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Abstract: Shotgun proteomics provides the most powerful
analytical platform for global inventory of complex pro-
teomes using liquid chromatography-tandem mass spec-
trometry (LC-MS/MS) and allows a global analysis of
protein changes. Nevertheless, sampling of complex
proteomes by current shotgun proteomics platforms is
incomplete, and this contributes to variability in assess-
ment of peptide and protein inventories by spectral
counting approaches. Thus, shotgun proteomics data
pose challenges in comparing proteomes from different
biological states. We developed an analysis strategy using
quasi-likelihood Generalized Linear Modeling (GLM), in-
cluded in a graphical interface software package (Quasi-
Tel) that reads standard output from protein assemblies
created by IDPicker, an HTML-based user interface to
query shotgun proteomic data sets. This approach was
compared to four other statistical analysis strategies:
Student t test, Wilcoxon rank test, Fisher’s Exact test, and
Poisson-based GLM. We analyzed the performance of
these tests to identify differences in protein levels based
on spectral counts in a shotgun data set in which equimo-
lar amounts of 48 human proteins were spiked at different
levels into whole yeast lysates. Both GLM approaches and
the Fisher Exact test performed adequately, each with
their unique limitations. We subsequently compared the
proteomes of normal tonsil epithelium and HNSCC using
this approach and identified 86 proteins with differential
spectral counts between normal tonsil epithelium and
HNSCC. We selected 18 proteins from this comparison
for verification of protein levels between the individual
normal and tumor tissues using liquid chromatography-

multiple reaction monitoring mass spectrometry (LC-
MRM-MS). This analysis confirmed the magnitude and
direction of the protein expression differences in all 6
proteins for which reliable data could be obtained. Our
analysis demonstrates that shotgun proteomic data sets
from different tissue phenotypes are sufficiently rich in
quantitative information and that statistically significant
differences in proteins spectral counts reflect the underly-
ing biology of the samples.

Keywords: LC-MS/MS • shotgun proteomics • multiple
reaction monitoring (MRM) • head and neck carcinoma •
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Introduction

Over the past decade, shotgun proteomics has emerged as
the most powerful analytical platform to characterize complex
proteomes.1,2 By combining multidimensional liquid chromato-
graphy-tandem mass spectrometry (LC-MS/MS) with data-
base search and protein assembly algorithms, shotgun pro-
teomics platforms surpass other MS-based proteomics systems
in number and diversity of proteins identified and in dynamic
range for detection. Nevertheless, shotgun proteomics using
LC-MS/MS is essentially a sampling technique, in which
probability of detection is a function of protein abundance and
quantitation is assessed by counting the numbers of spectra
that map to identified proteins.3-5 However, random sampling
of medium to low abundance proteins in shotgun analyses
means that multiple replicate analyses are needed to establish
the composition of complex proteomes.6,7 Because shotgun
analyses can represent complex proteomes in considerable
depth, a key question is whether comparison of shotgun
proteome inventories can reveal molecular characteristics of
biologically distinct phenotypes.

This is more than a purely academic question, as high-
throughput gene expression studies using microarrays have
allowed a global view of molecular processes in complex
biological systems.8 Microarray-based gene expression studies
have also revealed molecular differences between clinically
distinct cancer phenotypes. For example, pioneering studies
identified gene expression patterns that allowed molecular
classification of lymphomas and breast cancers.9,10 An exten-
sion of this approach led to the identification of gene expres-
sion signatures that predict response of lymph node-negative
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breast cancers to chemotherapy and endocrine therapy.11,12

This latter approach has emerged as a prototype of a new
generation of in vitro diagnostics for therapeutic decision-
making in cancer.

However, gene expression profiles do not always correspond
to proteome changes and do not capture many functional
features of proteomes. Shotgun proteome analyses on stan-
dardized analytical platforms offer the prospect of character-
izing collections of proteins that distinguish clinically relevant
phenotypes. When applied to well-characterized biospecimens,
proteome differences represent candidates for evaluation in a
biomarker development pipeline.13 One of the obstacles of
employing shotgun proteomics in this context is the challenge
of performing statistical comparisons of shotgun data sets. The
characteristics of spectral count data and the stochastic
representation of low abundance proteins present interesting
challenges in statistical comparisons and identification of
significant differences between complex proteomes.

Shotgun proteomic analyses yield spectral count MS/MS
data, which are similar to Serial Analysis of Gene Expression
(SAGE) mRNA tags, which can be modeled by maximum-
likelihood techniques based on the Poisson distribution either
using a frequentist approach or in a Bayesan framework.14-16

However, the Poisson distribution is not very flexible for the
empirical fitting of shotgun proteomics data and requires that
the distribution mean and variance be equal.17,18 We therefore
developed a quasi-likelihood model, that allows over- or under-
dispersion of spectral counts for the comparison of shotgun
data sets,19,20 using the F-test to compute p-values and applying
the False Discovery Rate (FDR) method to correct for multiple
hypothesis testing.21 This modeling approach generates an
estimate for the average spectral counts for each protein across
analyses that can be used to compare two or more study
conditions. Using a large data set of human proteins spiked
into a yeast background, we demonstrate that quasi-likelihood
modeling identifies proteomic differences under varying condi-
tions. Using a large data set of human proteins spiked into a
yeast background, we compared the performance of five
different statistical tests to discern differences under varying
conditions. The best results were obtained with GLM ap-
proaches and Fisher’s Exact test. We analyzed shotgun pro-
teomic data from normal tonsil epithelium and HNSCCs and
identified proteins with possible differential expression between
these two phenotypes (Figure 1). Expression differences were
verified for a selection of proteins using LC-MRM-MS, includ-
ing keratin 1 and 17, fatty acid-binding protein 5, guanine
nucleotide-binding protein 6, cornifin 3 and ferritin light-chain.
Many of the identified proteins had links to keratinocyte
differentiation or were known as proteins involved in HNSCC
carcinogenesis.

Methods

Biological Materials, Sample Preparation, and Analysis
by LC-MS/MS. A yeast reference proteome was created for the
Clinical Proteomic Technology Assessment for Cancer (CPTAC)
network to determine variability in the performance of LC-MS/
MS platforms across the CPTAC network. A mixture of 48
human proteins (Sigma Universal Protein Standard 1 (UPS1),
Sigma-Aldrich, St Louis, MO) was spiked into the yeast refer-
ence proteome at 6 levels: 0, 0.24, 0.67, 2.54, 6.7, and 20 fmol/
µg yeast protein as described by Paulovich.22 The preparation
and analysis of the yeast proteome spiked with an equimolar
mixture of human proteins (Sigma UPS) at different concentra-

tions was done as part of recently published CPTAC interlabo-
ratory studies.22 Preparation and processing of these samples was
performed centrally at the National Institute for Standards and
Technology (NIST) as described.22 The proteins were reduced, the
thiols were alkylated with iodoacetamide, and then the alkylated
proteins were digested in solution with trypsin. Standard operating
procedures for mass spectrometry analyses were implemented
in detail, including HPLC and MS parameters.22,23 For the current
study, we used data from the CPTAC study obtained on two
different LTQ-Orbitraps (3 replicates each) and one LTQ (3
replicates) from our laboratory at Vanderbilt University.

We analyzed a data set reflecting two clinically distinct
phenotypes using 20 head and neck squamous cell carcinomas
(HNSCC) and 20 normal tonsillectomy tissues from patients
identified through the Head and Neck Tissue Repository at
Vanderbilt University. This tissue repository was started in 2003
and is used to prospectively collect biological materials from
all patients undergoing surgery in the head and neck area at
Vanderbilt University. All tumors were obtained from newly
diagnosed patients who, with a single exception, had not been
previously treated by either chemotherapy or radiation. All
tumors were Stage I-III, originated in the oral cavity (except
for one oropharyngeal carcinoma) and were histologically
classified by a certified pathologist. The normal tonsil epithe-
lium was obtained from pediatric tonsillectomies performed
at the Vanderbilt Children’s Hospital. Informed consent was
obtained from patients or their parents to use biological
materials for research purposes under protocols approved by
the Vanderbilt University Institutional Review Board. Patient
information was kept in an anonymized database that only
contained pertinent demographic information and links to the
biological specimens. Researchers had no access to any infor-
mation that could potentially identify individual patients.

All tissues were snap-frozen in liquid nitrogen within 30 min
of surgical removal and kept at -80 °C until processing. Prior
to sectioning, the tumor samples were macrodissected to
achieve a minimum of 70% tumor cell content in the eventual
specimen while epithelial cells from normal specimens were
dissected away from lymphoid cells. The tissue was embedded
in polyvinyl alcohol and three 60 µm slices were placed in
separate centrifuge tubes. Polyvinyl alcohol was removed with
two washes of 70% ethanol followed by a single wash with
deionized water.

Figure 1. Outline of proteomic procedures for shotgun proteomic
analysis of HNSCC and tonsil epithelium protein lysates and for
protein quantitation analysis by MRM.
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Mass spectrometry methods are described in detail in
Supporting Information. In summary, tissues were used for
protein purification and quantitation, followed by protein
digestion using trypsin. The resulting peptides were separated
on isoelectric focusing strips that were cut into 20 separate
fractions. Each of these fractions was analyzed by a second
separation on a liquid chromatography column, followed by
MS/MS analysis on a LTQ-Orbitrap. Resulting Thermo “RAW”
scans were converted to the universal mzML format and
searched using the Myrimatch24 search algorithm against either
a yeast protein database (in the case of CPTAC data) or against
a human protein database (for head and neck samples).
Proteins were assembled using IDpicker software25 reporting
the minimal list of proteins that was able to explain all peptides
that were successfully matched to MS-spectra. Filtering condi-
tions were a minimum of 2 distinct peptides per protein for
the yeast data sets, while an additional minimum of 10
identified spectra per protein was required for the head and
neck data set. The full and unfiltered IDPicker output data set
is provided as Supporting Information and includes a complete
list of protein IDs, the number of distinct peptides observed
per protein, the number of spectra observed per protein,
percentage coverage and the full peptide sequences.

Quasi-Poisson Likelihood Model and Implementation in
QuasiTel. Previous results have shown that a frequency-based
analysis approach using the number of observed spectra
(spectral counting) provides a rough measure of protein levels
in complex protein mixtures, especially for more abundant
proteins.3,26,27 The goal of statistical analysis using this tech-
nique is to provide a list of proteins of interest for further study.
In this approach, the spectra that are confidently assigned to
peptide sequences using the above-described criteria are our
primary outcome measure. The sum of all spectra linked to
each of the proteins was then tabulated for each of the m
replicate analyses of each biological sample. This resulted in a
table consisting of a protein identifier in each row and a set of
n columns representing each of the m replicate analyses for
the r biological samples. Spectral count data obtained for
several thousand proteins are assigned to this table and
typically vary between 0 (no spectra observed) to hundreds of
spectra observed.

Different methods have been developed to model spectral
count data generated from shotgun proteomic analyses,5 but
currently, there is no “gold standard” statistical method for
analyzing such data sets. We therefore developed a quasi-
likelihood method and compared this method with four other
statistical tests using a standardized data set of yeast spiked
with human proteins.

To compare spectral counts for different clinical groups (such
as normal vs tumor), we can model the data in a regression
framework. Let Y denote spectral counts and x stand for group.
Because Y represents spectral count, it is not appropriate to
assume a Gaussian distribution; instead, generalized linear
models (GLM) should be applied to handle such non-normal
responses.28 Specifically, the Poisson distribution, a distribution
from the exponential family of distributions, is usually assumed
for count data. The resulting model can be expressed as:

Equation 1 is fitted by maximizing the Poisson likelihood
function, and the group effect can be assessed by testing the

significance of �1. When specifying a Poisson distribution,
however, we put an equal mean-variance assumption on the
data, which usually does not hold in the empirical fitting. To
alleviate this assumption, we propose a quasi-Poisson maxi-
mum likelihood approach. Instead of claiming that Y is from a
known distribution, we assume only knowledge of the first and
second moments. In particular, for count data, we are able to
specify the link and variance functions of the model, but we
do not have a clear idea of an appropriate distribution form
for the response. Thus, the important elements of the model
specification are link and variance, with outcome less sensitive
to distribution of the response, given a reasonable sample
size.29 For a quasi-Poisson method, the regression model can
be specified as in eq 1. The fitting procedure is then analogous
to fitting the model using Poisson likelihood.

Statistical properties of quasi-likelihood has been derived
and presented30 long ago. Yet, it is first time to be introduced
to the shotgun data analysis field. To complete the method
description, we rederive the quasi-likelihood Poisson model as
follows: for the ith response Yi (the spectral counts), we have
E(Yi) ) ui and Var(Yi) ) �V(ui). Now define a score Ui as

Then we have:

From this follows:

We notice that the properties for score Ui shown in eq 2 and
3 are shared by the derivatives of the log-likelihood, which
suggests that the integration Ui would serve as a good surrogate
for likelihood. We can then define a log quasi-likelihood for Yi

as:

Then the log quasi-likelihood for all n observations will be

We can thus verify that Q behaves just like a log-likelihood
and that the estimation of � is obtained by maximizing Q. We
summarize some features of the quasi-Poisson model as:

1. The usually asymptotic properties expected from maxi-
mum likelihood estimators also hold for quasi-likelihood based
estimators.30 Theoretically, these properties are assuring and
desirable.

Log(Y) ) �0 + �1X1 + ε
·
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2. The quasi-likelihood Poisson method allows for the
dispersion � to be a free parameter. This parameter is useful
in modeling overdispersion, which is typical of shotgun data.31

The quasi-likelihood method can model the variation of such
data with increased accuracy.

3. The quasi-likelihood premise broadens our modeling
possibilities for more real-world data types: when we do not
have a clear idea about the distribution of the shotgun data,
we still can model such data with knowledge only of link and
variance.29

4. In addition, quasi-likelihood allows us to model data in a
regression framework that is easily extended to model more
complicated data from complicated experiments, such as
repeated measurements, longitudinal data, etc. The quasi-
likelihood method provides generally consistent estimates of
regression coefficients even if the variance function is mis-
specified.32

Shotgun proteomic analyses typically identify thousands of
proteins in complex cell or tissue lysates and hence generate
multiple comparison artifacts. To simultaneously test thou-
sands of proteins for differences requires a means to control
the rate of statistical false discovery. Unadjusted P-values taken
from single-inference procedures result in an increased rate
of false positives. Family wise error rate methods are too
conservative and have less application value for our purposes
because they are not suitable for large-scale simultaneous
hypotheses testing problems that arise from high-throughput
technologies. To handle the complications presented by si-
multaneously testing thousands of proteins, we applied the
False Discovery Rate (FDR) method.21 The FDR method is a
frequentist-based approach working with P-values (null hy-
pothesis tail area).

Another complicating feature of shotgun proteomic data sets
is the presence of large numbers of zero-values (i.e., no spectra
observed for a given protein). For example, in comparing two
data sets, it is not uncommon to encounter all zeros as spectral
count values for a protein in one data set and nonzero values
in the other. This causes the estimated standard error to be
enormous and the corresponding Wald test statistics, based on
estimated coefficients with standard errors, are not reliable. A
conservative way to avoid this problem is to add one spectrum
count to the data set containing only zeros, but this leads to
data distortion at low spectral count levels. An alternative is to
perform the comparison using nested models. When compar-
ing models, the P-value of an F-test rather than a Chi2 test is
calculated following the quasi-likelihood method.29 The “ob-
served total spectrum count” in each run is added into the
model as the offset. The offset serves as the “size” variable
which determines the number of opportunities for proteins to
occur, and by modeling such an offset, the spectral count data
are normalized. The model generates quasi-p values for each
of the protein entries in the data set and estimates an average
spectral count (λ) across the replicate analyses. It also allows
the specification of additional parameters, such as the distinc-
tion between subgroups within the analysis. We applied the
above statistical methods to a data set with known “ground-
truth”, where different levels of an equimolar mixture of 48
human proteins were spiked into a yeast background. The full
QuasiTel program code using the open-source statistical pack-
age R is provided as Supporting Information.

LC-MRM-MS Analyses. For LC-MRM-MS analyses, protein
lysates from 20 normal and 20 HNSCC tissues were processed
individually as described above with no additional IEF peptide

fractionation. Tryptic peptides were resuspended in 0.1%
formic acid to a final concentration of 0.44 mg/mL. A total of
18 proteins were selected for MRM analysis on the basis of
differential spectral counts between normal epithelium and
HNSCC. For each protein candidate, peptides were selected
for MRM analysis giving priority to those peptides previously
identified in the shotgun data set with high MS/MS spectral
quality. Additional peptides were selected by in silico digestion,
and all peptides included in MRM analysis were required to
be 7 to 25 amino acids in length, be fully tryptic, and contain
no ragged ends or motifs (NXT/S). Peptides containing cysteine
and/or methionine residues were not excluded. Peptide unique-
ness was confirmed by searching against the IPI human
database (Version 3.56). Two to 4 unique peptides were selected
for each protein and selected transitions for all candidate
peptides were optimized in a trial LC MRM MS analysis
consisting of a single normal and tumor samples, and transi-
tions with high peak intensity and no interferences from
background matrix were selected for further data collection.
The complete list of MRM peptides, precursor masses and
transitions is provided as Supporting Information. Two isoto-
pically labeled peptides from �-actin (GYSFTTTAER, with 13C/
15N labeled R), and annexin A1 (VLDLELK with 13C/15N labeled
K, New England Peptide, LLC, Gardner, MA, >95% purity
according to amino acid analysis) were each spiked into tissue
digests at a concentration of 25 fmol/µL prior to MRM-MS
analysis for data normalization.

All samples were analyzed on a triple quadrupole mass
spectrometer (TSQ Quantum Ultra, Thermo Fisher Scientific,
Waltham, MA) equipped with an Eksigent 1D Plus NanoLC
pump (Eksigent Technologies, Dublin CA). The LC mobile
phase consisted of Solvent A, an aqueous solution with 0.1%
formic acid, and solvent B, acetonitrile with 0.1% formic acid.
Peptides were separated on a packed capillary tip (Polymicro
Technologies, 100 µm × 11 cm) with Jupiter C18 resin (5 µm,
300 Å, Phenomenex) using an in-line solid-phase extraction
column (100 µm × 6 cm) packed with the same C18 resin using
a frit generated with liquid silicate Kasil 133 as previously
described.34 Injections (2 µL) of a 0.44 mg/mL digest (based
on protein concentration) were followed by a 10 min wash
period with 100% A, then by elution with a gradient of 2-25%
solvent B in 25 min, 25-50% solvent B in 20 min, and finally
by elution with 50-90% solvent B in 10 min. Data acquisition
was performed with an ion-spray voltage of 1200 V, capillary
temperature 210 °C and skimmer offset -5 V. Both Q1 and Q3
were set at unit resolution (fwhm 0.7 Da), and Q2 at 1.5 mTorr.
Scan width was 0.004 m/z and scan time 10 ms. Collision
energies for each peptide are listed in the Supporting Informa-
tion. Peak areas for each peptide were extracted and integrated
using Pinpoint software (Thermo Fisher Scientific, Waltham,
MA).

Criteria to accept or reject a MRM peptide measurement
were: (1) all peptide MRM transitions were required to generate
integrated precursor peak areas higher than 105; (2) at least
three of the specified SRM transitions had a measured signal-
to-noise greater than 3 in either normal or tumor samples; (3)
peptide MRM transitions meeting the previous criteria were
consistently observed in at least one of the tissue types; (4)
retention time aligned for both precursor and individual SRM
transitions; and (5) the relative intensities of fragment ions were
consistent with those observed in ion trap MS/MS spectra (if
available) and were consistent between different samples.
Comparisons between labeled �-actin-normalized measure-
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ments were made by Student’s t test with Welch correction for
unequal variance using Prism 5.0 (GraphPad Software, La Jolla,
CA).

Results

To compare different statistical approaches to spectral count
data, we employed an existing data set created within the
framework of the CPTAC network was used for differential
proteomic analysis. In this data set, a known set of 48 human
proteins (Sigma UPS) was spiked in equimolar amounts into a
yeast background (CPTAC Study 6).23 The study employed
reverse phase LC-MS/MS analyses of the samples on several
Thermo LTQ and Orbitrap instruments. We compared spectral
count data from triplicate analyses on one LTQ instrument and
on two Orbitrap instruments at Vanderbilt using the CPTAC
standard operating procedure for Study 6.22 A total of 7
preparations were analyzed: yeast only (QC2, at 60 ng/µL) and
a series of the following Sigma UPS spikes into 60 ng/µL yeast;
0.25 fmol/µL (A); 0.74 fmol/µL (B); 2.2 fmol/µL (C); 6.7 fmol/
µL (D); and 20 fmol/µL (E). All data from the three instruments
were integrated into a single protein assembly report requiring
a minimum of 2 distinct peptides per protein at 2% peptide
false discovery rate (FDR). The total number of MS/MS scans
that were successfully matched to peptide sequences was
178 985, representing a total of 1942 protein groups, including
identifications of 46 of the 48 spiked Sigma UPS proteins. In
this context, the term “protein groups” denotes proteins that
are indistinguishable based on identified peptide sequences as
described previously.35 The assembled protein list included 216
identifications to reversed-sequence proteins for an unaccept-
ably high 22% protein FDR. We therefore required any protein
to be identified by a minimum of at least 5 spectra; this
modestly reduced the number of protein groups to 1437. This
filter eliminated the vast majority of false identifications,
yielding a 6.8% protein FDR, but resulted in no loss of any of
the 46 identified Sigma UPS protein identifications. All subse-
quent analyses and statistical tests were performed on this data
set of 1437 protein groups. The full IDPicker report and the
filtered data set used for the statistical analyses are provided
as Supporting Information.

Graphical User Interface (GUI) for the Analysis of ID-
Picker Output. To facilitate the analysis of shotgun data sets
summarized using IDPicker,25 we coded the 5 statistical tests
in the R-based program QuasiTel. QuasiTel allows direct import
of IDPicker files for statistical comparisons by reading the
IDPicker spectra-by-protein-by-group file and automatically
loading the corresponding IDPicker summary file containing
the number of confident identifications for each group used
as offset in the model. This offset serves as a “normalization”
factor when the numbers of confident IDs observed vary
between replicates. The user can then select the sets of MS
analyses to be compared and a minimum number of total
spectral counts required across all groups for each protein. The
latter increases the power of QuasiTel and eliminates proteins
with too few spectral identifications to yield a meaningful
comparison. The output file contains all protein IDs that fulfill
the filtering criteria and lists spectral count numbers and
model-generated rates (λ) for each group, as well as the crude
p-value and FDR-corrected quasi-likelihood p-values for each
of the statistical tests. It also calculates a protein dispersion
parameter (�), which relates to the variation in spectral counts
across all measurements, as well as coefficients of variation for
each of the groups. The dispersion parameter can be used to

identify proteins with the greatest variation between replicate
analyses across all groups, which may be of most interest as
markers for individual properties of the samples. As an internal
validation, the reported spectral counts are not taken directly
from the input tables, but rather are reverse-calculated using
the model-generated rates (λ) and provided offset numbers.
The ratio of the group rates, expressed as base-2 log of the ratio
of the rates (“rate ratio”), can be used as an estimate of the
magnitude of the difference between the spectral counts and,
by extension the expected protein levels, in each group.

Comparison of Statistical Tests Identifying Spiked Sigma
UPS Proteins. We compared five statistical tests for their
capacity to distinguish differences between the various spike
levels of Sigma UPS in a yeast background. These tests included
the Wilcoxon Rank test, Student’s t test, Fisher’s Exact test, and
Generalized Linear Modeling using Poisson and quasi-likeli-
hood approaches. We contrasted spectral count data from
yeast-only LC-MS/MS analyses against data from yeast at each
of the 5 spike levels and additionally created contrasts repre-
senting a 3-, 9-, and 27-fold difference in spiked protein levels
on the yeast background (Table 1). For these comparisons, we
used the 1437-protein group data set and list the number of
true- and false-positive identifications of proteins with a
minimum of 5 spectral counts across each of the comparisons
that reached at least a 2-fold increase in the λ parameter. At
the highest spike level (yeast-only against E), all tests performed
similarly in identifying almost all of the 46 spiked proteins. This
high level of identification remained in the yeast-only against
D comparison with the two GLMs and Fisher’s Exact test but
Wilcoxon rank test and Student’s t test identified fewer spiked
proteins in this comparison. This pattern remained the same
in the yeast-only against C spike level. At the two lowest spike
levels, the quasi-likelihood model outperformed the other tests,
albeit at the cost of an increased number of false-positives.

The patterns seen in the yeast-only against yeast plus spiked
proteins results were also apparent when we created contrasts
based on fold-differences in spiked protein levels. All tests were
capable of distinguishing almost all true positives with 27-fold
differences at the highest absolute concentration of spiked
protein (B versus E). At a 3-times lower spike level the two
GLMs and Fisher’s Exact test remained powerful, while Wil-
coxon rank and Student’s t test identified fewer true positive
proteins (A versus D). Similar results were obtained at the 9-fold
spiked protein difference (C versus E and B versus D). At a
3-fold difference in spiked protein levels, the two GLMs were
capable of identifying about half of the true-positive proteins
that were spiked into yeast, while the other tests yielded lower
numbers of true positives. Quasi-likelihood modeling outper-
formed Poisson modeling with a 3-fold difference at the lowest
spiked protein levels (C versus D), although again at the cost
of a higher number of false-positive identifications.

Comparative Analysis of HNSCC and Normal Tonsil Epi-
thelium by Shotgun Proteomics. A small shotgun proteomic
data set reflecting possible differences between HNSCC and
normal tonsil epithelium was used to perform a shotgun
proteomic comparison in a real-world scenario. Pools of 20
tumors and 20 normal tissues were subjected to analysis on a
LTQ-Orbitrap in quadruplicate. The resulting data set consisted
of a total of 52 956 scans that matched human peptide
sequences with a 5% peptide FDR. Using the parsimonious
protein assembly algorithm of IDPicker, the total number of
protein groups identified in this data set was 2211 with a
protein-level FDR of 6.7%. The numbers of protein groups
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matched to HNSCC and normal tonsil epithelium were very
similar, 1975 and 2125, respectively. The full list of protein
group identifications is provided as Supporting Information.
To eliminate proteins that had too few spectral counts to
become statistically different, we further reduced the data set
to protein groups that were identified by at least 5 spectra,
resulting in a data set of 1733 protein groups, including 16
protein groups included as contaminants and 8 reverse-
sequence proteins (0.9% protein-level FDR). A total of 1633
protein groups were observed in both normal tonsil epithelium
and HNSCC while 75 protein groups were unique to normal
epithelium and 22 protein groups were unique to HNSCC. A
total of 1029 protein groups were observed in all 4 replicate
analyses of both samples. The full data set with statistical
analysis and filtering options is provided as Supplemental Table
1, Supporting Information.

The highest numbers of spectral counts for a single protein
in both normal epithelium and HNSCC was observed for
desmoyokin (AHNAK). This is an unusually large nuclear
scaffolding protein of 5890 amino acids with an approximate
MW of 700 kDa. AHNAK plays an important role in the
formation of cytoskeletal structure, calcium homeostasis, and
muscle regeneration.36 We also found large numbers of spectra
derived from several structural proteins such as plectin-1,
myosin-9, and periplakin. The data set was tested for possible
differences, which yielded a total of 86 protein database entries
with a quasi p-value of less than 0.05 and at least a 4-fold
difference in spectral counts (log2(rate1/rate2), or rate ratio,
higher than 2 or lower than -2). This list includes a number
of proteins with artificially low p-values either because no
spectra were identified in one of the groups (reported with “cv”
value of “NA”), or all nonzero measurements in one of the
group were identical (reported with “cv” value of 0). These
values serve to flag these proteins for manual evaluation of the
data.

Verification of Shotgun Proteomic Data by LC-MRM-MS.
Results from global shotgun proteomic experiments yield long
lists of proteins with varying degrees of evidence for differences
in absolute levels. These results need to be verified by more
targeted and quantitative technologies. Recently, LC-MRM-
MS has been employed for this purpose,13,15 and we chose this
method to determine possible differences in protein levels for
the 18 proteins in Table 1. This list includes all 11 proteins with
higher spectral counts in HNSCC, with the exception of
MUC5B, which was included as potential protein contaminant;
and 7 proteins with the highest values in normal tonsil
epithelium compared to HNSCC. We chose proteins for which
high numbers of spectral counts were observed, but also
proteins for which relatively few spectra were observed. Thus,
the selected set of proteins formed a representative, albeit not
comprehensive, selection of proteins for which the levels were
potentially different between these two phenotypes. LC-MRM-
MS was used to analyze the individual specimens that we used
to generate the HNSCC and tonsil sample pools analyzed by
LC-MS/MS.

Although LC-MRM-MS analyses frequently employ stable
isotope labeled internal standards for the target peptides of

Table 1. Detection of Proteomic Differences in Yeast Sample with Spiked Human Proteins

human/yeast spectral countsa (true positive/false positive)

quasi-likelihood Poisson model Fisher Exact test Wilcoxon rank test Student’s t test

Yeast versus yeast + spike
E (20 fmol/µg yeast) 45/1 44/0 44/0 41/0 42/0
D 6.7 (fmol/µg yeast) 39/2 38/0 37/0 31/0 32/0
C 2.7 (fmol/µg yeast) 31/1 30/2 27/0 21/0 23/0
B 0.67 (fmol/µg yeast) 16/1 7/0 7/0 3/0 8/0
A 0.24 (fmol/µg yeast) 2/3 0/0 0/0 0/0 0/0

27-fold difference
B versus E 44/9 44/4 44/1 41/3 42/4
A versus D 38/1 37/0 36/0 31/0 32/2

9-fold difference
C versus E 42/10 42/6 42/2 39/2 40/2
B versus D 33/1 32/0 30/0 27/0 29/0

3-fold difference
D versus E 20/2 19/1 15/0 12/0 13/0
C versus D 14/3 8/0 8/0 7/0 12/0

a Spectral counts in the full data set which are at least 2-fold higher in the spiked sample with FDR-corrected p-value of less than 0.05.

Table 2. Top Ranked Proteins with Differential Spectral
Counts between HNSCC and Normal Tonsil Epithelium

rank IPI identifier gene ID normala HNSCCa 2log(λ1/λ2)
quasi

p-valueb

Top ranked proteins with higher spectral counts in
HNSCC

1 IPI00007797.3 FABP5 0 22 34.99 0.00015
2 IPI00302944.3 COL12A1 3 38 4.02 0.00149
3 IPI00295400.1 WARS 3 24 3.36 0.00308
4 IPI00220327.3 KRT1 9 (1) 47 (31) 2.74 0.00306
5 IPI00450768.7 KRT17 43 (2) 202 (26) 2.59 0.00079
6 IPI00298860.5 LTF 22 (3) 77 (16) 2.17 0.0028
7 IPI00010951.2 EPPK1 18 (14) 63 (55) 2.17 0.00250
8 IPI00007244.1 MPO 8 27 2.11 0.00306
9 IPI00299263.5 ARFGAP3 3 10 2.09 0.02472
10 IPI00010800.2 NES 14 46 2.07 0.00414
11 IPI00738499.2 FTL 6 19 2.02 0.00308

Top ranked proteins with higher spectral counts in
normal tonsil epithelium

1 IPI00082931.1 SPRR3 36 0 -33.54 0.00057
2 IPI00025084.3 CAPNS1 13 0 -33.52 0.00079
3 IPI00412546.3 CR1 13 0 -33.52 0.00079
4 IPI00165528.1 USP47 10 0 -33.14 0.00032
5 IPI00301250.6 EPS8L1 12 0 -30.52 0.01645
6 IPI00006034.1 CRIP2 11 0 -30.39 0.01554
7 IPI00375746.4 GBP6 35 1 -4.77 0.00478

a Total spectra observed for protein group (unique spectra for
indicated protein if different from protein group total). b FDR corrected.
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interest,13,15,37 we employed instead a single isotope-labeled
peptide standard found in two isoforms of the abundant
cytoskeletal protein actin. We first measured the levels of
endogenous actins using a single peptide common to the R-
and γ-forms of actin using known levels of the identical
isotopically labeled peptide spiked into each of the lysates. As
shown in Figure 2, endogenous actin measurements appeared
different between normal tonsil epithelium and HNSCC, but
this apparent difference disappeared when normalizing against
the spiked labeled peptide levels. To investigate the potential
effect of normalization, we also took measurements of annexin-
A1 using a spiked isotopically labeled peptide for the same
protein (Figure 2). In this case, normalization of the annexin-
A1 signals led to small adjustments in the observed values for
individual cases but their overall ranking by peptide signal
remained largely similar (r ) 0.81, Spearman Rank correlation).

Of the 18 potential biomarker proteins initially selected for
MRM, 6 proteins produced specific and reproducible signals
in unfractionated lysate for at least a single peptide (Figure 3).
All MRM-detectable proteins (KRT1, KRT17, FABP5, and FTL)
with higher spectral counts in tumor versus normal in the
shotgun data set showed a significant increase in MRM signals.
The two MRM-detectable proteins (GBP6 and SPRR3) with
higher spectral counts in normal tonsil epithelium were both
verified by MRM to be significantly higher in normal compared
to HNSCC. Expression of KRT1 has been described in kerati-
nizing epidermis and is found in keratin pearls formed in well-
differentiated HNSCCs,38,39 such keratin agglomerations are
normally not found in mucosal epithelium. Type II keratins
form the largest cluster of protein groups in our analysis
(Cluster 1) and KRT1 is detected by 56 peptide spectra of which
32 are unique for KRT1 and not shared with any other keratins.
Of these 32 KRT1-specific peptides, only a single one was found
in normal tonsillar epithelium, a finding that demonstrates that
the differential protein findings are specific for KRT1. The other
keratin, KRT17, is found in hyperproliferative squamous epi-
thelia39 and overexpression of KRT17 mRNA has been reported
in HNSCC.40 KRT17 is part of cluster 5 that includes a variety
of Type I keratins, it is detected by a total of 245 spectra (protein
group ID: F) of which 28 are specific for KRT17. Only 2 of the
28 KRT17-specific spectra were found in normal tonsillar

epithelium compared to HNSCC, again reinforcing the notion
that shotgun proteomics is highly specific in detecting pro-
teomic differences. Of interest, KRT17 shares 92 spectra with
protein group I in cluster 5, this is a Type I keratin that is not
further characterized (IPI00240503.7). Only a single spectrum
out of all 92 shared spectra was found in normal tonsillar
epithelium, indicating that either KRT17 or the uncharacterized
keratin was almost exclusively found in HNSCC. Likewise, the
22 spectra observed for FABP5 were only observed in HNSCC
and not in tonsillar epithelium. FABP5 is a fatty acid-binding
protein that was first described in psoriatic skin keratinocytes41

and that appears to be involved in keratinocyte development.42

Fatty acid-binding proteins are small cytoplasmic proteins that
presumably fulfill roles in fatty acid uptake, transport and
metabolism. FABP5 (E-FAPB) is upregulated by the tumor-
associated antigen EpCAM in HNSCC,43 while proteomic
analysis of HPV-related HNSCCs revealed that FABP5 was one
of the proteins upregluated in these tumors.44 One of the
proteins with lower spectral counts in HNSCC was GBP6. The
presumed function of this protein is to bind guanylate and to
hydrolyze GTP to both GDP and GMP but no data is available
for this specific for of GBP. The other protein in that was found
lower in HNSCC was SPRR3, or esophagin or cronifin-�. This
is a small proline-rich cytoplasmic protein that is cross-linked
to envelope protein of keratinocytes.45 This protein was
detected in oral epithelia and in well-differentiated squamous
cell carcinomas of the skin or oral mucosa.45 These results
demonstrate that proteins that appear to be differentially
expressed by shotgun analysis can be verified using the more
quantitatively precise LC-MRM-MS approach on the individual
sample lysates from which the pooled lysates for shotgun
proteomics were generated.

Discussion

Shotgun proteomic analyses are increasingly being applied
to clinical specimens to investigate disease state, disease
predictions, and response to treatment. A key objective of these
studies is the identification of a set of proteins whose presence
and expression levels distinguish the biological states under
study. When comparing two biological states, it is reasonable

Figure 2. Comparison of MRM results obtained for actin and annexin-A1 on the 20 individual normal tonsil epithelia (normal) and 20
individual HNSCCs (tumor). (A) Results obtained for a single actin-specific peptide without normalizing the MRM measurements. (B)
Results obtained with the same actin-specific peptide, normalized against an isotopically labeled version of the same sequence. (C)
Measurements for annexin-A1 without normalization. (D) Measurements for annexin-A1, normalized against a labeled version of the
identical annexin-A1 peptide. The actin example illustrates how an apparent difference in mean MRM measurement disappears after
normalization to the identical labeled actin peptide, which indicates successful normalization for instrument variation. The annexin-A1
example shows that in contrast to actin, an apparent lower annexin-A1 level in HNSCCs remains after normalizing for instrument
variation.
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to assume that the majority of proteins remain at more or less
constant levels. Hence, the spectral counts of these proteins
should also remain constant. Actual observations for specific
proteins may vary depending on a variety of reasons related
to the specifics of data-dependent spectral acquisition and
peptide fractionation techniques. For instance, peptides from
less abundant proteins may be masked by peptides from more
abundant proteins if their precursor m/z and elution pattern
is similar. Alternatively, peptides may not ionize well because
of size or post-translational modifications or may be lost
because they fall outside the IEF focusing range during peptide
fractionation. Notwithstanding these specialized situations, the
similar average behavior of peptides allows for a comparison
of complex mixtures from different biological states that consist
of similar sets of proteins, and spectral counting provides a
convenient measure to assess potential differences in proteomes.

Using existing data from a CPTAC interlaboratory study on repro-
ducibility of different shotgun proteome analysis approaches,22,23 we
tested several statistical comparison strategies to reveal biologi-
cal differences between two large scale shotgun proteomic data
sets. Such data sets have specific properties dictated by the
nature of data-dependent MS sampling. The resulting MS/MS
spectra are matched to protein-encoding sequences within the
human genome by well-established methods.24 These analyses
generate a list of identified peptides and the numbers of times
each of the peptides are observed. These count data can be
modeled using GLM and other approaches. As we demon-
strated previously, in complex protein mixtures such as tissue
lysates, sampling of less abundant proteins becomes a chance
event and multiple replicate analyses are necessary to increase

coverage of the proteome.7,23 In addition to the nonlinearity
of count data at the lower and higher ends, comparisons of
two shotgun proteomic data sets becomes difficult when
peptides from a given protein are exclusively observed in only
one of the two data sets. Due to the complexity of tissue lysates
and properties of data acquisition, a large number of proteins
are only identified by small numbers of peptides and may only
be represented in a few of the replicate analyses or even be
completely absent in one of two groups under comparison. This
analysis shows that despite the above limitations, known
differences in protein levels are detectable from the comparison
of shotgun data sets given the proper statistical analysis tools.

The strategies described in this report can be used as a
general framework for analysis of data from various shotgun
proteomic experimental designs. The quasi-likelihood approach
builds upon previous work using maximum likelihood-based
methods, although it does not require identification prob-
abilities from other modeling tools such as generated by
ProteinProphet and used in analysis tools such as SASPECT.15

The SASPECT package provides a test for comparing protein
identifications between two groups. However, the test score is
derived from the Boolean values for the presence or absence
of a peptide identification rather than on the actual spectral
counts. SASPECT relies on PeptideProphet confidence scores
of each of the peptide identifications to account for error and
is thus not appropriate for the analysis of pure spectral counts.
A separate approach is to combine spectral counts and the
number of protein observations in individual subjects into a
“spectral index”,27 a method we did not consider because it is
less appropriate for pooled data analysis. The spectral index

Figure 3. Examples of LC-MRM-MS analyses of a selected set of 6 proteins with large spectral count differences between HNSCC and
normal tonsil epithelium. Unfractionated lysates were tested for 4 proteins with higher spectral counts in tumor versus normal tonsil
epithelium in the shotgun data set (KRT1, KRT17, FABP5, and FTL) and 2 proteins with lower spectral counts in tumor versus normal
tonsil epithelium (GBP6 and SPRR3). Results from these proteins confirmed the original findings in the shotgun proteomic data obtained
from pooled samples. Indicated p-values were calculated using Student’s t test.
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method is based on a combination of spectral count informa-
tion and the number of specimens in which a certain protein
is identified. Thus, it requires independent measurements on
biologically independent specimens to create a meaningful
spectral index calculation, something that can not be ac-
complished with a limited number of technical replicates on
samples obtained by pooling a larger number of specimens for
each of the phenotypes as outlined for the head and neck
carcinoma data.

In this paper, we chose to explore methods that are not
dependent on the analysis pipeline but rather can be applied
to spectral count data, independently of how they were derived.
With sufficient replicate analyses and summation of peptide
identifications assigned to intact proteins the spectral count
numbers are raised to such a degree that modeling of the
observed counts becomes possible. Other tests, such as G-test,
Fisher’s Exact test, AC test, and Student’s t-test, have also been
used to detect differences in spectral counts between groups.5,46

However, such methods are not designed specifically for
spectral count data and since they do not take the distribution
of the count data into consideration, they lack statistical power
in general. The shortcomings of these other tests became
apparent in the context of the CPTAC spikes in yeast lysate
with known “ground-truth” that allowed us to compare the
performance of a collection of different statistical tests in a
present/absent setting and in a x-fold change setting, both at
different spike levels. As expected, the nonparametric Wilcoxon
rank test and Student’s t-test were least capable of discerning
the differences between the levels of spiked human proteins
in yeast. Fisher’s Exact test performed very well in most
circumstances, but this approach lacks the option of including
additional covariates in the comparisons. Poisson and quasi-
likelihood modeling performed well in most situations, each
with their specific strengths and shortcomings. An additional
advantage of our modeling approach is that important cova-
riates and/or factors describing known sources of variation (e.g.,
subgroups) may be included in the statistical model specifica-
tion. For example, the CPTAC spike study was conducted at
multiple sites and on multiple instruments, which could
potentially contribute variability to the spectral counts. A
Poisson or quasi-likelihood statistical model could easily ac-
commodate site or instrument factors that would account for
these variations, and result in more powerful tests. Indeed, the
CPTAC analyses at Vanderbilt included both LTQ and Orbitrap
instruments. We considered including an “instrument” factor
to accommodate interinstrument variation. In this case, we
found that interinstrument differences were not substantial
after including the total spectral counts per run in the offset
(data not shown). We elected to omit the instrument factor
from the statistical analysis to streamline the presentation of
results.

Protein identification from the CPTAC study 6 data set,
whereby yeast was spiked with a mixture of human proteins
provided a large data set that was acquired using standard
operating procedures. For comparisons of yeast-only versus
yeast plus spiked human proteins, Fisher’s Exact, Poisson and
quasi-likelihood modeling all performed similarly. However, in
comparisons of fold-differences, the quasi-likelihood modeling
generated a larger number of false positive results. Upon
examination of the data, the reason for this difference appeared
to be a greater sensitivity of quasi-likelihood modeling to
homogeneously distributed spectral counts than the other two
tests. In the spiked yeast data set, a larger number of proteins

show such an even spectral count distribution and the majority
of the false-positives were due to yeast proteins with small
differences in absolute spectral counts that were very consistent
between replicates. Such proteins are flagged in our analysis
by cv values of “NA” or “0” and can be subjected to separate
additional analyses. In a more variable data set such as the
head and neck data set presented in this paper, this sensitivity
to equal distribution of spectral counts among replicates does
not lead to identifications of flagged proteins and provides an
advantage over Fisher’s Exact and Poisson tests where a single
outlier value may result in a significant test that is not
representative of the overall differences.

To discern possible differences in protein levels between
normal tonsil epithelium and HNSCC we applied QuasiTel on
a relatively small IDPicker data set obtained from pooled tissue
specimens. Due to constraints on available MS time, we used
a pooled lysate strategy whereby 20 individual protein lysates
of equal protein amounts were combined into a single prepa-
ration that was subsequently analyzed by shotgun proteomics.
This approach has the advantage of a large reduction in analysis
time and focuses on proteomic differences that are common
to the pooled samples. However, the pooling approach loses
the capability to identify single outlier values from a small
number of samples within the pool. This relatively small data
set yielded statistically significant differences in protein spectral
counts between normal tonsil epithelium and HNSCC pools.
We chose to verify a subset of these proteins identified based
on their differences in spectral counts between the two pooled
samples. Of the 6 proteins for which reliable MRM data could
be obtained, the general trend observed in the shotgun
experiment was consistent for all of the proteins. The MRM
signals for successfully measured peptides generally reflected
the level of spectral counts in the shotgun data set. For instance,
keratins 1 and 17 had high levels of counts in the HNSCC
sample and MRM signals that were about 10-fold higher than
for most of the other proteins. One potential drawback of MRM
verification is that these studies are limited by the success at
which proteotypic peptides can be selected and by the specific-
ity of the signals that can be obtained for them using unfrac-
tionated cell lysates. The expansion of spectral libraries and
better prediction tools for peptides suitable for MRM will
improve these choices in the future.

Global comparisons of shotgun proteomic data sets such as
described in this paper can provide important insight into the
protein composition of biological specimens in terms of cellular
location, molecular function or biological processes. However,
these analyses are based on identifications of whole proteins
and depend on the procedures used to obtain data sets of
nonoverlapping protein sets. In IDPicker, a protein group
consists of an aggregate of protein database entries that can
only manually be distinguished on the basis of peptide
identifications. With global analysis, the sum of all peptide
identifications is used for comparisons between data sets, a
comparison that ignores any differences at the peptide level.
This feature can become problematic for example in the case
of keratins where a large family of proteins shares multiple
peptide sequences. Other examples include alternative forms
as a result of post-translational modifications, protein process-
ing, or changes in primary sequence dictated by alterations at
the DNA level. Future enhancements of the IDPicker software
package will need to address this complication of protein
assembly so that subtle differences based on peptide sets can
be revealed in global proteomic analyses.
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Another limitation of the current study is that the normal
comparison group consisted of pediatric cases, and thus, the
comparison not only includes normal versus cancer differences
but also potential differences between pediatric and adult
tissues. This potential bias limits the value of the comparison
and any of the described proteomic differences will need to
be further validated using other protein detection strategies.
Notwithstanding this aspect of the study, the major proteomic
differences were all observed in proteins that were relevant for
keratinocyte development and differentiation, while some
proteins had already been identified as potentially upregulated
in HNSCC versus normal epithelium. Further studies will be
needed to confirm our proteomic findings in the context of a
cancer/normal tissue comparison.

In conclusion, we have evaluated a panel of statistical
methods for the assessment of differences in shotgun pro-
teomic data sets. We have used this approach to detect and
verify proteomic differences between normal tonsil epithelium
and HNSCCs. The analysis approaches described for this study
are adaptable to investigate potential proteomic differences in
other large shotgun proteomic data sets.
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