared to the traditional band-pass

filtering techniques, is that this method reduces EMG signal variability by offering the option

of comparing each evoked potential with the previous and next one. Unlike the filtering meth-

ods, this image smoothing method offers a de-noised signal without any significant changes in

the position or original shape of muscle activations.

Activation detection. The activation detection algorithm is designed to determine the

presence or absence of scES induced evoked potentials in each segment of the EMG signals

and, consequently, the corresponding stimulation intensity threshold. The pre-assumptions

for this task are: 1) the intensity threshold Vs0, which causes the emergence of the earliest

evoked potentials, is an unknown random value with unknown distribution; and, 2) the ampli-

tude of the first visible evoked potential is also an unknown value. These are valid assumptions

because of the non-stationary nature of EMG signals and the fact that no a priori information

regarding the distribution of the varying parameters is present. It is notable that these onset

values alter based on the choice of the stimulation configuration, frequency and muscle type,

and also subject to the day-to-day and pre-post training variability. As mentioned in section

2.1, scES delivers the minimum of five stimulation pulses per stimulus voltage referred to as an

Automatic visualization and activation detection framework of potentials evoked by ES
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event, (wj, Ln−1� j� Ln) where min(Ln − Ln−1) = 5. It is defined by clinical analysts that if 50

percent or more of the stimulation pulses corresponding to the same intensity (event) trigger

evoked potentials, that intensity will be considered as the activation threshold voltage (Vs0).

The general technique implemented in this step is known as the statistically optimal deci-

sion (SOD) method. One of the well-known derivations of SOD is named approximated gen-

eralized likelihood-ratio (AGLR) detector that is developed by Staude and Wolf (1999). In this

study, this method is modified and adapted to our activation detection application. There are

three main phases to this activation detection method: in the first phase, each segment of the

de-noised signal (wi 2W) is modeled by a Gaussian probability density function (pdf) and the

model parameters μi and σi are estimated using the maximum likelihood estimation (MLE)

method (pθ(wi)). Fig 5B shows the histograms for one segment of an EMG and its estimated

Gaussian distribution. From a statistical point of view, the activation detection method repre-

sents a binary selection between the null hypothesis H0 that states “there is no significant

change in the pdf py0
ðwiÞ of the ith segment of the signal” and the alternate hypothesis that

Fig 3. The steps for converting raw EMG signals into 2-D and 3-D images. (A) Raw EMG signal, (B) Signal segmentation using stimulation

time intervals, (C) Overlaying all the segments and building the 3-D graph where X-axis is the evoked potentials duration (ms), the Y-axis is the

stimulation voltage (V), and the Z-axis is the amplitude of the signals (μV) and (D) Converting the 3-D graphs into 2-D images using Colormap.

https://doi.org/10.1371/journal.pone.0185582.g003
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states “there is a significant change in the parameters of pdf py1
ðwiÞ” [15]. Therefore, in the sec-

ond phase, the Gaussian model of all the EMG segments will be compared to the Gaussian

Fig 4. EMG denoising using GGMRF. (A) Applying GGMRF method to 2D image (B) An example of evoked

potential before (black) and after (red) applying GGMRF method.

https://doi.org/10.1371/journal.pone.0185582.g004
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model of the background noise by the log-likelihood ratio (LLR) measure. Eq 2 shows the gen-

eral formulation of the LLR.

sk ¼ ln
pθ1
ðyik
Þ

pθ0
ðyik
Þ

 !

ð2Þ

Where yik
is the kth sampled-value of wi segment after smoothing step. In order to reduce the

high computational cost of this equation, it is assumed that the occurrence of the scES induced

muscle activation does not change the mean μ of the Gaussian pdf and the most significant

changes happen in the standard deviation σi of the pdf as shown in Fig 5C. Therefore, the Eq 2

Fig 5. Calculation steps for activation detection algorithm. (A) Sample evoked potential (one segment of the EMG signal), (B) Histogram of the

sample evoked potential (black) and its estimated Gaussian distribution (red), (C) Comparing the Gaussian pdf of evoked potential signal (red) to pdf

of background noise (black), (D) Plotting the calculated LLR for all segments of the EMG signal and detect the activation threshold (arrow).

https://doi.org/10.1371/journal.pone.0185582.g005
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can be simplified to Eq 3.

sk ¼ ln
σ0

σ i

� �

þ
1

2
ðyik
� μÞ2

1

σ0
2
�

1

σ i
2

� �

ð3Þ

The sum of all the sk values over one segment is referred to as CUSUM value Si and is calcu-

lated based on Eq 4.

Si ¼
XNi

k¼Ni� 1

sk

¼ Ni � Ni� 1 þ 1ð Þln
σ0

σi

� �

þ
ðNi � Ni� 1Þ

2
ð
σ i

2

σ0
2
� 1Þ

ð4Þ

Using Eq 4, for each segment of the signal one value is calculated, which represents the

highest statistical difference between that specific segment and the background noise (Fig 5D).

Finally, in the third phase of the algorithm, a dynamic threshold h is calculated for each

EMG signal in order to find the first segment of the signal that includes the evoked potential

and its corresponding stimulation intensity Vs0. Based on experimental observations, the first

event corresponding to the lowest stimulation voltage does not usually trigger muscle activa-

tion; thus, this event can be considered as the baseline. Consequently, the threshold value h
can be computed as the summation of the maximum and standard deviation of the set of Si

that belongs to the baseline (Eq 5).

h ¼ Smax þ σSi
ð5Þ

All the steps of the activation detection method are demonstrated in Fig 5 (Algorithm III in

S2 Appendix). This step of the framework has been applied only to the voltage ramp-up experi-

ments (at 2 Hz) where there is a single evoked potential in response to each stimulation pulse

(after the muscle is activated) and the accurate detection of the muscle activation and its onset

is desired.

Feature extraction. The objective of the feature extraction algorithm is to represent each

epidurally evoked potential with a set of key features. With this algorithm, the user has the flex-

ibility to calculate these parameters automatically or observe visually using the 2-D representa-

tion of the EMG signal (Fig 6A). The automatically calculated parameters in this framework

are: peak-to-peak amplitude (Vpp), which is the absolute value of the difference between the

highest and the lowest peaks (Tpp) in the evoked potentials and its normalized value based on

the highest peak between left and right muscle; activation latency, the time interval between

the stimulus onset and the onset of muscle activation, the time interval between the highest

and lowest peak; integrated EMG value, the area under the motor unit curve after rectifying

the EMG signal; and, finally, binary 0/1 values: an indication of the absence or presence of

evoked potentials in each segment of the signal (Algorithm IV in S2 Appendix). The aforemen-

tioned features are illustrated in Fig 6B.

Visualization. The last step of the framework is to represent the data processing results in

an optimum and informative way to illustrate the connection between stimulation parameters

and results generated from the computer-based method for each muscle. This will create a

valuable, efficient and convenient presentation of the data for the examiner to enhance inter-

pretation and modify the experiments accordingly. Fig 7 shows examples of the transformation

of 14 raw EMG signals into a single Colormap image for intensity ramp-up (Fig 7A and 7C)

and frequency ramp-up experiments with the same stimulation configuration (Fig 7B and
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Fig 6. Selected feature parameters for EMG activation signal. (A) Visual inspection: Number of peaks of

the evoked potential, Activation onset and Latency, (B) Computer-based feature extraction of peak-to-peak

amplitude (Vpp), Activation latency, Time interval between minimum and maximum values (Tpp) and

Integrated EMG (summation of absolute values of all gray areas).

https://doi.org/10.1371/journal.pone.0185582.g006
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7D). The Colormap values represent the peak-to-peak amplitudes for intensity ramp-up, after

the automatic detection of scES-induced activation, and integrated EMG values for frequency

ramp-up experiments.

The colormap visualization technique can be expanded for several ramp-up experiments

where different configurations are tested for each subject. This is particularly helpful for the

experimental analysts since it gives them the option for instantly comparing the results of sev-

eral experiments together and deside on the optimum stimulation parameters selection. Exam-

ples of this form of colormap representation are demonstrated in the results section.

Results

In this section, the accuracy and speed of automating the mapping task is presented followed

by a few examples of the clinical applications of the proposed framework. The performance of

the computer-based activation detection algorithm has been evaluated by comparing the

Fig 7. Examples of converting 14 EMG signals into colormap images for voltage ramp-up and frequency ramp-up experiments. (A) Raw EMG

signals of 14 ploximal and distal left and right leg muscles during voltage ramp-up from 0.1 to 10 V. (B) Raw EMG signals of same muscles during

frequency ramp-up from 2 to 60 Hz. (C) Colormap image shows the corresponding peak-to-peak amplitudes (μV) with respect to each muscle and

stimulation voltage after stimulation threshold detection. The gray area is presenting the pre-threshold part of the experiment where no activation was

induced. (D) Colormap image shows the corresponding integrated EMG values with respect to 14 muscles and stimulation frequencies.

https://doi.org/10.1371/journal.pone.0185582.g007
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output of the algorithm with the output of the manually detected evoked potentials in intensity

ramp-up experiments performed by trained data analysts, which is considered as the gold stan-

dard. The activation detection method presented is also compared with two other existing

methods, Teager-Kaiser Energy Operation (TKEO) [9] and the AGLR method without the

GGMRF smoothing step. The comparison is based on both recorded EMG signals and simu-

lated signals. Finally, the runtimes of all the algorithms are presented.

Performance evaluation using manual activation detection

This evaluation is based on calculating sensitivity, specificity, Dice similarity and accuracy as

the performance metrics. These parameters are calculated based on true positive (TP), true

negative (TN), false positive (FP), and false negative (FN) values. The boxplots of the four per-

formance measurements on 700 EMG signals separated for each individual are shown in Fig 8.

The mathematical equations for calculating these parameters and overall values from com-

paring automatic vs. manual activation detection method are presented in S1 Table.

Looking at these values in S1 Table and Fig 8, it is immediately noticeable that the selected

comparison measures (i.e. sensitivity, specificity, Dice similarity and accuracy) have distrib-

uted in different ranges. For instance, the percentage of sensitivity values are densely distrib-

uted in [99.9994, 99.9999] interval whereas the specificity data points are distributed in [79.59,

99.99] or accuracy values are spread out between [94.33, 100.00]. These differences can be

addressed based on the experimental design and the original definitions of these measures. For

example, the sensitivity is the ratio of true positives over all the positive (activated) segments of

the signal, and since during the intensity ramp-up usually most segments of the EMG signals

contain evoked potentials, the true positive ratio is almost always close to 100%. On the other

hand, the specificity values show the ratio of true negatives and since a few segments usually

fall into the not-activated category, the accuracy of the program for detecting these segments

can drop in some cases and cause in lower true negative ratio. The Dice similarity measure is

usually used to quantify the amount of agreements between two sets of binary results and in

this application these values are distributed in [96.29, 99.99].

The five-number-summary values of the performance measures classified by subjects and

muscles presented in supplementary materials, S1, S2 and S3 Tables, respectively.

Comparison with other activation detection methods

The performance of the automated method is compared to two other methods: TKEO and

AGLR without smoothing. In this study, we slightly modified these algorithms to be adapted

to the activation detection problem in order to make a fair comparison between their outputs

and our proposed method. The TKEO method utilizes a conditioning function as shown in Eq

6.

Cðxik
Þ ¼ xik

2 � xik� 1
xikþ1

ð6Þ

Where xik is the observation k in segment i. After applying the conditioning function, the max-

imum value of each segment is compared to the dynamic threshold (Eq 5) and activation will

be detected if the maximum value is greater than the threshold.

The comparison results are based on recorded EMG signals as well as simulated EMG sig-

nals. The pseudocode of the TKEO method implementation is presented in the supplementary

materials, S2 Appendix, Algorithm VI.

The results of comparing the proposed method with AGLR and TKEO based on the total

accuracy in the recorded EMG signals from five patients are presented in Table 1 in the five-

number-summary format. It is noticeable that AGLR and TKEO showed a lower accuracy
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compared to the new automated framework. Particularly there is approximately 1.05%

increase in the median value of accuracy that shows the effect of adding the GGMRF smooth-

ing technique to the pre-processing step, which makes the automated method more robust

where there is higher noise level in the signal. It is notable here that although other signal

Fig 8. Boxplot representation of performace measurements for comparing automated activation detection method with the ground

truth. (A) Accuracy, (B) Sensitivity, (C) Specificity, (D) Dice Similarity.

https://doi.org/10.1371/journal.pone.0185582.g008

Table 1. Comparison of the total accuracy for the new automated activation detection method with

the TKEO and SODM methods based on five-number-summary.

SODM+GGMRF SODM TKEO

Maximum 100.00 100.00 100.00

Upper quartile 100.00 100.00 100.00

Median 100.00 98.95 98.42

Lower quartile 97.72 97.43 97.22

Minimum 94.33 93.65 93.18

https://doi.org/10.1371/journal.pone.0185582.t001
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filtering techniques might show the same robustness to noise, these methods cause distortion

to the shape of the evoked potential or activation latency in the signal which are unfavorable in

this application.

Fig 9 demonstrates examples of recorded EMG signals with different SNR levels and perfor-

mance comparison of the three methods for each signal. The three signals were recorded from

right MH (Fig 9A), right GL (Fig 9B) and left GL (Fig 9C) during an intensity ramp-up experi-

ment and they have high, medium and low SNR (10.63 dB, 4.37 dB and -0.14 dB), respectively.

These SNR values are approximated by using the smoothed signals as the original signal with-

out noise and the subtraction of recorded and smoothed signal as the noise signal (assuming

that the noise is additive). The performance of the three methods are shown as activation win-

dows in black lines (from left to right: AGLR with GGMRF, AGLR and TKEO). The activation

window is a time interval in which the algorithm was able to detect every single evoked poten-

tial induced by scES pulsations. The manually detected activation windows are shown in red

dashed lines as the ground truth.

As this figure shows, for the high SNR signal all three methods can detect 100% of the

evoked potentials in the signal. In the medium SNR, only AGLR with GGMRF can detect the

activations as early as the ground truth. The AGLR without de-noising had near 15 seconds

delay in detecting the first activation (accuracy of 94.11%). TKEO didn’t show a long delay

but it was unable to consistently detect all the activations throughout the signal (accuracy of

95.58%). In the last row, the left GL signal has low SNR and it causes a long delays and incon-

sistencies in detecting the activations for AGLR (69.11%) and TKEO (38.23%), however our

algorithm is robust in detecting the earliest activations that are overwhelmed with the high

noise level.

Fig 9. Examples of recorded EMG signals with different SNR levels and the performance comparison between three activation detection

methods. (A) High SNR signal from right MH; (B) Medium SNR signal from right GL and (C) Low SNR signal from L GL. Detected activation windows for

AGLR + MMGRF, AGLR and TKEO from left to right are shown as continues and dashed black lines. De-noised signal is shown in light red and manually

detected activation window as dashed red line.

https://doi.org/10.1371/journal.pone.0185582.g009
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In order to measure to what extent the proposed method keeps its robustness in the noisy

environment, and compare it with other methods, the performance of the three methods were

tested using the simulated signals with different SNR values. The simulated EMG signal is

designed using an activation shape signal as the evoked potential, X(k), that is convolved with

a train of Dirac delta impulses
Pk

n¼1
0:01n dðt � nÞ, where the amplitudes linearly increase.

The additive white Gaussian noise, n(t), is then added to the signal based on the desired SNR

to generate the final simulated signal. This signal consists of 50 segments, where the first 20

segments do not include any evoked potential; thus, 10 segments of the first portion of the sig-

nal are utilized as the baseline. The SNR of the simulated signal is increased from -10 to 10 dB

(S1 Fig). Fig 10 demonstrates the plot of the accuracy measurement values versus SNR for

three methods. As it is shown in this figure, all three methods are performing well at higher

SNR values. However, as the noise level in the signal started to increase, TKEO and AGLR

accuracy rates suddenly dropped to below 50% but the proposed method kept its accuracy

near 80% at lower SNRs. Therefore, it is clear from this plot that the AGLR with GGMRF sig-

nificantly outperforms the other methods for EMG signals containing lower SNR values.

Fig 10. Comparison of three activation detection methods on simulated EMG signals as a function of SNR(dB).

https://doi.org/10.1371/journal.pone.0185582.g010
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Calculating total runtime of the algorithms

The hardware and software that were employed to process the EMG signals and calculate the

runtime of the algorithms are Dell computer with Optiplex 9020, Intel1 Core™i7-4790 CPU @

3.60 GHz, 16.0 GB RAM, 64-bit Operating System, and MATLAB R2011a, respectively. The

runtime of this framework is directly dependent on the length of the experiments. Table 2

presents the average runtime of each of the five algorithms. The average and standard devia-

tion of total execution time for processing each set of data recorded during one ramp-up

experiment through all five algorithms is approximately 12.7 ± 2.3 seconds. Comparing to the

previous manual method that could take up to several days, the automated method clearly

demonstrates superior efficiency with respect to time and human resources.

Discussions

There are several points that need to be addressed in the process of developing the proposed

automated framework for EMG signal processing. First, it is important to note that the pre-

sented method does not need any a priori information for the statistical model, which makes it

a fully automatic method that uses only the current and previous EMG signal values to build

the statistical model. Also, there is no need to label the input data manually before running the

program.

Comparing the results from recorded EMG signals and simulated signals with controllable

SNR shows that in most cases surface EMG signals have fairly high SNR, which makes the per-

formance of all the methods fairly accurate. However, there are some instances where the

EMG signals can be disturbed with unpredictable sources of noise and artifacts like displace-

ment of the recording electrodes or random occurrence of internal muscle activations that can

interfere with the epidurally induced activations. As it was shown in the results section, adding

the image-smoothing step to the framework helps to reduce the chance of false alarms (outli-

ers) in the presence of these sources of noise. Since both TKEO and AGLR show rather accu-

rate results without GGMRF, we predict that adding this pre-processing step to TKEO and

probably other methods will also increase their accuracy significantly. It should also be men-

tioned that the GGMRF method itself is sensitive to the size of the neighborhood pixels and

this parameter should be adjusted based on the application; therefore. adding this step can be a

tradeoff between accuracy and the need for parameter adjustment.

In addition to internal activations there are some instances where there is a secondary (late)

response to the scES stimulation that can overgrow the primary evoked potential and cause

false alarms. In order to minimize the effects of these secondary responses on the program’s

accuracy, only the first one eighth of each signal segments are used to build the statistical

model because this is the time interval where primary activations, that are directly linked to

the order of muscle recruitment of the scES, are most likely to happen.

As it was explained in the methodology section the program is designed to detect both the

occurrence of evoked potentials and the latency (onset) of each detected evoked potential as

one of the key features that has been extracted. Same statistical methodology with minor modi-

fications has been applied for the onset detection algorithm as explained in the pseudocode, S2

Appendix. In order to increase the resolution of the detected onsets, the program increases the

Table 2. The runtime mean and RMSE of each steps of the proposed framework.

Converting signal to image Noise reduction Activation detection Feature extraction Visualization Total

Runtime (s) Mean 3.93 6.61 1.54 0.05 0.40 12.71

RMSE 1.33 1.18 0.24 0.01 0.01 2.33

https://doi.org/10.1371/journal.pone.0185582.t002
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sampling rate to 10,000 samples per second in the recorded EMG signals using linear interpo-

lation technique.

It should also be noted that while the manual activation detection has been considered as

the gold standard in this study, the manual method itself has weaknesses such as disagreements

between different observers in low SNRs or intra-observer variability in detecting the true

onset that can be caused by exhaustion specially when facing large stack of data.

By reducing the noise level in the signal, while minimally affecting the evoked potential sig-

nal using the GGMRF technique and considerably increasing the signal-to-noise ratio (Fig 9),

this framework increases the detection accuracy of the earliest muscle response in the EMG

signal and the corresponding stimulation voltage (intensity) as the muscle activation threshold.

In other words, this algorithm detects the exact intensity threshold that is needed for the mus-

cle to get activated (for a given electrode configuration). Determining this threshold value has

two main advantages for the experimentalist: 1) To find the configuration (or combination of

several configurations) that offers the lowest intensity threshold for activating all the muscles;

and 2) To set the intensity at the pre-threshold value during the performance of specific volun-

tary tasks for the selected optimum configuration. Therefore, the automatic process of linking

scES parameters to the muscle recruitment order that is presented in this study improves the

speed and precision of the operator’s decision for selecting both the optimum configuration

and the corresponding pre-threshold intensity.

Finally, our framework has the flexibility to be applied to any other experimental protocols

or signals, by simply updating certain parameters (e.g. intensity or frequency) and attributes

(e.g. peak-to-peak amplitude or integrated EMG) of the signals. Spinal cord epidural stimula-

tion research has current applications in small and large animal models as well as human mod-

els. In all models, understanding the effect of scES on the spinal cord networks following

injury is a critical component that will lead to more successful selection of stimulation parame-

ters targeted for functional improvements. As we have shown in our previous works (3–6)

stimulation configurations are different across individuals, species and tasks, emphasizing the

need to map motor evoked responses relative to stimulation site for each research participant.

Transcutaneous stimulation has also been used as a technique to access the capabilities of the

spinal cord networks following injury. Thus, the methodology presented in this paper can also

be used to visualize the motor evoked responses relative to stimulation site and stimulation

voltage across multiple muscles. Applications in which understanding detailed responses of

multiple muscles to a stimulus with varying intensity and location could benefit from the anal-

ysis technique explained in this paper.

Conclusions

In this study, we presented a novel framework consisting of five algorithms for activation

detection and visualization of EMG signals recorded from multiple leg muscles of spinal cord

injured subjects with an epidural stimulator implanted in lumbosacral region of their spine.

Using this framework, raw EMG signals are successfully converted into two/three dimensional

images and de-noised using GGMRF image smoothing technique. Additionally, the occur-

rence of scES induced muscle activation is automatically detected along with the ability to

extract key features in the EMG signal and generate the visual output for user interpretation.

Each of these five novel algorithms has several advantages over conventional methodolo-

gies, which make them indispensable for the data analysis application. For instance, the first

algorithm converts the signal into an image, which enables clear illustration of the latencies for

all activations as well as the overall onset of the scES induced motor responses. By converting

the raw signal into image, this algorithm also prepares the data for the next step that is
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GGMRF image smoothing method to get a de-noised signal without affecting the shape and

latency of muscle activations. As it is shown in the results section adding the GGMRF method

to the framework is also noticeably advantageous for the performance of the activation detec-

tion step. In the activation detection algorithm, we developed a statistically optimal decision

method by applying MLE together with comparing the probability density functions of the

muscle activations to the background noise utilizing LLR and calculating the dynamic activa-

tion threshold. In comparing the automatic method for activation threshold detection vs. man-

ual detection (ground truth) on 700 EMG signals, the new automated approach developed

here demonstrated average accuracy of 98.28% based on the errors of combined false positive

and false negative data.

Finally, the combination of the modified AGLR method and GGMRF has proven to have

minimum sensitivity to the changes in the signal to noise ratio compared to the other well-

known EMG onset detection methods i.e. AGLR method without smoothing and TKEO

method using both simulated EMG signal and real EMG signals. Comparing the three meth-

ods on the recorded EMG signals indicates the robustness in the accuracy of the presented

activation method in the situation where no information about the noise level in the signal is

known. In addition, the feature extraction and visualization steps of the framework help us to

make accurate and quick connections between the desired EMG features and the scES parame-

ters like intensity voltage, configuration and frequency. In conclusion, this study clearly dem-

onstrates the advantages of implementing a set of algorithms for improving the accuracy and

speed in complex EMG data analysis.

Supporting information

S1 Fig. Simulated EMG signal. (A) Process of generating the simulated signal; (B) examples

of the simulated signals after adding the white Gaussian noise with SNR(dB) = 5,0 and -10 (top

figures) and the output of the GGMRF algorithm to show to what extend this method reduces

the noise level in the noisy signals.

(TIF)

S1 Table. Comparison of the performance measurements for the automated activation

detection method based on the manual detection as the gold standard. These values are cal-

culated based on signals recorded from 14 leg muscles for all five participants during intensity

ramp-up experiments. The five-number-summery values presented here are maximum,

median, upper and lower quartile, and minimum values of all the measurements.

(DOCX)

S2 Table. comparing the automated activation detection method with the manual ground

truth as separated by subjects.
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S3 Table. comparing the automated activation detection method with the manual ground

truth as separated by muscles.

(DOCX)

S1 Appendix. Interpolation process.

(DOCX)

S2 Appendix. Pseudocodes of all algorithms in the framework.

(DOCX)
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